Bài viết trình bày nghiên cứu về các tính chất phi cổ điển bậc thấp và bậc cao của trạng thái hai mode kết hợp phản đối xứng thêm ba và bớt một photon tổng. Mời các bạn cùng tham khảo bài viết để nắm chi tiết hơn nội dung nghiên cứu.
◆●❍■➊◆ ❈Ù❯ ❈⑩❈ ❚➑◆❍ ❈❍❻❚ P❍■ ❈✃ ✣■➎◆ ❈Õ❆ ❚❘❸◆● ❚❍⑩■ ❍❆■ ▼❖❉❊ ❑➌❚ ❍ÑP P❍❷◆ ✣➮■ ❳Ù◆● ❚❍➊▼ ❇❆ ❱⑨ ❇❰❚ ▼❐❚ P❍❖❚❖◆ ❚✃◆● ❍➬ ◆●➴❈ ❚❘❯◆●✱ ❚❘×❒◆● ▼■◆❍ t ỵ rữớ ữ ❤å❝ ❍✉➳ ✯❊♠❛✐❧✿ tr✉♦♥❣♠✐♥❤❞✉❝❅❞❤s♣❤✉❡✳❡❞✉✳✈♥ ❚â♠ t➢t✿ ❇➔✐ ❜→♦ ♥➔② tr➻♥❤ ❜➔② ♠ët ♥❣❤✐➯♥ ❝ù✉ ❝õ❛ ❝❤ó♥❣ tỉ✐ ✈➲ ❝→❝ t➼♥❤ ❝❤➜t ♣❤✐ ❝ê ✤✐➸♥ ❜➟❝ t❤➜♣ ✈➔ ❜➟❝ ❝❛♦ ❝õ❛ tr↕♥❣ t❤→✐ ❤❛✐ ♠♦❞❡ ❦➳t ❤ñ♣ ♣❤↔♥ ✤è✐ ①ù♥❣ t❤➯♠ ❜❛ ✈➔ ❜ỵt ♠ët ♣❤♦t♦♥ tê♥❣✳ ❑➳t q✉↔ ❦❤↔♦ s→t ❝❤♦ t❤➜② tr↕♥❣ ♥➔② t❤➸ ❤✐➺♥ t➼♥❤ ❝❤➜t ♥➨♥ tê♥❣ ❤❛✐ ♠♦❞❡ ♥❤÷♥❣ ❤♦➔♥ t♦➔♥ ❦❤ỉ♥❣ ❝â t➼♥❤ ❝❤➜t ♥➨♥ ❤✐➺✉ ❤❛✐ ♠♦❞❡✳ ❑❤✐ ❦❤↔♦ s→t sü ✈✐ ♣❤↕♠ ❜➜t ✤➥♥❣ t❤ù❝ ❈❛✉❝❤② ✲ ❙❝❤✇❛r③✱ ❝❤ó♥❣ tỉ✐ ♥❤➟♥ t❤➜② tr↕♥❣ t❤→✐ ♥➔② ❤♦➔♥ t♦➔♥ ✈✐ ♣❤↕♠ ❜➜t ✤➥♥❣ t❤ù❝ ❈❛✉❝❤② ✲ ❙❝❤✇❛r③✳ ❍ì♥ ♥ú❛✱ ❦❤✐ ♥❣❤✐➯♥ ❝ù✉ ❝→❝ t➼♥❤ ❝❤➜t ♣❤↔♥ ❦➳t ❝❤ò♠ ❤❛✐ ♠♦❞❡✱ ❦➳t q✉↔ ❦❤↔♦ s→t ❝❤♦ t❤➜② tr↕♥❣ t❤→✐ ❤❛✐ ♠♦❞❡ ❦➳t ❤ñ♣ ♣❤↔♥ ✤è✐ ①ù♥❣ t❤➯♠ ❜❛ ✈➔ ❜ỵt ♠ët ♣❤♦t♦♥ tê♥❣ t❤➸ ❤✐➺♥ t➼♥❤ ❝❤➜t ♣❤↔♥ ❦➳t ❝❤ò♠ ð ♠å✐ ❜➟❝ t❤➜♣ ✈➔ ❝❛♦✱ tr♦♥❣ ✤â ❜➟❝ ❝➔♥❣ ❝❛♦ t❤➻ ❝➜♣ ✤ë ♣❤↔♥ ❦➳t ❝❤ị♠ ❝➔♥❣ t❤➸ ❤✐➺♥ ♠↕♥❤ ❤ì♥✳ ❚ø ❦❤â❛✿ ◆➨♥ tê♥❣ ❤❛✐ ♠♦❞❡✱ ♥➨♥ ❤✐➺✉ ❤❛✐ ♠♦❞❡✱ sü ✈✐ ♣❤↕♠ ❜➜t ✤➥♥❣ t❤ù❝ ❈❛✉❝❤② ✲ ❙❝❤✇❛r③✱ ♣❤↔♥ ❦➳t ❝❤ò♠✳ ✶ ●■❰■ ❚❍■➏❯ ❱✐➺❝ t↕♦ r❛ ❝→❝ tr↕♥❣ t❤→✐ ♣❤✐ ❝ê ✤✐➸♥ õ ỵ rt q trồ t ố ợ ♥❣➔♥❤ ❦❤♦❛ ❤å❝ ❧÷đ♥❣ tû✱ ✈➻ ❦❤↔ ♥➠♥❣ ù♥❣ ❞ư♥❣ ú ỷ ỵ tổ t ữủ tỷ ữ t➠♥❣ tè❝ ✤ë tr✉②➲♥ t❤æ♥❣ t✐♥✱ t➠♥❣ t➼♥❤ ❜↔♦ ♠➟t✱ ỗ tớ t t tr t❤ü❝ ❝õ❛ t❤æ♥❣ t✐♥ ❬✶❪✳ ❇➯♥ ❝↕♥❤ ✤â✱ ❝→❝ tr↕♥❣ t❤→✐ ♥➔② ✤÷đ❝ ♥❣❤✐➯♥ ❝ù✉ ✤➸ →♣ ❞ư♥❣ ✈➔♦ ♥❤✐➲✉ ❧➽♥❤ ✈ü❝ ❦❤→❝ ♥❤÷ q✉❛♥❣ ❧÷đ♥❣ tû✱ ❦ÿ t❤✉➟t ❧÷đ♥❣ tỷ t ỵ t r tr t ♣❤✐ ❝ê ✤✐➸♥ ♥❣➔② ❝➔♥❣ ✤÷đ❝ ♥❤✐➲✉ ♥❤➔ ❦❤♦❛ ❤å❝ t✐➳♣ tư❝ ♥❣❤✐➯♥ ❝ù✉ ✈➔ ♣❤→t tr✐➸♥✱ ✈ỵ✐ ✈✐➺❝ ♥❣❤✐➯♥ ❝ù✉ ❝→❝ tr↕♥❣ t❤→✐ ♣❤✐ ❝ê ✤✐➸♥ ♥❤÷ tr↕♥❣ t❤→✐ ♥➨♥✱ tr↕♥❣ t❤→✐ ❦➳t ❤ñ♣ ✤è✐ ①ù♥❣✱ ♣❤↔♥ ✤è✐ ①ù♥❣✳ r r t ỵ tữ ✈➲ tr↕♥❣ t❤→✐ ❦➳t ❤ñ♣ t❤➯♠ ♣❤♦t♦♥ ❬✸❪✱ s❛✉ ✤â ữủ t ỵ ự st ❬✹✱ ✺❪✳ ◆❣♦➔✐ t❤➯♠ ♣❤♦t♦♥ ❝á♥ ❝â ❜ỵt ♣❤♦t♦♥ ✈➔♦ ❝→❝ tr↕♥❣ t❤→✐ ❦➳t ❤đ♣ ❝ơ♥❣ ✤÷đ❝ ♥❣❤✐➯♥ ❝ù✉ ❬✻❪ ✈➔ ❝❤♦ r❛ ✤í✐ ❝→❝ tr↕♥❣ t❤→✐ ♣❤✐ ❝ê ✤✐➸♥ ♠ỵ✐ ❦❤→❝✳ ❱✐➺❝ ♥❣❤✐➯♥ ❝ù✉ t➼♥❤ ❝❤➜t ❝õ❛ ❝→❝ tr↕♥❣ t❤→✐ ♣❤✐ ❝ê ✤✐➸♥ t❤➯♠ ✈➔ ❜ỵt ♣❤♦t♦♥ ❧➔ ✈✐➺❝ ❤➳t sù❝ q✉❛♥ trå♥❣✱ ❦❤æ♥❣ ❝❤➾ t↕♦ r❛ ❝→❝ tr↕♥❣ t❤→✐ ♣❤✐ ❝ê ✤✐➸♥ ♠ỵ✐✱ ♠➔ ❝á♥ ♠ð r❛ ♥❤✐➲✉ ữợ ự ợ ứ ❦➳t q✉↔ t❤✉ ✤÷đ❝✱ ♥❣÷í✐ t❛ ù♥❣ ❞ư♥❣ ❝→❝ tr↕♥❣ t❤→✐ ♥➔② ✈➔♦ ❝→❝ ♥❣➔♥❤ ❦❤♦❛ ❤å❝ ❚↕♣ ❝❤➼ ❑❤♦❛ ❤å❝✱ ❚r÷í♥❣ ✣↕✐ ❤å❝ ❙÷ ♣❤↕♠✱ ✣↕✐ ❤å❝ ❍✉➳ ■❙❙◆ ✶✽✺✾✲✶✻✶✷✱ ❙è ✸✭✺✺✮✴✷✵✷✵✿ tr✳✹✵✲✺✵ ◆❣➔② ♥❤➟♥ ❜➔✐✿ ✺✴✽✴✷✵✶✾❀ ❍♦➔♥ t❤➔♥❤ ♣❤↔♥ ❜✐➺♥✿ ✶✴✸✴✷✵✷✵❀ ◆❣➔② ♥❤➟♥ ✤➠♥❣✿ ✶✺✴✸✴✷✵✷✵ ✹✶ ◆●❍■➊◆ ❈Ù❯ ❈⑩❈ ❚➑◆❍ ❈❍❻❚ P❍■ ❈✃ ✣■➎◆ ❈Õ❆ ❚❘❸◆● ❚❍⑩■✳✳✳ ❦ÿ tt t ố ợ tổ t ữủ tû ✈➔ ♠→② t➼♥❤ ❧÷đ♥❣ tû✳ ◗✉→ tr➻♥❤ ❦❤↔♦ s→t ❝→❝ t➼♥❤ ❝❤➜t ♣❤✐ ❝ê ✤✐➸♥ ❝õ❛ tr↕♥❣ t❤→✐ t❤➯♠ ✈➔ ❜ỵt ♣❤♦t♦♥ ❧➯♥ ❤❛✐ ♠♦❞❡ ❦➳t ❤đ♣ ♣❤↔♥ ✤è✐ ①ù♥❣ ✤➣ ✤÷đ❝ ♠ët sè t→❝ ❣✐↔ t❤ü❝ ❤✐➺♥ ❬✼✱ ✽❪✳ ❚r♦♥❣ ❜➔✐ ❜→♦ ♥➔②✱ ❝❤ó♥❣ tỉ✐ ✤÷❛ r❛ tr↕♥❣ t❤→✐ ❣å✐ ❧➔ tr↕♥❣ t❤→✐ ❤❛✐ ♠♦❞❡ ❦➳t ❤ñ♣ ♣❤↔♥ ố ự t ợt ởt t tờ ữ s❛✉✿ |ψ ab = Nαβ (ˆ a†3 + ˆb) (|α a |β b ✭✶✮ − |β a |α b ) , tr♦♥❣ ✤â Nα,β ={|α|6 + |β|6 + 9(|α|4 + |β|4 ) + 19(|α|2 + |β|2 ) + 12 + 2Re[α3 β + αβ ] − exp[−|α − β|2 ](2Re[α∗3 β + 9α∗2 β + 19α∗ β + α3 β + αβ ] + 12)}− , ✭✷✮ ❧➔ ❤➺ sè ❝❤✉➞♥ ❤â❛✱ a ˆ† b ữủt t tỷ s ố ợ ♠♦❞❡ a ✈➔ t♦→♥ tû ❤õ② ✤è✐ ✈ỵ✐ ♠♦❞❡ b✱ ❘❡❬❩❪ ❧➔ ❦➼ ❤✐➺✉ ♣❤➛♥ t❤ü❝ ❝õ❛ ♠ët sè ♣❤ù❝ ởt tr t ợ ữ ữủ ❝ù✉✱ ❦❤↔♦ s→t✳ ❱➻ ✈➟②✱ tr♦♥❣ ❜➔✐ ❜→♦ ♥➔②✱ ❝❤ó♥❣ tæ✐ ♥❣❤✐➯♥ ❝ù✉ ❝→❝ t➼♥❤ ❝❤➜t ♣❤✐ ❝ê ✤✐➸♥ ❝õ❛ tr↕♥❣ t❤→✐ ❤❛✐ ♠♦❞❡ ❦➳t ❤ñ♣ ♣❤↔♥ ✤è✐ ①ù♥❣ t❤➯♠ ❜❛ ✈➔ ❜ỵt ♠ët ♣❤♦t♦♥ tê♥❣ t❤ỉ♥❣ q✉❛ t➼♥❤ ❝❤➜t ♥➨♥ tê♥❣ ❤❛✐ ♠♦❞❡ ✈➔ ♥➨♥ ❤✐➺✉ ❤❛✐ ♠♦❞❡✱ sü ✈✐ ♣❤↕♠ ❜➜t ✤➥♥❣ t❤ù❝ ❈❛✉❝❤② ✲ ❙❝❤✇❛r③ ✈➔ t➼♥❤ ❝❤➜t ♣❤↔♥ ❦➳t ❝❤ò♠ ❜➟❝ ❝❛♦ ❤❛✐ ♠♦❞❡✳ ✷ ❚➑◆❍ ❈❍❻❚ ◆➆◆ ❈Õ❆ ❚❘❸◆● ❚❍⑩■ ❍❆■ ▼❖❉❊ ❑➌❚ ❍ÑP P❍❷◆ ✣➮■ ❳Ù◆● ❚❍➊▼ ❇❆ ❱⑨ ❇❰❚ ▼❐❚ P❍❖❚❖◆ ❚✃◆● ✷✳✶✳ ◆➨♥ tê♥❣ ❤❛✐ ♠♦❞❡ ❍❛✐ ❦✐➸✉ ♥➨♥ ❜➟❝ ❝❛♦ ❧➔ ♥➨♥ tê♥❣ ✈➔ ♥➨♥ ❤✐➺✉ ❤❛✐ ♠♦❞❡ ✤➣ ✤÷đ❝ ❍✐❧❧❡r② ❬✾❪ ✤÷❛ r❛ ✈➔♦ ♥➠♠ ✶✾✽✾✳ ❚❤❡♦ ✤â✱ ♠ët tr↕♥❣ t❤→✐ ✤÷đ❝ ❣å✐ ❧➔ ♥➨♥ tê♥❣ ♥➳✉ tr✉♥❣ ❜➻♥❤ tr♦♥❣ tr↕♥❣ t❤→✐ ✤â t❤ä❛ ♠➣♥ ❜➜t ✤➥♥❣ t❤ù❝ ∆Vˆϕ tr♦♥❣ ✤â Vˆϕ = 2 = Vˆϕ2 − Vˆϕ < n ˆa + n ˆb + , ✭✸✮ eiϕ a ˆ†ˆb† + e−iϕ a ˆˆb ✱ n ˆa = a ˆ† a ˆ✱n ˆ b = ˆb†ˆb ❧➛♥ ❧÷đt ❧➔ t♦→♥ tû sè ❤↕t ❝õ❛ ❤❛✐ ♠♦❞❡ a ✈➔ b✳ ✣➸ t❤✉➟♥ t✐➺♥ ❝❤♦ ✈✐➺❝ ❦❤↔♦ s→t t❛ ✤➦t S ❧➔ t❤❛♠ sè ♥➨♥ tê♥❣ ❝â ❞↕♥❣ S = Vˆϕ2 − Vˆϕ − (ˆ na + n ˆ b + 1) ✭✹✮ ▼ët tr↕♥❣ t❤→✐ ❣å✐ ❧➔ ♥➨♥ tê♥❣ ❤❛✐ ♠♦❞❡ ♥➳✉ t❤❛♠ sè S < 0✳ ❱➻ α ✈➔ β ❧➔ ❝→❝ sè ♣❤ù❝ ♥➯♥ t❛ ✤➦t α = exp (iϕa )✱ β = rb exp (iϕb ) ✈➔ φh,k,m = hϕ + kϕa + mϕb ✱ ✈ỵ✐ h, k, m ❧➔ ❝→❝ sè ♥❣✉②➯♥✱ , rb , ϕa , ϕb ❧➔ ❝→❝ sè t❤ü❝✳ ❙û ❞ö♥❣ tr↕♥❣ t❤→✐ ❤❛✐ ♠♦❞❡ ❦➳t ❤ñ♣ ♣❤↔♥ ✤è✐ ①ù♥❣ t❤➯♠ ❜❛ ✈➔ ❜ỵt ♠ët ♣❤♦t♦♥ tê♥❣ ✈➔♦ ❝ỉ♥❣ t❤ù❝ ✭✹✮ t❛ ♥❤➟♥ ✤÷đ❝ S = Nαβ {2{(ra8 rb2 + ra2 rb8 + 15(ra6 rb2 + ra2 rb6 ) + 61(ra4 rb2 + ra2 rb4 ) + 240ra2 rb2 ) cos(φ2,−2,−2 ) + (ra5 rb3 + 6ra3 rb3 + 6ra rb3 ) cos(φ2,1,−1 ) + ra5 rb3 cos(φ2,−5,−3 ) + ra3 rb5 cos(φ2,−3,−5 ) ✹✷ ❍➬ ◆●➴❈ ❚❘❯◆●✱ ❚❘×❒◆● ▼■◆❍ ✣Ù❈ + (ra3 rb5 + 6ra3 rb3 + 6ra3 rb ) cos(φ2,−1,1 ) − x(2ra5 rb5 (cos(φ2,−5,1 ) + cos(φ2,1,−5 )) + 15ra4 rb4 (cos(φ2,−4,0 ) + cos(φ2,0,−4 )) + 61ra3 rb3 (cos(φ2,−3,−1 ) + cos(φ2,−1,−3 )) + (ra3 rb5 + 6ra3 rb ) cos(φ2,−1,1 ) + 120ra2 rb2 cos(φ2,−2,−2 ) + ra5 rb3 cos(φ2,−5,−3 ) + ra3 rb5 cos(φ2,−3,−5 ) + (ra5 rb3 + 6ra rb3 ) cos(φ2,1,−1 ) + 6(ra2 rb4 + ra4 rb2 ) cos(φ2,0,0 )} + 2(ra8 rb2 + ra2 rb8 ) + 31(ra6 rb2 + ra2 rb6 ) + 137(ra4 rb2 + ra2 rb4 ) + 350ra2 rb2 + 139(ra2 + rb2 ) + ra8 + rb8 + 16(ra6 + rb6 ) + 73(ra4 + rb4 ) + 48 + 2(2ra5 rb3 + 7ra3 rb3 + ra5 rb + 4ra3 rb ) cos(φ0,3,1 ) + 2(2ra3 rb5 + 7ra3 rb3 + rb5 + 4ra rb3 ) cos(φ0,1,3 ) − x(350ra2 rb2 + 48 + 2[ra4 rb4 cos(φ0,4,−4 ) + 73ra2 rb2 cos(φ0,2,−2 ) + 31ra4 rb4 cos(φ0,2,−2 ) + (137ra3 rb3 + 139ra rb ) cos(φ0,1,−1 ) + (2ra3 rb5 + 4ra rb3 ) cos(φ0,1,3 ) + ra4 rb2 cos(φ0,4,0 ) + (2ra5 rb5 + 16ra3 rb3 ) cos(φ0,3,−3 ) + (2ra5 rb3 + 4ra3 rb ) cos(φ0,3,1 ) + ra2 