Bieán ñoaïn thaúng thaønh ñoaïn thaúng maø ñoä daøi ñöôïc nhaân leân k ( k laø tæ soá ñoàng daïng ). Bieán ñöôøng troøn coù baùn kính R thaønh ñöôøng troøn coù baùn kính R = k.R. Bieán g[r]
(1)www.Thuvienhoclieu.Com 1 Chuyên đề:
PHÉP DỜI HÌNH VÀ PHÉP ĐỒNG DẠNG TRONG
MẶT PHẲNG
(Buổi 1) 1 Phép tịnh tiến:
a) ĐN: Phép tịnh tiến theo véctơ u phép dời hình biến điểm M thành điểm Msao cho MM u
Kí hiệu : T hay T Khi : T (M) Mu u MM u
Phép tịnh tiến hoàn toàn xác định biết vectơ tịnh tiến
Nếu T (M) M , M T phép đồng o o
b) Biểu thức tọa độ: Cho u = (a;b) phép tịnh tiến Tu
x = x + a
M(x;y) M =T (M) (x ;y ) u
y = y + b I
c) Tính chất:
Phép tịnh tiến bảo toàn khoảng cách hai điểm
Phép tịnh tiến:
+ Biến đường thẳng thành đường thẳng song song trùng với đường thẳng cho
+ Biến tia thành tia
+ Bảo tồn tính thẳng hàng thứ tự điểm tương ứng + Biến đoạn thẳng thành đoạn thẳng
v v
+ Biến tam giác thành tam giác (Trực tâm T trực tâm , trọng tâm T trọng tâm )
I I
v
+ Đường trịn thành đường trịn (Tâm biến thành tâm : I T I , R = R )
I
2 Phép đối xứng trục: a) ĐN:
ĐN1
Điểm Mgọi đối xứng với điểm M qua đường thẳng a a đường trung trực đoạn MM
Phép đối xứng qua đường thẳng gọi phép đối xứng trục Đường thẳng a gọi trục đối xứng
ÑN2 :
Phép đối xứng qua đường thẳng a phép biến hình biế
a o o o
n môi điểm M thành điểm M đối xứng với M qua đường thẳng a
Kí hiệu : Đ (M) M M M M M , với M hình chiếu M đường thẳng a
(2)www.Thuvienhoclieu.Com 2
Khi :
Nếu M a Đ (M) M : xem M đối xứng với qua a a
( M gọi điểm bất động )
M a Đ (M) M a a đường trung trực MM Đ (M) M Đ (M ) Ma a
Đ (H) H Đ (H ) H , H ảnh hình H a a
ĐN : d trục đối xứng hình HĐ (H) H d
Chú ý : Một hình khơng có trục đối xứng ,có thể có hay nhiều trục đối xứng Phép đối xứng trục hoàn tồn xác định biết trục đối xứng
b) Biểu thức tọa độ: M(x;y)IM Ñ (M) (x ;y ) d
x = x x = x
ª d Ox : y = y ª d Oy : y = y
c) ĐL:Phép đối xứng trục phép dời hình.
