1. Trang chủ
  2. » Cao đẳng - Đại học

Tải Đề thi thử THPT Quốc gia môn Toán năm 2016 trường THPT Chu Văn An, Hà Nội - Đề thi thử đại học môn Toán có đáp án

8 14 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 8
Dung lượng 906,6 KB

Nội dung

Khảo sát sự biến thiên và vẽ đồ thị của hàm số. Tính tích phân. Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm. Viết phương trình mặt phẳng đi qua và vuông góc với đường thẳng[r]

(1)

SỞ GD & ĐT HÀ NỘI TRƯỜNG THPT CHU VĂN AN

ĐỀ THI THỬ

ĐỀ THI THPT QUỐC GIA NĂM 2016 Mơn thi: TỐN

Thời gian làm bài: 180 phút

2 x x

y

Câu (1,0 điểm) Khảo sát biến thiên vẽ đồ thị hàm số 9

x y

x

 

Câu (1,0 điểm) Tìm giá trị lớn giá trị nhỏ hàm số đoạn [-4; -1] Câu (1,0 điểm).

a) z z 2 z 1 iTìm số phức biết số thực; b) log 33 6 3

x x

  

Giải phương trình

  

1

1 x 3

I xedx

Câu (1,0 điểm) Tính tích phân

1;1;1 , 3; 1;1 ,

A BC2;0;2  P C AB O P

Câu (1,0 điểm) Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm Viết phương trình mặt phẳng qua vng góc với đường thẳng Viết phương trình mặt cầu tâm tiếp xúc với mặt phẳng

Câu (1,0 điểm).

a)  4 2

 

 

tan cot 8 Acos2 Cho góc thỏa mãn Tính ;

b) Trong đợt kiểm tra độ an toàn nguồn nước ven biển Tỉnh miền trung Bộ y tế lấy 15 mẫu nước ven biển có mẫu Hà Tĩnh, mẫu Quảng Bình mẫu Thừa Thiên Huế Mỗi mẫu nước tích để hộp kín có kích thước giống hệt Đoàn kiểm tra lấy ngẫu nhiên bốn hộp để phân tích, kiểm tra xem nước có bị nhiễm độc hay khơng Tính xác suất để bốn hộp lấy có đủ ba loại nước ba Tỉnh

.

S ABCD ABCD a SABCD H ADHD2HAM N, SB BC SB, ABCD 300 a .

S ABCD MN SD, Câu (1,0 điểm) Cho hình chóp có đáy hình vng cạnh , hình chiếu

vng góc mặt phẳng điểm thuộc cạnh cho Gọi trung điểm , biết góc mặt phẳng Tính theo thể tích khối chóp khoảng cách hai đường thẳng

ABCD AD/ /BC AB AC, x 2y 3 0; y 2 0 I AC BD ABCD, IB 2IAI 3  1;3

MBD

Câu (1,0 điểm) Trong mặt phẳng với hệ trục tọa độ Oxy, cho hình thang cân có Phương trình đường thẳng chứa cạnh Gọi giao điểm Tìm tọa độ đỉnh hình thang biết , hoành độ lớn điểm thuộc đường thẳng

Câu (1,0 điểm). Giải bất phương trình sau tập :

2

5 13 57 10

2

3 19

x x x

x x

x x

   

  

  

; x y

x+y=2√x+2+3√y −2014+2012 Câu 10 (1,0 điểm).Cho số thực thỏa mãn điều kiện

Tìm giá trị nhỏ giá trị lớn biểu thức:

 12  12 2016

1

xy x y

S x y

x y

  

    

  .

(2)

Câu Ý Nội dung Điểm 1.

(1.0)  

C

Khảo sát biến thiên vẽ đồ thị 1,00

 

\

D

Tập xác định: Sự biến thiên:

lim 1,lim

x x

y y

    

 

1

y Giới hạn tiệm cận: , tiệm cận ngang: ,

2

lim ,lim

x x

y y

 

 

  

2

x ; tiệm cận đứng:

0,25

 2

' 0,

2

y x D

x

   

Chiều biến thiên:

 ;2 2;

Hàm số nghịch biến khoảng

0,25 Bảng biến thiên:

x

'

y

'

y

 



1

Đồ thị :

0,25

(3)

1;2

I

Đồ thị (C) nhận giao điểm hai tiệm cận làm tâm đối xứng

0,25

2. (1.0)

2 9

x y

x

 

4; 1 Tìm giá trị lớn giá trị nhỏ hàm số đoạn 1,00 4; 1  Xét D =hàm số xác định liên tục

2

2

9 9 9

' 1 ' 0 3

x

y x y y x

x x x

         

Ta có

3

x Kết hợp điều kiện ta lấy nghiệm

0,50

Khi

     

 4; 1  4; 1

25

4 ; 6; 10

4

max 3; 10

y y y

y x y x

   

     

      

0,50

3. a. z z 2z 1 i

Tìm số phức biết số thực 0,50

8

6

4

2

-2

-4

-6

-8

-15 -10 -5 10 15

y

x I

t y  = s x  = r y  = h x  = f x  = x+2

x-2

(4)

1

bz 1 iTừ giả thiết là số thực ta có 0,25

2 2 1 2 3

z   a i   a    a Khi

3 ,

z i z iVậy số phức cần tìm

0,25

b.  