rb4 cos(φ0,0,4 ) + 7(ra2 rb4 + ra4 rb2 ) cos(φ0,2,2 )])} − {(16(ra6 + rb6 ) + ra8 + rb8 + 73(ra4 + rb4 ) + 103(ra2 + rb2 ) + 48 + ra6 rb2 + ra2 rb6 + 9(ra4 rb2 + ra2 rb4 ) + (8ra3 rb + 2ra5 rb ) cos(φ0,3,1 ) + 38ra2 rb2 + 2ra3 rb3 (cos(φ0,3,1 ) + cos(φ0,1,3 )) + (8ra rb3 + 2ra rb5 ) cos(φ0,1,3 ) − x(2ra4 rb4 cos(φ4,0,0 ) + 32ra3 rb3 cos(φ3,0,0 ) + (2ra4 rb2 + 2ra2 rb4 ) cos(φ0,2,2 ) + (146ra2 rb2 + 2ra4 rb4 ) cos(φ2,0,0 ) + (206ra rb + 18ra3 rb3 ) cos(φ1,0,0 ) + 48 + 2ra4 rb2 cos(φ0,4,0 ) + 2ra2 rb4 cos(φ0,0,4 ) + 8ra3 rb cos(φ0,3,1 ) + 8ra rb3 cos(φ0,1,3 ) {((2ra2 rb4 + 6ra2 rb2 ) cos(φ1,0,2 ) + 2(ra7 rb + rb7 + 12(ra5 rb + 38ra2 rb2 )} − Nαβ + rb5 ) + 48ra rb + 37(ra3 rb + rb3 )) cos(φ1,−1,−1 ) + (2rb3 + 2ra3 rb ) cos(φ1,−1,−1 ) + (2ra4 rb2 + 6ra2 rb2 ) cos(φ1,2,0 ) + 2ra4 rb2 cos(φ1,−4,−2 ) + 2ra2 rb4 cos(φ1,−2,−4 ) − x(2ra2 rb4 cos(φ1,0,2 ) + 2ra2 rb4 cos(φ1,−2,−4 ) + 6(ra3 rb + rb3 ) cos(φ1,1,1 ) + 2ra4 rb2 cos(φ1,2,0 ) + 2ra4 rb4 (cos(φ1,−4,2 ) + cos(φ1,2,−4 )) + 2ra4 rb2 cos(φ1,−4,−2 ) + 24ra3 rb3 (cos(φ1,−3,1 ) + cos(φ1,1,−3 )) + 96ra rb cos(φ1,−1,−1 ) + 74ra2 rb2 (cos(φ1,−2,0 ) ✭✺✮ + cos(φ1,0,−2 )))}2 , tr♦♥❣ ✤â Nα,β =(ra6 + rb6 + 9(ra4 + rb4 ) + 19(ra2 + rb2 ) + 2ra3 rb cos(φ0,3,1 ) + 2ra rb3 cos(φ0,1,3 ) + 12 − x(2ra3 rb3 cos(φ0,3,−3 ) + 18ra2 rb2 cos(φ0,2,−2 ) + 38ra rb cos(φ0,1,−1 ) + 2ra3 rb cos(φ0,3,1 ) + 2ra rb3 cos(φ0,1,3 ) + 12)− , ✭✻✮ ✈ỵ✐ x = exp[−ra2 − rb2 + 2ra rb cos(0,1,1 )] ỗ t st sỹ tở ❝õ❛ t❤❛♠ sè ❙ ✈➔♦ ❜✐➯♥ ✤ë ❦➳t ❤ñ♣ rb ✈ỵ✐ ✤✐➲✉ ❦✐➺♥ ❦❤↔♦ s→t ❧➔ = rb , ϕ = π2 , ϕa = π, ϕb = π2 rb ỗ t t❛ t❤➜② t❤❛♠ sè ♥➨♥ tê♥❣ S ❧✉ỉ♥ ❜➨ ❤ì♥ ❤♦➦❝ ❜➡♥❣ 0✱ ♥❣❤➽❛ ❧➔ ❧✉æ♥ ①✉➜t ❤✐➺♥ q✉→ tr➻♥❤ ♥➨♥ tê♥❣ tr♦♥❣ tr↕♥❣ t❤→✐ ❤❛✐ ♠♦❞❡ ❦➳t ❤ñ♣ ♣❤↔♥ ✤è✐ ①ù♥❣ t❤➯♠ ❜❛ ✈➔ ❜ỵt ♠ët ♣❤♦t♦♥ tê♥❣✳ ❑❤✐ ❝→❝ t❤❛♠ sè ✱ rb ❝➔♥❣ t➠♥❣ t❤➻ t❤❛♠ sè ❙ ❝➔♥❣ ➙♠✱ ♥❣❤➽❛ ❧➔ q✉→ tr➻♥❤ ♥➨♥ tê♥❣ ❝➔♥❣ t❤➸ ❤✐➺♥ rã✳ ❱ỵ✐ ◆●❍■➊◆ ❈Ù❯ ❈⑩❈ ❚➑◆❍ ❈❍❻❚ P❍■ ❈✃ ✣■➎◆ ❈Õ❆ ❚❘❸◆● ❚❍⑩■✳✳✳ ✹✸ ❍➻♥❤ ✶✿ ❑❤↔♦ s→t sü ♣❤ö t❤✉ë❝ ❝õ❛ t❤❛♠ sè ❙ ✈➔♦ ❜✐➯♥ ✤ë ❦➳t ❤ñ♣ rb ❝õ❛ tr↕♥❣ t❤→✐ ❤❛✐ ♠♦❞❡ ❦➳t ❤đ♣ ♣❤↔♥ ✤è✐ ①ù♥❣ t❤➯♠ ❜❛ ✈➔ ❜ỵt ♠ët ♣❤♦t♦♥ tê♥❣✳ ✤✐➲✉ ❦✐➺♥ ❦❤↔♦ s→t tr➯♥✱ ❝❤ù♥❣ tä tr↕♥❣ t❤→✐ ❤❛✐ ♠♦❞❡ ❦➳t ❤ñ♣ ♣❤↔♥ ✤è✐ ①ù♥❣ t❤➯♠ ❜❛ ✈➔ ❜ỵt ♠ët ♣❤♦t♦♥ tê♥❣ ❝â t➼♥❤ ♥➨♥ tê♥❣✳ ❑❤✐ ❝→❝ t❤❛♠ sè ✱ rb ❝➔♥❣ t➠♥❣ t❤➻ t➼♥❤ ♥➨♥ tê♥❣ ❝õ❛ tr↕♥❣ t❤→✐ ❝➔♥❣ t❤➸ ❤✐➺♥ rã✳ ✷✳✷✳ ◆➨♥ ❤✐➺✉ ❤❛✐ ♠♦❞❡ ❚❤❡♦ ❍✐❧❧❡r② ❬✾❪ ♠ët tr↕♥❣ t❤→✐ ✤÷đ❝ ❣å✐ ❧➔ ♥➨♥ ❤✐➺✉ ❤❛✐ ♠♦❞❡ ♥➳✉ ❦❤✐ tr✉♥❣ ❜➻♥❤ tr♦♥❣ tr↕♥❣ t❤→✐ ✤â t❤ä❛ ♠➣♥ ❜➜t ✤➤♥❣ t❤ù❝ ˆ2 − W ˆϕ W ϕ − (|ˆ na − n ˆ b |) < ✭✼✮ ✣➸ ✤ì♥ ❣✐↔♥ ❝❤♦ ✈✐➺❝ ❦❤↔♦ s→t t➼♥❤ ❝❤➜t ♥➨♥ ❤✐➺✉✱ t❛ ✤➦t t❤❛♠ sè ♥➨♥ ❤✐➺✉ D ❝â ❞↕♥❣ ˆ ϕ2 − W ˆϕ D= W ˆϕ = tr♦♥❣ ✤â W 2 − (|ˆ na − n ˆ b |) , ✭✽✮ eiϕ a ˆˆb† + e−iϕ a ˆ†ˆb ✱ n ˆa = a ˆ† a ˆ, n ˆ b = ˆb†ˆb ❧➛♥ ❧÷đt ❧➔ t♦→♥ tû sè ❤↕t ❝õ❛ ❤❛✐ ♠♦❞❡ a ✈➔ b✳ ▼ët ❝→❝❤ t÷ì♥❣ tü ♣❤➛♥ ♥➨♥ tê♥❣✱ ❦❤✐ ❦❤↔♦ s→t t➼♥❤ ♥➨♥ ❤✐➺✉ ❝õ❛ tr↕♥❣ t❤→✐ ❤❛✐ ♠♦❞❡ ❦➳t ❤ñ♣ ♣❤↔♥ ✤è✐ ①ù♥❣ t❤➯♠ ❜❛ ✈➔ ❜ỵt ♠ët ♣❤♦t♦♥ tê♥❣ t❛ t❤✉ ✤÷đ❝ ❦➳t q✉↔ ❝ư t❤➸ ♥❤÷ s❛✉ {(2ra2 rb8 + 30ra2 rb6 + 120ra2 rb4 + 120ra2 rb2 + 2ra4 rb2 ) cos(φ2,−2,2 ) + (2ra5 rb3 + 12ra3 rb3 D = Nαβ + 12ra rb3 ) cos(φ2,−1,−3 ) + 2ra3 rb5 cos(φ2,−1,5 ) + 2ra5 rb3 cos(φ2,5,−1 ) + (2ra3 rb5 + 12ra3 rb3 + 12ra3 rb ) cos(φ2,−3,−1 ) + (2ra8 rb2 + 30ra6 rb2 + 120ra4 rb2 + 120ra2 rb2 + 2ra2 rb4 ) cos(φ2,2,−2 ) − x(2ra3 rb7 cos(φ2,−3,3 ) + 2ra rb7 cos(φ2,1,3 ) + 2ra7 rb3 cos(φ2,3,−3 ) + 2ra7 rb cos(φ2,3,1 ) + (120ra rb5 + 2ra5 rb ) cos(φ2,−1,1 ) + (120ra5 rb + 2ra rb5 ) cos(φ2,1,−1 ) + 30ra2 rb6 cos(φ2,−1,1 ) + 30ra6 rb2 cos(φ2,1,−1 ) + (2ra3 rb5 + 12ra3 rb ) cos(φ2,−3,−1 ) + 12ra2 rb4 cos(φ2,−2,−2 ) + 12ra4 rb2 cos(φ2,−2,−2 ) + (2ra5 rb3 + 12ra rb3 ) cos(φ2,−1,−3 ) + 120(ra4 + rb4 ) cos(φ2,0,0 )) + 2(ra8 rb2 + ra2 rb8 ) + 31(ra6 rb2 + ra2 rb6 ) + 137(ra4 rb2 + ra2 rb4 ) + 350ra2 rb2 + 120(ra2 + rb2 ) + ra8 + rb8 ✹✹ ❍➬ ◆●➴❈ ❚❘❯◆●✱ ❚❘×❒◆● ▼■◆❍ ✣Ù❈ + 64(ra4 + rb4 ) + 15(ra6 + rb6 ) + (4ra5 rb3 + 14ra3 rb3 + 2ra5 rb + 6ra3 rb ) cos(φ0,3,1 ) + (4ra3 rb5 + 14ra3 rb3 + 2ra rb5 + 6ra rb3 ) cos(φ0,1,3 ) + 36 − x(2ra4 rb4 cos(φ0,4,−4 ) + (4ra5 rb5 + 30ra3 rb3 ) cos(φ0,3,−3 ) + 128ra2 rb2 cos(φ0,2,−2 ) + 350ra2 rb2 + 36 + (4ra3 rb5 + 6ra rb3 ) cos(φ0,1,3 ) + 2ra2 rb4 cos(φ0,0,4 ) + (4ra5 rb3 + 6ra3 rb ) cos(φ0,3,1 ) + (62ra4 rb4 + 274ra3 rb3 + 240ra rb ) cos(φ0,1,−1 ) + 2ra4 rb2 cos(φ0,4,0 ) + 14(ra2 rb4 + ra4 rb2 ) cos(φ0,2,2 ) − |(36 + ra8 + rb8 + 15(ra6 + rb6 ) + 62(ra4 + rb4 ) + (2ra5 rb + 6ra3 rb − 2ra3 rb3 ) cos(φ0,3,1 ) − 34ra2 rb2 − (ra6 rb2 + ra2 rb6 ) + 72(ra2 + rb2 ) + (2ra rb5 + 6ra rb3 − 2ra3 rb3 ) cos(φ0,1,3 ) − 9(ra4 rb2 + ra2 rb4 ) − x(36 − 34ra2 rb2 + (124ra2 rb2 − 2ra4 rb4 ) cos(φ2,0,0 ) + 2ra4 rb4 cos(φ4,0,0 ) + 2ra2 rb4 cos(φ0,0,4 ) + 2ra4 rb2 cos(φ0,4,0 ) + 6ra3 rb cos(φ0,3,1 ) + 30ra3 rb3 cos(φ3,0,0 ) + (144ra rb − 18ra3 rb3 ) cos(φ1,0,0 ) {(2ra7 rb + 24ra5 rb + 72ra3 rb − (2ra2 rb4 + 2ra4 rb2 ) cos(φ0,2,2 ) + 6ra rb3 cos(φ0,1,3 )))|} − Nαβ + 48ra rb + 2ra rb3 ) cos(φ1,1,−1 ) + 2ra4 rb2 cos(φ1,4,0 ) + (2ra rb7 + 24ra rb5 + 72ra rb3 + 48ra rb + 2ra3 rb ) cos(φ1,−1,1 ) + 2ra2 rb4 cos(φ1,0,4 ) + (2ra4 rb2 + 2ra2 rb4 + 12ra2 rb2 ) cos(φ1,−2,−2 ) − x(2ra rb5 cos(φ1,1,3 ) + (72ra rb3 + 2ra3 rb ) cos(φ1,−1,1 ) + 48(ra2 + rb2 ) cos(φ1,0,0 ) + 2ra3 rb3 cos(φ1,−1,−3 ) + (72ra3 rb + 2ra rb3 ) cos(φ1,1,−1 ) + 2ra3 rb3 cos(φ1,−3,−3 ) + 2ra5 rb cos(φ1,3,1 ) + 2ra5 rb3 cos(φ1,3,−3 ) + 24ra2 rb4 cos(φ1,−2,2 ) + 24ra4 rb2 cos(φ1,2,−2 ) + 12ra2 rb2 cos(1,2,2 ) + 2ra3 rb5 cos(1,3,3 ))}2 ỗ t❤à ✷ ❦❤↔♦ s→t t❤❛♠ sè D t❤❡♦ ❜✐➯♥ ✤ë t ủ rb ữợ ợ ❦❤↔♦ ❍➻♥❤ ✷✿ ❑❤↔♦ s→t sü ♣❤ö t❤✉ë❝ ❝õ❛ t❤❛♠ số t ủ rb ữợ ♥➨♥ ϕ ❝õ❛ tr↕♥❣ t❤→✐ ❤❛✐ ♠♦❞❡ ❦➳t ❤ñ♣ ♣❤↔♥ ✤è✐ ①ù♥❣ t❤➯♠ ❜❛ ✈➔ ❜ỵt ♠ët ♣❤♦t♦♥ tê♥❣✳ s→t ❧➔ = 2rb , ϕa = 0, ϕb = π2 , ≤ rb ≤ ✈➔ ≤ ỗ t t t t❤❛♠ sè ♥➨♥ ❤✐➺✉ D ❧✉ỉ♥ ❧ỵ♥ ❤ì♥ ❤♦➦❝ ❜➡♥❣ ú õ t t t ữợ ϕ✳ ❑❤✐ ❝→❝ t❤❛♠ sè ✱ rb ❝➔♥❣ t➠♥❣ t❤➻ t❤❛♠ sè D ❝➔♥❣ ❞÷ì♥❣✱ tù❝ ❧➔ ❝➔♥❣ ❦❤ỉ♥❣ õ t t ữ ợ ✤✐➲✉ ❦✐➺♥ ❦❤↔♦ s→t ♥❤÷ tr➯♥✱ tr↕♥❣ t❤→✐ t❤➯♠ ❜❛ ✈➔ ❜ỵt ♠ët ♣❤♦t♦♥ tê♥❣ ❤♦➔♥ t♦➔♥ ❦❤ỉ♥❣ ❝â t➼♥❤ ♥➨♥ ❤✐➺✉ ❤❛✐ ♠♦❞❡✳ ✹✺ ◆●❍■➊◆ ❈Ù❯ ❈⑩❈ ❚➑◆❍ ❈❍❻❚ P❍■ ❈✃ ✣■➎◆ ❈Õ❆ ❚❘❸◆● ❚❍⑩■✳✳✳ ✸ ❙Ü ❱■ P❍❸▼ ❇❻❚ ✣➃◆● ❚❍Ù❈ ❈❆❯❈❍❨✲❙❈❍❲❆❘❩ ❱⑨ ❚➑◆❍ P❍❷◆ ❑➌❚ ❈❍Ò▼ ❈Õ❆ ❚❘❸◆● ❚❍⑩■ ❍❆■ ▼❖❉❊ ❑➌❚ ❍ÑP P❍❷◆ ✣➮■ ❳Ù◆● ❚❍➊▼ ❇❆ ❱⑨ ❇❰❚ ▼❐❚ P❍❖❚❖◆ ❚✃◆● ✸✳✶✳ ❙ü ✈✐ ♣❤↕♠ ❜➜t ✤➥♥❣ t❤ù❝ ❈❛✉❝❤② ✲ ❙❝❤✇❛r③ ❇➜t ✤➥♥❣ t❤ù❝ ❈❛✉❝❤② r trữớ ủ ố ợ tr÷í♥❣ ❝ê ✤✐➸♥ ❝â ❞↕♥❣ a ˆ†2 a ˆ2 I= ˆb†2ˆb2 − ≥ a ˆ†ˆb†ˆbˆ a ✭✶✵✮ ❙ü ✈✐ ♣❤↕♠ ❜➜t ✤➥♥❣ t❤ù❝ tr➯♥✱ ♥❣❤➽❛ ❧➔ I < 0✱ ❝❤ù♥❣ tä tr↕♥❣ t❤→✐ ❦❤↔♦ s→t ❧➔ ♣❤✐ ❝ê ✤✐➸♥✳ ✣è✐ ✈ỵ✐ tr↕♥❣ t❤→✐ ❤❛✐ ♠♦❞❡ ❦➳t ❤đ♣ ♣❤↔♥ ✤è✐ ①ù♥❣ t❤➯♠ ❜❛ ✈➔ ❜ỵt ♠ët ♣❤♦t♦♥ tê♥❣ t❛ t❤✉ ✤÷đ❝ ❦➳t q✉↔ ❝õ❛ t❤❛♠ sè I ♥❤÷ s❛✉✿ I ={{ra10 + rb10 + 21(ra8 + rb8 ) + 138(ra6 + rb6 ) + 330(ra4 + rb4 ) + 250(ra2 + rb2 ) + ra4 rb2 + ra2 rb4 + (2ra7 rb + 12ra5 rb + 12ra3 rb ) cos(φ0,3,1 ) + (2ra rb7 + 12ra rb5 + 12ra rb3 ) cos(φ0,1,3 ) + 72 − x(72 + 2ra5 rb5 cos(φ5,0,0 ) + (504ra rb + 2ra3 rb3 ) cos(φ1,0,0 ) + 42ra4 rb4 cos(φ4,0,0 ) + 2ra3 rb5 cos(φ0,1,−5 ) + 2ra5 rb3 cos(φ0,5,−1 ) + 276ra3 rb3 cos(φ3,0,0 ) + 660ra2 rb2 cos(φ2,0,0 ) + 12ra3 rb cos(φ0,3,1 ) + 12ra rb3 cos(φ0,1,3 ) + 12ra4 rb2 cos(φ0,4,0 ) + 12ra2 rb4 cos(φ0,0,4 ))} × {6(ra4 + rb4 ) + 2ra3 rb5 cos(φ0,3,1 ) + 2ra5 rb3 cos(φ0,1,3 ) + ra6 rb4 + ra4 rb6 + 18ra4 rb4 + 18(ra4 rb2 + ra2 rb4 ) + (ra6 + rb6 ) − x(2ra3 rb3 cos(φ3,0,0 ) + 2ra5 rb3 cos(φ0,1,3 ) + 2ra3 rb5 cos(φ0,3,1 ) + (2ra5 rb5 + 36ra3 rb3 ) cos(φ1,0,0 ) + 12ra2 rb2 cos(φ2,0,0 )) + 18ra4 rb4 }} /{ra8 rb2 + ra2 rb8 + 15(ra6 rb2 + ra2 rb6 ) + 18(ra2 + rb2 ) + 64(ra4 rb2 + ra2 rb4 ) + 156ra2 rb2 + (2ra3 rb5 + 6ra3 rb3 ) cos(φ0,1,3 ) + (2ra5 rb3 + 6ra3 rb3 ) cos(φ0,3,1 ) − x((6ra2 rb4 + 6ra4 rb2 ) cos(φ0,2,2 ) + 2ra5 rb5 cos(φ3,0,0 ) + 30ra4 rb4 cos(φ2,0,0 ) + (128ra3 rb3 + 36ra rb ) cos(φ1,0,0 ) + 156ra2 rb2 + 2ra3 rb5 cos(φ0,1,3 ) + 2ra5 rb3 cos(φ0,3,1 ))} − ✭✶✶✮ ❚❤❡♦ ✤✐➲✉ ❦✐➺♥ ð ✭✶✵✮✱ ♥➳✉ t❤❛♠ sè I tr♦♥❣ ❜✐➸✉ t❤ù❝ ✭✶✶✮ ♥❤➟♥ ❣✐→ trà ➙♠ t❤➻ tr↕♥❣ t❤→✐ ❤❛✐ ♠♦❞❡ ❦➳t ❤đ♣ ♣❤↔♥ ✤è✐ ①ù♥❣ t❤➯♠ ❜❛ ✈➔ ❜ỵt ♠ët ♣❤♦t♦♥ tê♥❣ ✈✐ ♣❤↕♠ ❜➜t ✤➥♥❣ t❤ù❝ ❈❛✉❝❤② ✕ r ỗ t st t số I t ❜✐➯♥ ✤ë ❦➳t ❤đ♣ rb ✈ỵ✐ ✤✐➲✉ ❦✐➺♥ ❦❤↔♦ s→t ❧➔ = rb , ≤ rb ≤ 1, ϕ = ϕa = π, ϕb = 0✳ ◆❤➻♥ ✈➔♦ ỗ t t t số I tr tr♦♥❣ ❦❤♦↔♥❣ −1 ≤ I ≤ 0✳ ❑❤✐ t❤❛♠ sè , rb ❝➔♥❣ ❣✐↔♠ t❤➻ t❤❛♠ sè I ❝➔♥❣ ➙♠✳ ❈→❝ ❦➳t q✉↔ ✤â ❝❤♦ t❤➜② tr↕♥❣ t❤→✐ ❤❛✐ ♠♦❞❡ ❦➳t ❤đ♣ ♣❤↔♥ ✤è✐ ①ù♥❣ t❤➯♠ ❜❛ ✈➔ ❜ỵt ♠ët ♣❤♦t♦♥ tê♥❣ ✈✐ ♣❤↕♠ ❜➜t ✤➥♥❣ t❤ù❝ ❈❛✉❝❤② ✕ ❙❝❤✇❛r③ ✈➔ ❦❤✐ , rb ❝➔♥❣ ❣✐↔♠ t❤➻ I ❝➔♥❣ ➙♠ ✈➔ ❞➛♥ t✐➳♥ ✈➲ ❣✐→ trà ♥❤ä ♥❤➜t ❧➔ −1✱ ♥❣❤➽❛ ❧➔ sü ✈✐ ♣❤↕♠ ❜➜t ✤➥♥❣ t❤ù❝ ❈❛✉❝❤② ✕ ❙❝❤✇❛r③ t❤➸ ❤✐➺♥ ❝➔♥❣ ♠↕♥❤✳ ✹✻ ❍➬ ◆●➴❈ ❚❘❯◆●✱ ❚❘×❒◆● ▼■◆❍ ✣Ù❈ ❍➻♥❤ ✸✿ ❑❤↔♦ s→t sü ♣❤ư t❤✉ë❝ ❝õ❛ t❤❛♠ sè ■ ✈➔♦ ❜✐➯♥ ✤ë ❦➳t ❤ñ♣ rb ❝õ❛ tr↕♥❣ t❤→✐ ❤❛✐ ♠♦❞❡ ❦➳t ❤ñ♣ ♣❤↔♥ ✤è✐ ①ù♥❣ t❤➯♠ ❜❛ ✈➔ ❜ỵt ♠ët ♣❤♦t♦♥ tê♥❣✳ ✸✳✷✳ ❚➼♥❤ ♣❤↔♥ ❦➳t ❝❤ò♠ ◆➠♠ ✶✾✾✵✱ ❈❤✐♥❣ ❚s✉♥❣ ▲❡❡ ❬✶✵❪ ✤➣ ✤÷❛ r❛ t➼♥❤ ♣❤↔♥ ❦➳t ❝❤ị♠ ✈➔ t❤❛♠ sè Ra,b (l, p) ✤➦❝ tr÷♥❣ ❝❤♦ t➼♥❤ ❝❤➜t ✤â✳ ❚❤❡♦ ỉ♥❣✱ ♠ët tr↕♥❣ t❤→✐ ❝â t➼♥❤ ❝❤➜t ♣❤↔♥ ❦➳t ❝❤ò♠ ❦❤✐ t❤❛♠ sè Ra,b (l, p) t❤ä❛ ♠➣♥ (l+1) (p−1) n ˆb (p−1) (l+1) n ˆb + n ˆa n ˆa Rab (l, p) = (l) (p) (p) (l) n ˆa n ˆb ✭✶✷✮ − < 0, + n ˆa n b ợ l, p số ữỡ ✭l ≥ p > 0✮✱ n ˆa = a ˆ† a ˆ, n ˆ b = ˆb†ˆb ❧➔ t♦→♥ tû sè ❤↕t ❝õ❛ ❤❛✐ ♠♦❞❡ a✱ b✱ ❦❤✐ ✤â t❤❛♠ sè Ra,b (l, p) ð ✭✶✷✮ ✤÷đ❝ ✈✐➳t ❧↕✐ ♥❤÷ s❛✉✿ a ˆ†(l+1) a ˆ(l+1)ˆb†(p−1)ˆb(p−1) + a ˆ†(p−1) a ˆ(p−1)ˆb†(l+1)ˆb(l+1) Rab (l, p) = − ˆ†p a ˆpˆb†lˆbl a ˆ†l a ˆlˆb†pˆbp + a ✭✶✸✮ ◆➳✉ t❤❛♠ sè R(l, p) ❝➔♥❣ ➙♠ t❤➻ t➼♥❤ ♣❤↔♥ ❦➳t ❝❤ò♠ ❤❛✐ ♠♦❞❡ t❤➸ ❤✐➺♥ ❝➔♥❣ ♠↕♥❤✳ ❇➙② ❣✐í t❛ ❦❤↔♦ s→t ❝ư t❤➸ t➼♥❤ ❝❤➜t ♣❤↔♥ ❦➳t ❝❤ò♠ ❝õ❛ tr↕♥❣ t❤→✐ ❤❛✐ ♠♦❞❡ ❦➳t ❤đ♣ ♣❤↔♥ ✤è✐ ①ù♥❣ t❤➯♠ ❜❛ ✈➔ ❜ỵt ♠ët ♣❤♦t♦♥ tê♥❣ t❤æ♥❣ q✉❛ t➼♥❤ sè ❤↕♥❣ tê♥❣ q✉→t a l a lbpbp ữ ỵ r số ❤↕♥❣ ❝á♥ ❧↕✐ ❝â tr♦♥❣ ❜✐➸✉ t❤ù❝ ✭✶✸✮ ✤➲✉ ✤÷đ❝ s✉② r❛ tø sè ❤↕♥❣ tê♥❣ q✉→t ♥➔②✳ ❚❤ü❝ ❤✐➺♥ ♠ët sè ♣❤➨♣ ❜✐➳♥ ✤ê✐ t❛ t❤✉ ✤÷đ❝ ❝→❝ ❦➳t q✉↔ ♥❤÷ s❛✉✿ 2(l+3) a ˆ†l a ˆlˆb†pˆbp = Nαβ (ra2(l+3) rb2p + ra2p rb 2(l+1) + 18)(ra2(l+1) rb2p + ra2p rb 2(l−1) (ra2(l−1) rb2p + ra2p rb 2(l−2) rb 2(l+2) ) + (6l + 9)(ra2(l+2) rb2p + ra2p rb ) + (15l2 + 30l ) + (20l3 + 30l2 + 22l + 6))(ra2l rb2p + ra2p rb2l ) + (15l4 + 3l2 ) ) + ra2l rb2p+2 + rb2l ra2p+2 + (6l5 − 15l4 + 12l3 − 3l2 )(ra2(l−2) rb2p + ra2p 2(l−3) ) + l2 (l − 1)2 (l − 2)2 (ra2(l−3) rb2p + ra2p rb ) + (2ra2l+3 rb2p+1 + 6lra2l+1 rb2p+1 + 6l(l − 1) ra2l−1 rb2p+1 + (2l3 − 6l2 + 4l)ra2l−3 rb2p+1 ) cos(φ0,3,1 ) + (2rb2l+3 ra2p+1 + 6lrb2l+1 ra2p+1 + 6l(l − 1) ◆●❍■➊◆ ❈Ù❯ ❈⑩❈ ❚➑◆❍ ❈❍❻❚ P❍■ ❈✃ ✣■➎◆ ❈Õ❆ ❚❘❸◆● ❚❍⑩■✳✳✳ ✹✼ rb2l−1 ra2p+1 + (2l3 − 6l2 + 4l)rb2l−3 ra2p+1 ) cos(φ0,1,3 ) − x((12l + 18)ral+p+2 rbl+p+2 + 2ral+p+3 rbl+p+3 cos((n + 3)φ0,1,−1 ) + (30l2 + 60l + 36)ral+p+1 rbl+p+1 cos((n + 1)φ0,1,−1 ) + (40l3 + 60l2 + 44l + 12)ral+p rbl+p cos(nφ0,1,−1 ) + (12l + 18)ral+p+2 rbl+p+2 ) cos((n + 2)φ0,1,−1 ) + (40l3 + 60l2 + 44l + 12)ral+p rbl+p + (30l2 + 60l + 36)ral+p+1 rbl+p+1 + 6lral+p+2 rbl+p cos(φ0,n+2,−(n−2) ) + (2l3 − 6l2 + 4l)ral+p rbl+p−2 cos(φ0,−(n−4),n ) + 6lral+p rbl+p+2 cos(φ0,n−2,−(n+2) ) + 2l2 (l − 1)2 (l − 2)2 ral+p−3 rbl+p−3 cos((n − 3)φ0,1,−1 ) + 2ral+p+1 rbl+p+1 cos((n − 1)φ0,1,−1 ) + 2ral+p+3 rbl+p+1 cos(φ0,n+3,−(n−1) ) + 2ral+p+1 rbl+p+3 cos(φ0,n−1,−(n+3) ) + (12l5 − 30l4 + 24l3 − 6l2 )ral+p−2 rbl+p−2 cos((n − 2)φ0,1,−1 ) + (6l2 − 6l)ral+p−1 rbl+p+1 cos(φ0,n−3,−(n−1) ) + (30l4 + 6l2 )ral+p−1 rbl+p−1 cos((n − 1)φ0,1,−1 ) + 6l(l − 1)ral+p+1 rbl+p−1 cos(φ0,n−1,−(n+3) ) + (2l3 − 6l2 + 4l)ral+p rbl+p−2 cos(φ0,n,−(n−4) ), ✭✶✹✮ ✈ỵ✐ n = l − p✳ ❇➙② ❣✐í t❛ s➩ ❦❤↔♦ s→t ❝→❝ tr÷í♥❣ ❤đ♣ ❝ư t❤➸ ♥❤÷ s❛✉✿ ❛✮ ❚r÷í♥❣ ❤đ♣ (l = 4, p = 3)❀ (l = 5, p = 3)❀ (l = 6, p = 3)✱ ✈ỵ✐ ❝ị♥❣ ✤✐➲✉ ❦✐➺♥ ❦❤↔♦ s→t ❧➔ π rb = ra3 ✱ ϕ = ϕa = ✈➔ ϕb = ✳ ❍➻♥❤ ✹✿ ❑❤↔♦ s→t sü ♣❤ư t❤✉ë❝ ❝õ❛ R(4, 3) ✧✤÷í♥❣ ❧✐➲♥ ♥➨t✧ ✱ R(5, 3) ✧✤÷í♥❣ ❝❤➜♠ ❝❤➜♠✧✱ R(6, 3) ✧✤÷í♥❣ ❝❤➜♠ ❣↕❝❤✧ ✈➔♦ ❜✐➯♥ ✤ë rb ❝õ❛ tr↕♥❣ t❤→✐ ❤❛✐ ♠♦❞❡ ❦➳t ❤đ♣ ♣❤↔♥ ✤è✐ ①ù♥❣ t❤➯♠ ❜❛ ✈➔ ❜ỵt ♠ët ♣❤♦t♦♥ tê♥❣✳ ❜✮ ❚÷ì♥❣ tü✱ t❛ ①➨t ❝→❝ tr÷í♥❣ ❤đ♣ (l = 4, p = 2)❀ (l = 5, p = 2)❀ (l = 6, p = 2)✱ ✈ỵ✐ ❝ị♥❣ π ✤✐➲✉ ❦✐➺♥ ❦❤↔♦ s→t ❧➔ rb = ra3 ✱ ϕ = ϕa = ✈➔ ϕb = ✳ ✹✽ ❍➬ ◆●➴❈ ❚❘❯◆●✱ ❚❘×❒◆● ▼■◆❍ ✣Ù❈ ❍➻♥❤ ✺✿ ❑❤↔♦ s→t sü ♣❤ư t❤✉ë❝ ❝õ❛ R(4, 2) ✧✤÷í♥❣ ❧✐➲♥ ♥➨t✧✱ R(5, 2) ✧✤÷í♥❣ ❝❤➜♠ ❝❤➜♠✧✱ R(6, 2) ✤÷í♥❣ ✧✤÷í♥❣ ❝❤➜♠ ❣↕❝❤✧ ✈➔♦ ❜✐➯♥ ✤ë rb ❝õ❛ tr↕♥❣ t❤→✐ ❤❛✐ ♠♦❞❡ ❦➳t ❤đ♣ ♣❤↔♥ ✤è✐ ①ù♥❣ t❤➯♠ ❜❛ ✈➔ ❜ỵt ♠ët ♣❤♦t♦♥ tê♥❣✳ ❝✮ ❱ỵ✐ ✤✐➲✉ ❦✐➺♥ ❦❤↔♦ s→t ❧➔ = rb ✱ ϕ = ϕa = 3ϕb ✈➔ ϕb = ✭l = 3, p = 2✮✱ ✭l = 5, p = 4✮ ✈➔ ✭l = 6, p = 5✮✳ π ✱ t❛ ①➨t ❝→❝ tr÷í♥❣ ❤đ♣ ❍➻♥❤ ✻✿ ❑❤↔♦ s→t sü ♣❤ư t❤✉ë❝ ❝õ❛ R(3, 2) ✧✤÷í♥❣ ❧✐➲♥ ♥➨t✧✱ R(5, 4) ✧✤÷í♥❣ ❝❤➜♠ ❝❤➜♠✧✱ R(6, 5) ✤÷í♥❣ ✧✤÷í♥❣ ❝❤➜♠ ❣↕❝❤✧ ✈➔♦ ❜✐➯♥ ✤ë rb ❝õ❛ tr↕♥❣ t❤→✐ ❤❛✐ ♠♦❞❡ ❦➳t ❤đ♣ ♣❤↔♥ ✤è✐ ①ù♥❣ t❤➯♠ ❜❛ ✈➔ ❜ỵt ♠ët t tờ ỗ t ✻ t❛ ♥❤➟♥ t❤➜② t❤❛♠ sè R{l, p} ✤➲✉ ①✉➜t ♣❤→t tø ❣✐→ trà −1✱ ✤➙② ❧➔ ❣✐→ trà ❝ü❝ t✐➸✉ ❝õ❛ ♥â✱ t❤❛♠ sè R{l, p} < ❦❤✐ ❝→❝ t❤❛♠ sè , rb r➜t ❜➨✱ ✈➔ ❦❤✐ ❝→❝ t❤❛♠ sè , rb t➠♥❣ t❤➻ t❤❛♠ sè R{l, p} ❞➛♥ t✐➳♥ ✤➳♥ ✈➔ ♥➳✉ t❤❛♠ sè , rb ❧ỵ♥ ❤ì♥ ♠ët ❣✐→ trà ♥➔♦ ✤â t❤➻ R{l, p} ≥ 0✳ ❈→❝ ❦➳t q✉↔ ♥➔② ❝❤ù♥❣ tä tr↕♥❣ t❤→✐ ❤❛✐ ♠♦❞❡ ❦➳t ❤ñ♣ ♣❤↔♥ ✤è✐ ①ù♥❣ t❤➯♠ ❜❛ ✈➔ ❜ỵt ♠ët ♣❤♦t♦♥ tê♥❣ ❝â t➼♥❤ ❝❤➜t ♣❤↔♥ ❦➳t ❝❤ò♠ ❦❤✐ ❝→❝ t❤❛♠ sè , rb r➜t ❜➨✱ ♥❣❤➽❛ ❧➔ tr↕♥❣ t❤→✐ ✤â ♠❛♥❣ t➼♥❤ ❝❤➜t ♣❤✐ ❝ê ✤✐➸♥✳ ❚r♦♥❣ tr÷í♥❣ ❤đ♣ , rb t➠♥❣ ❞➛♥ t❤➻ t❤❛♠ sè R{l, p} ❝ô♥❣ t➠♥❣ ❞➛♥ ✤➳♥ 0✱ ❦❤✐ ✤â t➼♥❤ ❝❤➜t ♣❤✐ ❝ê ✤✐➸♥ ❝õ❛ tr↕♥❣ t❤→✐ ◆●❍■➊◆ ❈Ù❯ ❈⑩❈ ❚➑◆❍ ❈❍❻❚ P❍■ ❈✃ ✣■➎◆ ❈Õ❆ ❚❘❸◆● ❚❍⑩■✳✳✳ ✹✾ ❞➛♥ ❜✐➳♥ ♠➜t✳ ◆➳✉ t✐➳♣ tö❝ t➠♥❣ , rb ữủt q ởt tr ợ ♥➔♦ ✤â t❤➻ t❤❛♠ sè R{l, p} ≥ 0✱ ♥❣❤➽❛ ❧➔ t➼♥❤ ❝❤➜t ♣❤✐ ❝ê ✤✐➸♥ ❝õ❛ tr↕♥❣ t❤→✐ ❤❛✐ ♠♦❞❡ ❦➳t ❤đ♣ ♣❤↔♥ ✤è✐ ①ù♥❣ t❤➯♠ ❜❛ ✈➔ ❜ỵt ♠ët ♣❤♦t♦♥ tê♥❣ ❦❤æ♥❣ ❝á♥✱ t❤❛② ✈➔♦ ✤â tr↕♥❣ t❤→✐ ♠❛♥❣ t➼♥❤ ❝❤➜t ❝ê ✤✐➸♥✳ ✹ ❑➌❚ ▲❯❾◆ ❇➔✐ ❜→♦ ♥➔② tr➻♥❤ ❜➔② ❦➳t q✉↔ ❦❤↔♦ s→t t➼♥❤ ❝❤➜t ♥➨♥ tê♥❣ ❤❛✐ ♠♦❞❡✱ ♥➨♥ ❤✐➺✉ ❤❛✐ ♠♦❞❡✱ sü ✈✐ ♣❤↕♠ ❜➜t ✤➥♥❣ t❤ù❝ ❈❛✉❝❤② ✲ ❙❝❤✇❛r③ ✈➔ t➼♥❤ ♣❤↔♥ ❦➳t ❝❤ị♠ ❜➟❝ ❝❛♦ ❝õ❛ tr↕♥❣ t❤→✐ ❤❛✐ ♠♦❞❡ ❦➳t ❤đ♣ ♣❤↔♥ ✤è✐ ①ù♥❣ t❤➯♠ ❜❛ ✈➔ ❜ỵt ♠ët ♣❤♦t♦♥ tê♥❣✳ q tr st t t ỗ t❤à t❤ỉ♥❣ q✉❛ ❝→❝ t❤❛♠ sè✱ ❝❤ó♥❣ tỉ✐ t❤✉ ✤÷đ❝ ❦➳t q✉↔ ♥❤÷ s❛✉✿ ❚❤ù ♥❤➜t✱ ❦➳t q✉↔ ❦❤↔♦ s→t ❝❤♦ t❤➜② tr↕♥❣ t❤→✐ ❤❛✐ ♠♦❞❡ ❦➳t ❤ñ♣ ♣❤↔♥ ✤è✐ ①ù♥❣ t❤➯♠ ❜❛ ✈➔ ❜ỵt ♠ët ♣❤♦t♦♥ tê♥❣ t❤➸ ❤✐➺♥ t➼♥❤ ❝❤➜t ♥➨♥ tê♥❣ ❤❛✐ ♠♦❞❡ ♠↕♥❤ ✈➔ ❤♦➔♥ ❤♦➔♥ ❦❤æ♥❣ ❝â t➼♥❤ ❝❤➜t ♥➨♥ ❤✐➺✉ ❤❛✐ ♠♦❞❡✳ ❚❤ù ❤❛✐✱ t❤æ♥❣ q✉❛ t❤❛♠ sè I ❞ü❛ ✈➔♦ ✤✐➲✉ ❦✐➺♥ ✈✐ ♣❤↕♠ ❜➜t ✤➥♥❣ t❤ù❝ ❈❛✉❝❤② ✲ ❙❝❤✇❛r③ ✤➣ ✤÷đ❝ ✤÷❛ r❛ ✈➔ ❦❤↔♦ s→t ❝❤✐ t✐➳t ✈➔ ❝ö t❤➸✳ ❑➳t q✉↔ ❝❤♦ t❤➜② tr↕♥❣ t❤→✐ ❤❛✐ ♠♦❞❡ ❦➳t ❤ñ♣ ♣❤↔♥ ✤è✐ ①ù♥❣ t❤➯♠ ❜❛ ✈➔ ❜ỵt ♠ët ♣❤♦t♦♥ tê♥❣ ❤♦➔♥ t♦➔♥ ✈✐ ♣❤↕♠ ❜➜t ✤➥♥❣ t❤ù❝ ❈❛✉❝❤② ✲ ❙❝❤✇❛r③ ♥❣❤➽❛ ❧➔ t➼♥❤ ❝❤➜t ♣❤✐ ❝ê ✤✐➸♥ t❤➸ ❤✐➺♥ t÷ì♥❣ ✤è✐ ♠↕♥❤✳ ◆❣♦➔✐ r❛✱ ❦❤✐ ❦❤↔♦ s→t t➼♥❤ ❝❤➜t ♣❤↔♥ ❦➳t ❝❤ị♠✱ ❝❤ó♥❣ tỉ✐ ❝ơ♥❣ ✤➣ ✤÷❛ r❛ ❜✐➸✉ t❤ù❝ tê♥❣ q✉→t ❝❤♦ t❤❛♠ sè ♣❤↔♥ ❦➳t ❝❤ò♠ tr♦♥❣ tr↕♥❣ t❤→✐ ❤❛✐ ♠♦❞❡ ❦➳t ❤ñ♣ ♣❤↔♥ ✤è✐ ①ù♥❣ t❤➯♠ ❜❛ ✈➔ ❜ỵt ♠ët ♣❤♦t♦♥ tê♥❣✳ ◗✉❛ ✤â✱ ❝❤ó♥❣ tỉ✐ ✤➣ ❦❤↔♦ s→t ❝❤♦ tø♥❣ tr÷í♥❣ ❤đ♣ ❝ư t❤➸ ✈➔ ❦➳t q✉↔ ❧➔ tr↕♥❣ t❤→✐ ❤❛✐ ♠♦❞❡ ❦➳t ❤ñ♣ ♣❤↔♥ ✤è✐ ①ù♥❣ t❤➯♠ ❜❛ ✈➔ ❜ỵt ♠ët ♣❤♦t♦♥ tê♥❣ t❤➸ ❤✐➺♥ t➼♥❤ ❝❤➜t ♣❤↔♥ ❦➳t ❝❤ò♠ ❜➟❝ t❤➜♣ ✈➔ ❜➟❝ ❝❛♦✱ tr♦♥❣ ✤â sè ❜➟❝ ❝➔♥❣ t➠♥❣ ♥❤÷♥❣ ❤✐➺✉ ❝→❝ ❜➟❝ ❝➔♥❣ ❜➨ t❤➻ t➼♥❤ ❝❤➜t ♣❤↔♥ ❦➳t ❝❤ò♠ ❝➔♥❣ t❤➸ ❤✐➺♥ rã r➺t ❤ì♥✳ ▲❮■ ❈❷▼ ❒◆ ◆❣❤✐➯♥ ❝ù✉ ♥➔② ✤÷đ❝ t➔✐ trđ ❜ð✐ ◗✉ÿ P❤→t tr✐➸♥ ❦❤♦❛ ❤å❝ ✈➔ ❝ỉ♥❣ ♥❣❤➺ ◗✉è❝ ❣✐❛ ✭◆❆❋❖❙✲ ❚❊❉✮ tr♦♥❣ ✤➲ t➔✐ ♠➣ sè ✶✵✸✳✵✶✲✷✵✶✽✳✸✻✶✳ ❚⑨■ ▲■➏❯ ❚❍❆▼ ❑❍❷❖ ❬✶❪ ▲✳ ▲✳ ❍♦✉✱ ❳✳ ❋✳ ❈❤❡♥✱ ❳✳ ❋✳ ❳✉ ✭✷✵✶✺✮✱ ✧❈♦♥t✐♥✉♦✉s✲✈❛r✐❛❜❧❡ q✉❛♥t✉♠ t❡❧❡♣♦rt❛t✐♦♥ ✇✐t❤ ♥♦♥✲●❛✉ss✐❛♥ ❡♥t❛♥❣❧❡❞ st❛t❡s ❣❡♥❡r❛t❡❞ ✈✐❛ ♠✉❧t✐♣❧❡✲♣❤♦t♦♥ s✉❜tr❛❝t✐♦♥ ❛♥❞ ❛❞❞✐t✐♦♥✧✱ P❤②s✐❝❛❧ ❘❡✈✐❡✇ ❆✱ ✾✶✱ ✵✻✸✽✸✷✳ ❬✷❪ ❳✳ ❲✳ ❳✉✱ ❍✳ ❲❛♥❣✱ ❏✳ ❩❤❛♥❣✱ ❨✳ ▲✐✉ ✭✷✵✶✸✮✱ ✧❊♥❣✐♥❡❡r✐♥❣ ♦❢ ♥♦♥❝❧❛ss✐❝❛❧ ♠♦t✐♦♥❛❧ st❛t❡s ✐♥ ♦♣t♦♠❡❝❤❛♥✐❝❛❧ s②st❡♠s✧✱ P❤②s✐❝❛❧ ❘❡✈✐❡✇ ❆✱ ✽✽✱ ✵✻✸✽✶✾✳ ❬✸❪ ●✳ ❙✳ ❆❣❛r✇❛❧ ❛♥❞ ❑✳ ❚❛r❛ ✭✶✾✾✶✮✱ ✧◆♦♥❝❧❛ss✐❝❛❧ ♣r♦♣❡rt✐❡s ♦❢ st❛t❡s ❣❡♥❡r❛t❡❞ ❜② t❤❡ ❡①❝✐t❛t✐♦♥s ♦♥ ❛ ❝♦❤❡r❡♥t st❛t❡✧✱ P❤②s✐❝❛❧ ❘❡✈✐❡✇ ❆✱ ✹✸✱ ✹✾✷✳ ✺✵ ❍➬ ◆●➴❈ ❚❘❯◆●✱ ❚❘×❒◆● ▼■◆❍ ✣Ù❈ ❬✹❪ ❙✳ ❙✐✈❛❦✉♠❛r ✭✶✾✾✾✮✱ ✧P❤♦t♦♥✲❛❞❞❡❞ ❝♦❤❡r❡♥t st❛t❡s ❛s ♥♦♥❧✐♥❡❛r ❝♦❤❡r❡♥t st❛t❡s✧✱ P❤②s✳ ❆✿ ▼❛t❤✳ ●❡♥✱ ✸✷✱ ✸✹✹✶✳ ❏✳ ❬✺❪ ❚✳ ▼✳ ❉✉❝ ❛♥❞ ❏✳ ◆♦❤ ✭✷✵✵✽✮✱ ✧❍✐❣❤❡r✲♦r❞❡r ♣r♦♣❡rt✐❡s ♦❢ ♣❤♦t♦♥✲❛❞❞❡❞ ❝♦❤❡r❡♥t st❛t❡s✧✱ ❖♣t✳ ❈♦♠♠✉♥✳ ✷✽✶✱ ✷✽✹✷✳ ❬✻❪ ❈✳ ◆✳ ❇❡♥❧❧♦❝❤✱ ❘✳ ●✳ P❛tr♦♥✱ ❏✳ ❍✳ ❙❤❛♣✐r♦✱ ◆✳ ❏✳ ❈❡r❢ ✭✷✵✶✷✮✱ ✧❊♥❤❛♥❝✐♥❣ q✉❛♥t✉♠ ❡♥t❛♥❣❧❡♠❡♥t ❜② ♣❤♦t♦♥ ❛❞❞✐t✐♦♥ ❛♥❞ s✉❜tr❛❝t✐♦♥✧✱ P❤②s✳ ❘❡✈✳ ❆ ✽✻✱ ✵✶✷✸✷✽✳ ❬✼❪ ◆❣✉②➵♥ ❱ơ ❚❤ư② ✭✷✵✶✼✮✱ ▲✉➟♥ ✈➠♥ s t ỵ ỵ tt t ỵ rữớ ữ ❬✽❪ ◆❣✉②➵♥ ❚❤à ❚❤❛♥❤ ❍÷ì♥❣ ✭✷✵✶✾✮✱ ▲✉➟♥ ✈➠♥ ❚❤↕❝ s➽ t ỵ ỵ tt t ỵ ❚r÷í♥❣ ✣↕✐ ❤å❝ ❙÷ ♣❤↕♠✱ ✣↕✐ ❤å❝ ❍✉➳✳ ❬✾❪ ▼✳ ❍✐❧❧❡r② ✭✶✾✽✾✮✱ ✧❙✉♠ ❛♥❞ ❞✐❢❢❡r❡♥❝❡ sq✉❡❡③✐♥❣ ♦❢ t❤❡ ❡❧❡❝tr♦♠❛❣♥❡t✐❝ ❢✐❡❧❞✧✱ ✐❝❛❧ ❘❡✈✐❡✇ ❆✱ ✹✵✱ ✸✶✹✼✳ P❤②s✲ ❬✶✵❪ ❈✳ ❚✳ ▲❡❡ ✭✶✾✾✵✮✱ ✧▼❛♥②✲♣❤♦t♦♥ ❛♥t✐❜✉♥❝❤✐♥❣ ✐♥ ❣❡♥❡r❛❧✐③❡❞ ♣❛✐r ❝♦❤❡r❡♥t st❛t❡s✧✱ P❤②s✐❝❛❧ ❘❡✈✐❡✇ ❆✱ ✹✶✱ ✶✺✻✾✳ ❚✐t❧❡✿ ◆❖◆❈▲❆❙❙■❈❆▲ P❘❖P❊❘❚■❊❙ ❖❋ ❚❍❊ ❚❍❘❊❊✲P❍❖❚❖◆✲❆❉❉❊❉ ❆◆❉ ❖◆❊✲P❍❖❚❖◆✲❙❯❇❚❘❆❈❚❊❉ ❚❲❖✲▼❖❉❊ ❖❉❉ ❈❖❍❊❘❊◆❚ ❙❚❆❚❊ ❆❜str❛❝t✿ ■♥ t❤❡ ♣❛♣❡r✱ ✇❡ ❝♦♥s✐❞❡r t❤❡ ❧♦✇❡r✲♦r❞❡r ❛♥❞ ❤✐❣❤❡r✲♦r❞❡r ♥♦♥❝❧❛ss✐❝❛❧ ♣r♦♣❡r✲ t✐❡s ♦❢ t❤❡ t❤r❡❡✲♣❤♦t♦♥✲❛❞❞❡❞ ❛♥❞ ♦♥❡✲♣❤♦t♦♥✲s✉❜tr❛❝t❡❞ t✇♦✲♠♦❞❡ ♦❞❞ ❝♦❤❡r❡♥t st❛t❡ ❛s t✇♦✲♠♦❞❡ s✉♠ sq✉❡❡③✐♥❣✱ t✇♦✲♠♦❞❡ ❞✐❢❢❡r❡♥❝❡ sq✉❡❡③✐♥❣✱ ✈✐♦❧❛t✐♦♥ ♦❢ t❤❡ ❈❛✉❝❤②✲❙❝❤✇❛r③ ✐♥❡q✉❛❧✐t②✱ ❛♥❞ t✇♦✲♠♦❞❡ ❤✐❣❤❡r✲♦r❞❡r ❛♥t✐❜✉♥❝❤✐♥❣✳ ❚❤❡ r❡s✉❧ts s❤♦✇ t❤❛t t❤✐s st❛t❡ ❡①✲ ❤✐❜✐ts t✇♦✲♠♦❞❡ s✉♠ sq✉❡❡③✐♥❣ ❜✉t ❞♦❡s ♥♦t ❡①❤✐❜✐t t✇♦✲♠♦❞❡ ❞✐❢❢❡r❡♥❝❡ sq✉❡❡③✐♥❣✳ ■♥ ❛❞❞✐t✐♦♥✱ t❤✐s st❛t❡ ✈✐♦❧❛t❡s t❤❡ ❈❛✉❝❤②✲❙❝❤✇❛r③ ✐♥❡q✉❛❧✐t② ❛♥❞ ❜❡❝♦♠❡s ♥♦♥❝❧❛ss✐❝❛❧ st❛t❡✳ ❲❡ ❛❧s♦ s❤♦✇ t❤❛t t❤❡ t❤r❡❡✲♣❤♦t♦♥✲❛❞❞❡❞ ❛♥❞ ♦♥❡✲♣❤♦t♦♥✲s✉❜tr❛❝t❡❞ t✇♦✲♠♦❞❡ ♦❞❞ ❝♦✲ ❤❡r❡♥t st❛t❡ ❛♣♣❡❛rs t✇♦✲♠♦❞❡ ❤✐❣❤❡r✲♦r❞❡r ❛♥t✐❜✉♥❝❤✐♥❣ ✐♥ ❛♥② ♦r❞❡r✱ ❛♥❞ t❤❡ ❞❡❣r❡❡ ♦❢ ❛♥t✐❜✉♥❝❤✐♥❣ ❜❡❝♦♠❡s ♠♦r❡ ❛♥❞ ♠♦r❡ ♣r♦♥♦✉♥❝❡❞ ✇❤❡♥ ✐♥❝r❡❛s✐♥❣ t❤❡ ❤✐❣❤❡r✲♦r❞❡r✳ ❑❡②✇♦r❞s✿ ❙✉♠ sq✉❡❡③✐♥❣✱ ❞✐❢❢❡r❡♥❝❡ sq✉❡❡③✐♥❣✱ ✈✐♦❧❛t✐♦♥ ❈❛✉❝❤②✲❙❝❤✇❛r③ ✐♥❡q✉❛❧✐t②✱ t✇♦✲♠♦❞❡ ❛♥t✐❜✉♥❝❤✐♥❣✳