1.Phép đối xứng trục biến ba điểm thẳng hàng thành ba điểm thẳng hàng bảo toàn thứ tự điểm tương ứng
Đường thẳng thành đường thẳng
Hệ :
Tia thaønh tia
Đoạn thẳng thành đoạn thẳng
Tam giác thành tam giác (Trực tâm trực tâm , trọng tâm trọng tâm ) Đường tròn thành đường
I I
tròn (Tâm biến thành tâm : I I , R = R ) Góc thành góc
I
3 Phép đối xứng tâm:
a) ĐN : Phép đối xứng tâm I phép dời hình biến điểm M thành điểm M đối xứng với M qua I
Phép đối xứng tâm gọi phép đối xứng qua điểm
Điểm I gọi tâm của phép đối xứng hay đơn giản tâm đối xứng Kí hiệu : Đ (M) MI IM IM
Nếu M I M I
Nếu M I M Đ (M)I I trung trực MM ĐN :Điểm I tâm đối xứng hình H Đ (H) H.I Chú ý : Một hình khơng có tâm đối xứng
(3)www.Thuvienhoclieu.Com 3
I
b) Biểu thức tọa độ : Cho I(x ;y ) phép đối xứng tâm I : o o x = 2x x
Ñ o
M(x;y) M Ñ (M) (x ;y ) I
y 2yo y
c) Tính chất :
Phép đối xứng tâm bảo toàn khoảng cách ha I
i điểm Biến tia thành tia
Bảo tồn tính thẳng hàng thứ tự điểm tương ứng Biến đoạn thẳng thành đoạn thẳng
Biến đường thẳng thành đường thẳng song song trùng Biến góc thành góc có số đo
Biếntam giác thành tam giác ( Trực tâmtrực tâm , trọng tâm trọng tâm )
Đường tròn thành đường tròn ( Tâm biến thành tâm : II I , R = R )
Bài tập tự luận 1 Phép tịnh tiến:
a) Dạng tập PP giải:
PHƯƠNG PHÁP TÌM ẢNH CỦA MỘT ĐIỂM
u
T x = x + a
M(x;y) M =T (M) (x ;y ) u ; với u a; b
y = y + b I
PHƯƠNG PHÁP TÌM ẢNH CỦA MỘT HÌNH (H)
Cách 1: Dùng tính chất (cùng phương đường thẳng, bán kính đường trịn: khơng đổi) 1/ Lấy M (H) M (H ) I
2/ (H) đường thẳng (H ) đường thẳng phương
Taâm I Taâm I
(H) (C) + bk : R (H ) (C ) + bk : R = R (caàn tìm I )
II
U Cách : Dùng biểu thức tọa độ
Tìm x theo x , tìm y theo y thay vào biểu thức tọa độ T
(4)www.Thuvienhoclieu.Com 4
B1 Trong mpOxy Tìm ảnh M điểm M(3; 2) qua phép tịnh tiến theo vectơ u = (2;1) Giaûi
x x
Theo định nghóa ta có : M = T (M)u MM u (x 3;y 2) (2;1)
y y
M (5; 1) B2 Tìm ảnh điểm qua phép tịnh tiến theo vectô u :
a) A( 1;1) , u = (3;1)
A (2;3)
b) B(2;1) , u = ( 3;2) B ( 1;
3) c) C(3; 2) , u = ( 1;3) C (2;1)
B3 Đường thẳng cắt Ox A(1;0) , cắt Oy B(0;3) Hãy viết phương trình đường thẳng ảnh qua phép tịnh tiến theo vectơ u = ( 1; 2)
Giaûi
Vì : A T (A) (0; 2) , u
B T (B) ( 1;1) u Mặt khác : T ( )u ñi qua A ,B
qua A (0; 2) x t
Do : ptts :
y 3t
VTCP : A B = ( 1;3)
B4 Tìm ảnh đường thẳng sau qua phép tịnh tiến:
a) : x 2y = , u = (0 ; 3) : x 2y b) : 3x y = , u = ( ; 2) : 3x y 0
2
B5 Tìm ảnh đường trịn (C) : (x + 1) (y 2) qua phép tịnh tiến theo vectơ u = (1; 3)
Giaûi
x = x + x = x Biểu thức toạ độ phép tịnh tiến T : u
y = y y = y +
V
2 2
ì : M(x;y) (C) : (x + 1) (y 2) x (y 1)
2
M (x ;y ) (C ) : x (y 1)
2
Vậy : Ảnh (C) (C ) : x (y 1)
2 Phép đỗi xứng trục: a) Dạng tập PP giải:
PHƯƠNG PHÁP TÌM ẢNH CỦA MỘT ĐIỂM
a
PP : Tìm ảnh M = Đ (M), thực bước: (d) M , d a
H = d a
H laø trung điểm MM M ?