3

log 3x 6 3 x   

Giải phương trình 0,50

3 27

PT 3 6 3 3 6 3 6.3 27 0

3

x x x x x

x

          0,25

3 9

3 9 2

3 3

x

x

x x

 

     

 

0,25 4.

(1.0)   

1

1 x 3

I xedx

Tính tích phân 1,0

     

1

3 3 3

x x x

u x du dx

dv e dx v e dx e x

  

 

 

 

     

 

  

0,5

  10 1 

0

1 x 3 x 3

I x e x e x dx

       0,25

  

1

2

0

3 9

1 3

2 2

x x

x e xe xe

        

  0,25

5

(1.0)    

1;1;1 , 3; 1;1 ,

A BC2;0; 2  P C AB O  P

Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm Viết phương trình mặt phẳng qua vng góc với đường thẳng Viết phương trình mặt cầu tâm tiếp xúc với mặt phẳng

1.0

2; 2;0 AB 



+) Mặt phẳng (P) qua điểm C(-2;0;2) với vtpt có phương trình:

     

2 x2  y 0 z  0 x y  2

0,50

2 2 2

xyz    

0

,

2 R d O P    

+) Mặt cầu cần tìm có tâm O, bán kính nên có phương trình

0,50 6.

(1.0) a.

 4 2

 

 

tan cot 8 Acos2 Cho góc thỏa mãn Tính 0,50

2

sin os 1 15

tan cot 8 8 sin 2 2

sin os 4 4

c

cos c

 

   

 

        0,25

15

2 2 0 2

4 2 2 cos cos 4

  

    

        

0,25

b. Trong đợt kiểm tra độ an toàn nguồn nước ven biển Tỉnh miền trung Bộ y tế lấy 15 mẫu nước ven biển có mẫu Hà Tĩnh, mẫu Quảng Bình 6 mẫu Thừa Thiên Huế Mỗi mẫu nước tích để hộp kín có kích thước giống hệt Đoàn kiểm tra lấy ngẫu nhiên bốn hộp để phân tích, kiểm tra xem nước có bị nhiễm độc hay khơng Tính xác suất để bốn hộp lấy có đủ ba loại nước ba Tỉnh.

(5)

4

15 1365

C

  

Số phần tử không gian mẫu: 0,25 Gọi A biến cố:” bốn hộp lấy có đủ ba loại nước ba Tỉnh ”

2 1 .5

C C C +) TH1: Lấy hộp Hà Tĩnh, hộp Quảng Bình hộp Huế:

1 .5

C C C +) TH 2: Lấy hộp Hà Tĩnh, hộp Quảng Bình hộp Huế:

1 .5

C C C +) TH 3: Lấy hộp Hà Tĩnh, hộp Quảng Bình hộp Huế:

A

 C C C42 .51 16 .5

C C C 1

4 .5

C C C Khi ++=720

  48

91

A

P A  

 Vậy xác suất

0,25

7

(1.0) S ABCD ABCD a S. ABCD H ADHD2HAM N, SB BC SB, ABCD

30 a S ABCD. MN SD, Cho hình chóp có đáy hình vng cạnh , hình chiếu vng góc mặt phẳng điểm thuộc cạnh cho Gọi trung điểm , biết góc mặt phẳng Tính theo thể tích khối chóp và khoảng cách hai đường thẳng

1.0

2 ,

3

a a

AHDHSH (ABCD)

  SBH 300

 Ta có , SH chiều cao khối

chóp S.ABCD góc SB với mặt phẳng (ABCD) góc

 0 2

tanSHB tan 30 SH SH HB.tan 30 AB AH tan 30 HB

      

2

2 . 30

9

a a

a  

1

S ABCD ABCD

VSH S 30

9 a SH

3

2

1 30 30

.a

3 27

ABCD S ABCD

a a

SaV  

Khi , với , (đvtt)

0,50

1

/ /( ) ( ; ) ( ;( )) ( ;( )) ( ;( ))

MN SDC d MN SD d MN SCD d N SCD d B SCD

    

Do M, N lần lượt trung điểm SB BC nên MN//SC

(6)

2 Mà AB//CD

( ; ) ( ;( ))

d MN SDd H SCD

Do Gọi I hình chiếu vng góc H

( ;(SCD)) HI d H

  SD Ta có

2 2 2

1 1 81 99 20

30 20 99 11

a HI a

HIHSHDaaa   

3 5

( ; )

