Bài 1: Cho tam giác DEF cân tại D.Gọi H là trung điểm của EF. a) Chứng minh rằng DH là tia phân giác của góc EDF.. b) Từ E kẻ đường thẳng d song song với DF, d cắt đường thẳng DH tại K[r]
(1)A
B C
I H
G
400 700
b)
c) P
K M N
O
a)
E D
C
B
A
CHUYÊN ĐỀ: TAM GIÁC CÂN TAM GIÁC ĐỀU I KIẾN THỨC CƠ BẢN
1 Tam giác cân
- Tam giác cân tam giác có hai cạnh ABC có AB = AC
ABC cân A
AB, AC:là hai cạnh bên BC: cạnh đáy
B,C:là hai góc đáy
A góc đỉnh
- Trong tam giác cân, hai góc đáy
- Nếu tam giác có hai góc tam giác tam giác cân - Tam giác vng cân tam giác vng có hai cạnh góc vng * Muốn tính số đo góc đỉnh tam giác cân ta làm sau:
1800 – 2.góc đáy
* Muốn tính số đo góc đáy tam giác cân ta làm sau: (1800 – góc đỉnh) : 2
2.Tam giác đều
- Tam giác tam giác có ba cạnh - Trong tam giác đều, góc 600.
- Nếu tam giác có ba góc tam giác tam giác - Nếu tam giác cân có góc 600 tam giác tam giác đều.
* Mở rộng:
- Trong tam giác vng có góc 300 cạnh đối diện với góc nửa cạnh
huyền
- Trong tam giác vng có cạnh góc vng nửa cạnh huyền góc đối diện với cạnh góc vng 300.
II VÍ DỤ MINH HỌA
Bài 1: Trong tam giác sau, tam giác tam giác cân, tam giác tam giác đều? Vì sao?
Giải: a) ABD cân A, có AB = AD
(2)I
B C
A
E D
b) GHI cân I, có H G 70
c) OMN OM = ON = MN
MOK cân M MO = MK;
NOP cân N NO = NP;
Xét MOK NOP có
OM = ON MK = NP
OMK ONP ( Vì bù với hai góc OMN ONM )
Do MOK = NOP (c.g.c)
OK = OP ( cạnh tương ứng) OKP cân O.
Bài 2: a) Tính góc đáy tam giác cân biết góc đỉnh 400
b) Tính góc đỉnh tam giác cân biết góc đáy 400
Giải:
Trong tam giác cân:
a/ Nếu góc đỉnh 400 góc đáy bằng:
0 0
180 40 70
b/ Nếu góc đáy 400 góc đỉnh bằng: 1800 – 2.400 =1000
Bài 3: Cho tam giác ABC cân A Lấy điểm D thuộc cạnh AC, điểm E thuộc cạnh AB cho AD = AE
a) So sánh ABD ACE
b/ IBC tam giác gì? Vì sao?
Giải:
GT ABC cân A; DAC; EAB;
AD =AE; BD CE I
KL a/ So sánh ABD ACE
b/ IBC tam giác gì? Vì sao?
* C/M:
a/ Xét ABD ACE có:
AB = AC (vì :ABC cân A)
A chung
AD = AE (gt)
Vậy ABD = ACE (c.g.c)
ABD = ACE (góc tương ứng)
b/ Ta có: IBC ABC ABD
ICB ACB ACE
Mà ABC ACB (vì ABC cân A)
ABD = ACE (c/m câu a)
IBC ICB
(3)z y
x O
A
B C
E D
C B
A
IBC tam giác cân I
Bài 4: Cho góc xOy có số 1200, điểm A thuộc tia phân giác góc Kẻ AB vng góc
với Ox ( B thuộc Ox), kẻ AC vng góc với Oy (C thuộc Oy) Tam giác ABC tam giác gì? Vì sao?
Giải:
GT xOy 120 0; OA phân giác xOy
ABOx; ACOy
KL Tam giác ABC tam giác gì? Vì sao?
* C/m:
Xét OAB OAC có:
B C 90
AOB AOC (vì OA phân giác)
OA :cạnh huyền chung
Vậy OAB = OAC (cạnh huyền – góc nhọn)
AB = AC
ABC cân A (1)
Mặt khác: BAO 90 0 AOB 90 0 600 300
CAO 90 AOC 90 600 300
BAC BAO CAO 30 300 600
(2)
Từ (1) (2) ABC tam giác đều.
Bài 5: Cho tam giác ABC cân A, biết A 50 a) Tính B , C
b) Gọi D, E trung điểm AB, AC Chứng minh ADE cân
c) Chứng minh DE// BC
Giải:
GT ABC cân A; A 50
D, E trung điểm AB, AC KL a) Tính B , C
b) Chứng minh ADE cân
c) Chứng minh DE// BC
a) Tính B , C
Ta có ABC cân A nên:
1800 A 180 500
B C 65
2
(4)d
K
H F
E
D
500
C B
A
D Ta có
AB AD
2 ( Vì D trung điểm AB)
AC
AE
2 ( Vì E trung điểm AC)
Mà AB = AC ( Vì ABC cân A)
AD = AE
ADE cân A
c) Chứng minh DE// BC Vì ABC cân A nên
1800 A
ABC
2 (1)
Vì ADE cân A nên
1800 A
ADE
2 ( 2)
Từ (1) ( 2) ta suy ra:ABC ADE
Mà vị trí đồng vị đồng vị nên DE// BC III.BÀI TẬP ÁP DỤNG
Bài 1: Cho tam giác DEF cân D.Gọi H trung điểm EF. a) Chứng minh DH tia phân giác góc EDF
b) Từ E kẻ đường thẳng d song song với DF, d cắt đường thẳng DH K Chứng minh tam giác DEK cân
Bài 2: Cho tam giác ABC vng A có góc C 600 Kẻ AH vng góc với BC H,
trên tia đối tia HA lấy điểm D cho HD = HA a) Chứng minh ABD
b) Qua D kẻ đường thẳng song song với AB cắt BC M Chứng minh ADM
Bài 3: Cho tam giác ABC Các tia phân giác góc B góc C cắt I Qua I kẻ đường thẳng song song với BC cắt AB M AC N Chứng minh MN = BM + CN
* Bài tập trắc nghiệm: Chọn câu trả lời
Bài 4: Cho tam giác ABC cân B, có A 50 0 Số đo góc B bằng:
A 1300 B 800 C 650 D 1000
Bài 5: Cho tam giác MNP có MN = MP M 70 0 Số đo góc MPN bằng:
A 550 B 700 C 1100 D 1400
Bài 6: Góc ADB hình bên có số đo bằng: A 400 B 250
C 650 D 350
HƯỚNG DẪN:
Bài 1: a) Trình bày giải dựa vào sơ đồ phân tích lên DEH = DFH (?)
(5)M C B
A
H
D
I N
M
C B
A
DH tia phân giác góc EDF
b) Để c/m DEK cân ta cần c/m EKD EDK Mà EKD FDH (?)
EDK FDH (?)
Bài 2:
a) Để c/m ABD ta cần c/m ABD cân B
và có góc ABD 600
b) C/m ABH = DMH
AB = DM
Mà AB = AD
AD = DM ∆ADM cân
Và c/m góc ADM 600
∆ADM đều
Bài 3:
Để c/m MN = BM + CN
Thì ta cần c/m BM = MI CN = NI