(5)www.Thuvienhoclieu.Com 5
a
a
ª PP : Tìm ảnh đường thẳng : = Đ ( ) TH1: ( ) // (a)
Laáy A,B ( ) : A B Tìm ảnh A = Đ (A) A , // (a)
TH2 : / /
a
a Tìm K = a
Lấy P : P K Tìm Q = Ñ (P) (KQ)
PHƯƠNG PHÁP TÌM ẢNH CỦA MỘT ĐƯỜNG TRỊN
PP: Tìm ảnh tâm I qua phép đối xứng trục dùng tính chất “Phép đối xứng trục biến đường trịn thành đường trịn có bán kính”
PHƯƠNG PHÁP TÌM M ( ) : (MA + MB) min. ª PP :Tìm M ( ) : (MA + MB)min.
min
min Tìm M ( ) : (MA+ MB)
Loại : A, B nằm phía ( ) : 1) gọi A đối xứng A qua ( )
2) M ( ), thì MA + MB MA + MB A B Do đó: (MA+MB) = A B M = (A B) ( )
min
Loại : A, B nằm khác phía ( ) : M ( ), thì MA + MB AB
Ta có: (MA+MB) = AB M = (AB) ( )
(6)www.Thuvienhoclieu.Com 6
ÑOx ÑOy
B1 Trong mpOxy Tìm ảnh M(2;1) đối xứng qua Ox , đối xứng qua Oy HD : M(2;1) M (2; 1) M ( 2; 1)
B2 Trong mpOxy Tìm ảnh M(a;b) đối xứng qua Oy , đối x
I I
ÑOy ÑOx
a
ứng qua Ox
HD : M(a;b) M ( a;b) M ( a; b)
B3 Cho điểm M( 1;2) đường thẳng (a) : x + 2y + = Tìm ảnh M qua Đ HD : (d) : 2x y + = , H = d a H( 2;0) ,
H laø
I I
a a
trung điểm MM M ( 3; 2)
B4 Cho điểm M( 4;1) đường thẳng (a) : x + y = Tìm ảnh M qua Đ Kq: M = Đ (M) ( 1;4)
B5 Cho đường thẳng ( ) : 4x y +
a
a
= , (a) : x y + = Tìm ảnh = Đ ( ) HD :
4
Vì cắt a K a K( 2;1)
1
M( 1;5) d M, a d : x y H(1/ 2;7 / 2) : trung điểm MM M Ñ (M) (2;2)
KM : x 4y + =
a
a
B6 Tìm b = Đ (Ox) với đường thẳng (a) : x + 3y + = 0. HD : a Ox = K( 3;0)
3 9
M O(0;0) Ox : M = Ñ (M) = ( ; )
5 5
b KM : 3x + 4y = 3 Phép đối xứng tâm: a) Dạng tập PP giải:
PHƯƠNG PHÁP TÌM ẢNH CỦA MỘT ĐIỂM PP: Sử dụng biểu thức tọa độ :
I
Cho I(x ;y ) phép đối xứng tâm I : o o Đ
M(x;y) M Đ (M) (x ;y ) thI ì
x = 2xo x y 2y y
o
I
PHƯƠNG PHÁP TÌM ẢNH CỦA MỘT ĐƯỜNG THẲNG
Cách 1: Dùng biểu thức toạ độ
Cách : Xác định dạng // , dùng cơng thức tính khoảng cách d( ; ) . Cách : Lấy A,B , tìm ảnh A ,B A B
PHƯƠNG PHÁP TÌM ẢNH CỦA MỘT ĐƯỜNG TRỊN
Cách 1: Sử dụng biểu thức tọa độ
(7)www.Thuvienhoclieu.Com 7
b) Vận dụng:
B1 Tìm ảnh điểm sau qua phép đối xứng tâm I:
1) A( 2;3) , I(1;2) A (4;1) 2) B(3;1) , I( 1;2)
B ( 5;3) 3) C(2;4) , I(3;1) C (4; 2)
Giaûi :
1) Giả sử : A Đ (A)I IA IA (x 1;y 2) ( 3;1)
x x A (4;1)
y y