4 11 11

a a

d MN SD  

Vậy

8

(1.0) ABCD AD/ /BC

,

AB AC x 2y 3 0; y 2 0 I AC BD ABCD, IB 2IAI

3

M1;3 BDCho hình thang cân có ; Phương trình đường thẳng chứa cạnh lần lượt Gọi giao điểm Tìm tọa độ đỉnh hình thang biết , hồnh độ của lớn điểm thuộc đường thẳng

1.0

AC⇒A(1;2) + Do A=AB

AC AB Lấy E(0;2), gọi F(2a-3; a)sao cho EF// BD

a−2¿2=2

2a −3¿2+¿

EF

BI = AE AI

EF AE=

BI

AI=√2EF=√2 AE¿

⇔a=11

5 hoaca=1 11

5 ⃗EF( 5;

1

5) BD :x −7y+22=0 + Khi a= vtcp đường thẳng BD AC⇒I(8;2) Do I = BD (loại)

⃗EF(1;−1) BD :x − y+4=0 + Khi a = 1là vtcp đường thẳng BD AC⇒I(2;2) ABBD=B(5;−1) Do I = BD (t/m)

0,50

IB=IB

ID ⃗ID= IB

IA ⃗ID=√2⃗ID⇒D(

32√2

√2 ,

3+2√2

√2 ) + Lại có:

IA=IA

IC ⃗IC= IA IB ⃗IC=

1

√2⃗IC⇒C(3√22;2)

√2 D(32√2

√2 ,

3+2√2

√2 ) Vậy : A(1;2) ; B(-5; -1) ; C(-3-2; 2) ;

0,50

Cách khác: Gọi B(2m-3; m) I(n;2) Suy PT BM: (m-3)x-2(m-1)y+7m-9=0 Vì I thuộc BM nên n(m-3)+3m-5 = (1)

    2 

4

5m  34m 57m 20m 76 0  m1 m 5m19 0 IB 2IA

Từ , kết hợp (1) ta PT: Từ cho KQ

9 (1.0)

2

5 13 57 10 2 9

3 19

x x x x x

x x

   

  

   Giải bất phương trình sau tập : 1.0 19

3

3

x x

   

  

 Điều kiện

Bất phương trình tương đương

(7)

 19  2 19  2 9 19

x x x x

x x

x x

     

  

  

2

2 x 19 3x x 2x

      

2

5 13

2 19

3

x x

x x x x

     

          

   

  2

2

2 2

2

5 13

9 19

3

x x x x

x x

x x

x x

     

    

     

   

   

   

 2 0  *

5 13

9 19

3

x x

x x

x x

 

 

 

    

      

   

    

    

 

2 0

5 13

9 19

3

x x

x x

 

     

   

   

     

19 3; \

3 x  

  Vì với

 * x2 x 2 0 2 x 1

       

Do (thoả mãn) 2;1

S   

Vậy tập nghiệm bất phương trình

0,50

10 (1.0)

; x y

x+y=2√x+2+3√y −2014+2012 Cho số thực thỏa mãn điều kiện  12  12 2016

1 xy x y

S x y

x y

  

    

  Tìm giá trị nhỏ giá trị lớn của biểu thức:

1.0

2 2 1 2 1 2016 2

1

S x x y y xy

x y

       

  Ta có

2 2016

( ) 2( )

1

x y x y

x y

     

 

2 2016

( 1) 4( 1)

1

x y x y

x y        

 

1  

x y

t S t 4 4t2 5 2016t Đặt

0,50

a=√x+20 b=√y −20140 x=a22, y=b2+2014 Ta tìm đk cho t Từ gt, đặt ,

suy ta

a22

+b2+2014=2a+3b+2012⇔a2+b2=2a+3b ≤√13(a2+b2)

2

0ab 13 x+y+1=a2

+b2+2013[2013;2026]

⇒t=√x+y+1[√2013;√2026]=J Suy ,

t=√2013⇔a2+b2=0⇔a=b=0

x=2

y=2014

¿{

(8)

a +b=13

a

2=

b

3

¿a=2

b=3

¿x=2

y=2023

¿{

4 2016

( )

f t t t

t    

4 3

3

2 2

2015 2016 ( 2) 2016

'( ) t t t t

f t t t t J

t t t

   

       

Xét hàm số liên tục J

⇒f(t) đồng biến J

2016 ( ) ( 2013) 4044122

2013

t Jf t f

    max ( ) ( 2026) 4096577 2016

2026

t Jf tf  

,

2016 4044122 ;

2013

S  max 4096577 2016

2026

S  

Vậy

1) Nếu học sinh làm không theo cách nêu đáp án cho đủ số điểm phần như hướng dẫn quy định.

2) Việc chi tiết hóa (nếu có) thang điểm hướng dẫn chấm phải bảo đảm không làm sai lệch hướng dẫn chấm phải thống thực tổ chấm.

Ngày đăng: 17/02/2021, 14:27

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w