Cách : Dùng biểu thức toạ độ 2),3) Làm tương tự
B2 Tìm ảnh đường thẳng sau qua phép đối xứng tâm I:
1) ( ) : x 2y 0,I(2; 1) ( ) : x 2y 2) ( ) : x 2y 0,I(1;0)
( ) : x 2y 3) ( ) : 3x 2y 0,I(2; 3) ( ) : 3x 2y
I
Giaûi
x x x x
Đ 1) Cách 1: Ta có : M(x;y) M
y y y y
I
I
Vì M(x;y) x 2y (4 x ) 2( y ) x 2y M (x ;y ) : x 2y
Đ
Vậy : ( ) ( ) : x 2y Caùch : Gọi = Đ ( )I song song
I
: x + 2y + m = (m 5)
m (loại)
|5| | m |
Theo đề : d(I; ) = d(I; ) | m | m 5
2 2
1 2
( ) : x 2y
Cách : Lấy : A( 5;0),B( 1; 2) A (9; 2),B (5;0) A B : x 2y
(8)www.Thuvienhoclieu.Com 8
B3 Tìm ảnh đường tròn và(P) sau qua phép đối xứng tâm I:
2 2
1) (C) : x (y 2) 1,E(2;1)
2 2
2) (C) : x y 4x 2y 0
E
,F(1;0) 2
3) (P) : y = 2x x , taâm O(0;0) HD :1) Co ù2 cách giải :
Cách 1: Dùng biểu thức toạ độ Đ
Cách : Tìm tâm I I',R R (đa õcho)
2) I
Tương tự Kết quả:
2 2
1) (C ) : (x 4) y 1
2 2
2) (C ) : x y 8x 2y 12 0
ĐNõ hay biểu thức toạ độ 2
3) (P ) : y = 2x x 3
Bài tập trắc nghiệm: 1. Phép tịnh tiến: Nhận biết
Câu 1: Trong mặt phẳng Oxycho điểm A 2;5 Phép tịnh tiến theo vectơ v 1;2 biến A
thành điểm có tọa độ là:
A 3;1 B 1;6 C 3;7 D 4;7
Lời giải Chọn C
Nhắc lại: Trong mặt phẳng Oxycho điểm M x y ; điểm M x y' '; ', v a b; cho: M'T Mv .Ta có: '
'
x x a y y b
Áp dụng cơng thức ta có: Ảnh Aqua phép tịnh tiến theo vectơ v 1;2
' 3;7
A
Câu 2: Trong mặt phẳng Oxycho điểm A 2;5 Hỏi A ảnh điểm điểm sau qua phép tịnh tiến theo vectơ v 1;2 ?
A 3;1 B 1;6 C 4;7 D 1;3
Lời giải Chọn D
A ảnh điểm M qua phép tịnh tiến theo vectơ v 1;2 Áp dụng công thức biểu thức tọa dộ phép tịnh tiến ta có:
2 1
1;3
A M M
A M M
x x a x
M
y y b y
(9)www.Thuvienhoclieu.Com 9 A 3;2 B 1;3 C 2;5 D 2; 5
Lời giải
Chọn C
Nhắc lại: Trong mặt phẳng Oxycho điểm M x y ; điểm M x y' '; ', v a b; cho: M'T Mv .Ta có: '
'
x x a y y b
Áp dụng cơng thức ta có: Ảnh A 1;3 qua phép tịnh tiến theo vectơ v 3;2 A' 2;5
Câu 4: Trong mặt phẳng tọa độ Oxy, phéptịnh tiến theo vectơ v 1;3 biến điểm A 1;2 thành điểm điểm sau ?
A 2;5 B 1;3 C. 3;4 D 3; 4
Lời giải
Chọn A
Áp dụng cơng thức ta có: Ảnh A 1;2 qua phép tịnh tiến theo vectơ v 1;3
' 2;5
A
Câu 5: Có phép tịnh tiến biến đường thẳng cho trước thành nó?
A Khơng có B Chỉ có C Chỉ có hai D Vơ số
Lời giải
Chọn D
Câu 6: Có phép tịnh tiến biến đường trịn cho trước thành nó?
A Khơng có B Một C Hai D Vô số
Lời giải
Chọn B
Câu 7: Có phép tịnh tiến biến hình vng thành nó?
A Khơng có B Một C Bốn D Vơ số
Lời giải
Chọn B
Câu 8: Giả sử qua phép tịnh tiến theo vectơ v0, đường thẳng d biến thành đường thẳng 'd Câu sau sai?
A d trùng 'd v vectơ phương d
B dsong song với 'd v vectơ phương d
C d song song với 'd v vectơ phương d
D d không cắt 'd
Lời giải
(10)www.Thuvienhoclieu.Com 10 Câu 9: Cho hai đường thẳng song song d 'd Tất phép tịnh tiến biến d thành 'd
là:
A Các phép tịnh tiến theo v, với vectơ v0 không song song với vectơ phương d
B Các phép tịnh tiến theo v, với vectơ v0 vng góc với vectơ phương
d
C Các phép tịnh tiến theo AA', hai điểm A A' tùy ý nằm d
và 'd
D Các phép tịnh tiến theo v, với vectơ v0 tùy ý
Lời giải
Chọn C
Câu 10: Cho P Q, cố định Phép tịnh tiến T biến điểm M thành M2 cho
2
MM PQ
A T phép tịnh tiến theo vectơ PQ B T phép tịnh tiến theo vectơ
MM
C T phép tịnh tiến theo vectơ 2PQ D T phép tịnh tiến theo vectơ
2PQ
Lời giải
Chọn C
Câu 11: Cho phép tịnh tiến Tu biến điểm M thành
1
M phép tịnh tiến Tv biến
1
M thành M2
A Phép tịnh tiến Tu v biến
1
M thành M2
B Một phép đối xứng trục biến M thành M2
C Khơng thể khẳng định có hay khơng phép dời hình biến M thành M2
D Phép tịnh tiến Tu v biến M thành
2 M
Lời giải
Chọn D u
T biến điểm M thành
1
M ta có MM1u v
T biến
1
M thành M2 ta có M M1 v
Phép tịnh tiến Tu v biến M thành
2
M
2 1 2 2
u v MMMM M M MMMM MM ( đúng)
Câu 12: Cho phép tịnh tiến vectơ v biến A thành A' M thành M' Khi đó:
A AM A M' ' B AM 2 'A M' C AMA M' ' D
3AM 2 'A M'
Lời giải
(11)www.Thuvienhoclieu.Com 11
Tính chất 1: Nếu Tv(M)M', Tv(N)N' M'N'MN Hay phép tịnh tiến bảo toàn
khoảng cách hai điểm bất kì.
Câu 13: Trong mặt phẳng Oxy , cho v a b; Giả sử phép tịnh tiến theo v biến điểm M x y ; thành M x y' '; ' Ta có biểu thức tọa độ phép tịnh tiến theo vectơ v là:
A '
'
x x a y y b
B
' '
x x a y y b
C
' '
x b x a y a y b
D
' '
x b x a y a y b
Lời giải
Chọn A
Vận dụng
Câu 14: Trong mặt phẳng Oxy, cho phép biến hình f xác định sau: Với M x y ; ta có
' f
M M cho M x y' '; ' thỏa mãn x' x 2, 'y y
A f phép tịnh tiến theo vectơ v 2;3 B f phép tịnh tiến theo vectơ 2;3
v
C f phép tịnh tiến theo vectơ v 2; 3 D f phép tịnh tiến theo vectơ 2; 3
v
Lời giải
Chọn D
Áp dụng câu 13
Câu 15: Trong mặt phẳngOxy, ảnh đường tròn: x2 2 y12 16qua phép tịnh tiến theo vectơ v 1;3 đường trịn có phương trình:
A. x2 2 y1216 B.x2 2 y1216.
C x3 2 y42 16 D x3 2 y42 16. Lời giải
Chọn C
Theo định nghĩa ta có biểu thức tọa độ phép tịnh tiến :
3
x x a x y y b y
1
x x y y
Thay vào phương trình đường trịn ta có : x2 2 y12 16 2 2
1 16
x y
2 2
3 16
x y
Vậy ảnh đường tròn cho qua phép tịnh tiến theo vectơ v 1;3 đường trịn có phương trình:
2 2
3 16
(12)www.Thuvienhoclieu.Com 12 Câu 16: Trong mặt phẳng Oxycho điểm A 1;6 ;B 1; 4 Gọi C, D ảnh A
B qua phéptịnh tiến theo vectơv 1;5 Tìm khẳng định khẳng định sau:
A ABCD hình thang B ABCD hình bình hành
C ABDC hình bình hành D Bốn điểm A, B, C, D thẳng hàng
Lời giải Chọn D
Ta có : AB 2; 10 2 1;5 2 1v
Do C, D ảnh A B qua phéptịnh tiến theo vectơv 1;5
2
ACBD v
Từ 1 ; suy AB/ /AC/ /BD A,B,C,D thẳng hàng
Câu 17: Trong mặt phẳngOxy, ảnh đường tròn :x1 2 y324qua phép tịnh tiến theo vectơ v 3;2 đường trịn có phương trình:
A x2 2 y524 B x2 2 y524.
C.x1 2 y32 4. D x4 2 y124
Lời giải Chọn B
Theo định nghĩa ta có biểu thức tọa độ phép tịnh tiến :
2
x x a x y y b y
3
x x y y
Thay vào phương trình đường trịn ta có : x1 2 y324 2 2
3
x y
2 2
2
x y
Vậy ảnh đường tròn :x1 2 y324qua phép tịnh tiến theo vectơ
3;2
v
là đường trịn có phương trình: x2 2 y52 4
Câu 18: Tìm mệnh đềsai mệnh đề sau:
A Phép tịnh tiến bảo tồn khoảng cách hai điểm
B Phép tịnh tiến biến ba điểm thẳng hàng thành ba điểm thẳng hàng
C Phép tịnh tiến biến tam giác thành tam giác tam giác cho
D Phép tịnh tiến biến đường thẳng thành đường thẳng song song với đường thẳng cho Lời giải
Chọn D
Phép tịnh tiến biến đường thẳng thành đường thẳng song song với đường thẳng cho véctơ tịnh tiến vcùng phương với véctơ phương đường thẳng cho
Câu 19: Trong mặt phẳng Oxy cho điểm A(1; 1) B (2; 3) Gọi C, D ảnh A B qua phép tịnh tiến v = (2; 4) Tìm khẳng định khẳng định sau:
A ABCD hình bình hành B. ABDC hình bình hành
C ABDC hình thang D Bốn điểm A, B, C, D thẳng hàng Lời giải
(13)www.Thuvienhoclieu.Com 13
Ta có : 1;2 1 AB v
Do C, D ảnh A B qua phéptịnh tiến theo vectơv 1;5
2
ACBD v
Từ 1 ; suy AB/ /AC/ /BD A,B,C,D thẳng hàng
Câu 20: Cho hai đường thẳng d d song song Có phép tịnh tiến biến dthành
d?
A 1 B 2 C 3 D Vô số.
Lời giải Chọn D
Vì / /d dnên lấy điểm hai đường thẳng ;Md N d thì phép tịnh tiến theo véctơ: vMNln biến đường thẳng dthành đường thẳng d
Câu 21: Khẳng định sau phép tịnh tiến ?
A Phép tịnh tiến theo véctơ v biến điểm M thành điểm Mthì vM M
B Phép tịnh tiến phép đồng véctơ tịnh tiến v0
C Nếu phép tịnh tiến theo véctơ v biến điểm M N, thành hai điểm ,M N thì
MNN M là hình bình hành
D Phép tịnh tiến biến đường tròn thành elip
Lời giải Chọn B
A sai Phép tịnh tiến theo véctơ v biến điểm M thành điểm Mthì vMM
B phép tịnh tiến theo véctơ tịnh tiến v0biến điểm M thành nên phép đồng
C sai MN v ; hai véctơ phương MMNNv nên
; ;
MN MM NN
là véctơ phương thẳng hàng tứ giác
MNN M khơng thể hình bình hành
D sai phép tịnh tiến biến đường tròn thành đường tròn
Câu 22: Cho hình bình hành ABCD, M điểm thay đổi cạnh AB Phép tịnh tiến theo vt BCbiến điểm M thành điểm M khẳng định sau khẳng định ?
A Điểm M trùng với điểm M B.Điểm Mnằm cạnh BC
C.Điểm Mlà trung điểm cạnh CD D.Điểm Mnằm cạnh DC
Lời giải Chọn D
Vì phép tịnh tiến bảo tồn tính chất thẳng hàng Khi : TBC:AD B; Cnên :
BC
T ABCD
Vì TBC M Mvà MABMDC
Câu 23: Cho phép tịnh tiến theo vt v0 Phép tịnh tiến theo vt v0 biến hai điểm M N, thành hai điểm ,M N khi khẳng định sau ?
A Điểm M trùng với điểm N. B Vt MN vt 0
C.Vt MM NN' 0 D. MM 0
Lời giải Chọn C
(14)www.Thuvienhoclieu.Com 14 B sai hai điểm M N, phân biệt
C đúng theo định nghĩa phép tịnh tiến ta có : MM NN' 0
D sai thiếu điều kiện NN' 0
Câu 24: Trong mặt phẳng với hệ trục tọa độ Oxy, phép tịnh tiến theo vt v 1;2 biến điểm
1;4
M thành điểm Mcó tọa độ ?
A.M 0;6 B.M 6;0 C.M 0;0 D M 6;6
Lời giải Chọn A
Theo định nghĩa ta có biểu thức tọa độ phép tịnh tiến : 1
4
x x a y y b
M 0;6
Câu 25: Trong mặt phẳng với hệ trục tọa độ Oxy.Cho điểm M10;1và M 3;8 Phép tịnh tiến theo vt v biến điểm M thành điểm M, tọa độ vt v ?
A.v 13;7 B.v13; 7 C.v13;7. D v 13; 7
Lời giải Chọn C
Phép tịnh tiến theo vt v biến điểm M thành điểm Mnên ta có : v MM13;7 2. Phép đối xứng trục
Nhận biết
Câu Hình vng có trục đối xứng?
A. B. C. D. vô số
Câu 2:Trong mặt phẳng Oxy cho điểm M 2;3 Hỏi bốn điểm sau điểm ảnh
M qua phép đối xứng trục Ox?
A 3;2 B 2; 3 C 3; 2 D 2;3
Lời giải
Gọi M x y ; ảnh điểm M x y ; qua phép đối xứng trục Ox ta có:
3
x x x
y y y
Vậy M2; 3 Chọn B
Câu 3:Trong mặt phẳng Oxy cho điểm M 2;3 Hỏi M ảnh điểm điểm sau qua phép đối xứng trục Oy ?
A 3;2 B 2; 3 C 3; 2 D 2;3
Lời giải
Gọi M x y ; ảnh điểm M x y ; qua phép đối xứng trục Oy ta có:
3
x x x
y y y
(15)www.Thuvienhoclieu.Com 15
Vậy M 2;3 Chọn D
Câu 4:Trong mặt phẳng Oxy cho điểm M 2;3 Hỏi bốn điểm sau điểm ảnh M qua phép đối xứng qua đường thẳng : –x y0 ?
A 3;2 B 2; 3 C 3; 2 D 2;3
Lời giải
Gọi M x y ; ảnh điểm M x y ; qua phép đối xứng qua : –x y0 Gọi d đường thẳng qua điểm M 2;3 vng góc : –x y0 ta có:
:
d x y
Gọi I d 5; 2 I
Khi I trung điểm MM nên suy M 3;2 Chọn A
Câu 5:Hình gồm hai đường trịn có tâm bán kính khác có trục đối xứng? A Khơng có B Một C Hai D Vô số
Lời giải
I
K
Chọn B
Câu 6:Hình gồm hai đường thẳng d d vng góc với có trục đối xứng? A 0 B 2 C 4 D Vô số
Lời giải
d'
d
Ta có trục đối xứng đường thẳng đường phân giác tạo đường thẳng
Chọn C
Câu 7:Trong mệnh đề sau mệnh đề đúng? A Đường trịn hình có vơ số trục đối xứng
(16)www.Thuvienhoclieu.Com 16
C Một hình có vơ số trục đối xứng hình phải hình gồm đường trịn đồng tâm
D Một hình có vơ số trục đối xứng hình phải hình gồm hai đường thẳng vng góc
Lời giải
Các đường kính đường trịn trục đối xứng Chọn A
Câu 8:Xem chữ in hoa A,B,C,D,X,Y hình Khẳng định sau đậy đúng? A Hình có trục đối xứng: A,Y hình khác khơng có trục đối xứng B Hình có trục đối xứng: A, B,C, D, Y Hình có hai trục đối xứng: X
C Hình có trục đối xứng: A,B hình có hai trục đối xứng: D,X
D Hình có trục đối xứng: C,D,Y Hình có hai trục đối xứng: X Các hình khác khơng có trục đối xứng
Lời giải
Hình có trục đối xứng: A, B,C, D, Y Hình có hai trục đối xứng: X Chọn B
Thông hiểu
Câu 9:Giả sử qua phép đối xứng trục Đa (a trục đối xứng), đường thẳng d biến thành
đường thẳng d Hãy chọn câu sai câu sau:
A Khi d song song với a d song song với d B d vng góc với a d trùng với d
C Khi d cắt a d cắt d Khi giao điểm d d nằm a D Khi d tạo với a góc 450 d vng góc với d
Lời giải
Ta có d vng góc với a d trùng với d Ngược lại d trùng với d a
trùng d Chọn B
Câu 10:Trong mặt phẳng Oxy , cho Parapol P có phương trình x224y Hỏi Parabol
trong parabol sau ảnh P qua phép đối xứng trục Oy ?
A x2 24y B x2 24y C y224x D y2 24x
Lời giải
Gọi M x y ; ảnh điểm M x y ; qua phép đối xứng trục Oy ta có:
x x x x
y y y y
P :x2 24y
Vậy P :x224y
Chọn A
Câu 11:Trong mặt phẳng Oxy , cho parabol P :y2x Hỏi parabol sau đây ảnh của
(17)www.Thuvienhoclieu.Com 17
A y2x B y2 x C x2 y D x2 y Lời giải
Gọi M x y ; ảnh điểm M x y ; qua phép đối xứng trục Oy ta có:
x x x x
y y y y
P :y2 x
Vậy P :y2 x
Chọn B
Câu 12: Trong mặt phẳng Oxy cho parabol P có phương trình x24y Hỏi parabol
các parabol sau ảnh P qua phép đối xứng trục Ox ?
A x2 4y B x2 4y C y24x D y2 4x Lời giải
Gọi M x y ; ảnh điểm M x y ; qua phép đối xứng trục Oy ta có:
x x x x
y y y y
P :x2 4y
Vậy P :x2 4y
Chọn B
Câu 13:Trong mặt phẳng Oxy, qua phép đối xứng trục Oy Điểm A 3;5 biến thành điểm điểm sau?
A 3;5 B 3;5 C 3; 5 D 3; 5
Lời giải
Gọi A x y ; ảnh điểm A x y ; qua phép đối xứng trục Oy ta có:
5
x x x
y y y
Vậy A 3;5 Chọn B
Câu 14: Cho đường trịn có bán kính đơi tiếp xúc ngồi với tạo thành hình H Hỏi H có trục đối xứng?
A 0 B 1 C 2 D 3 Lời giải
J I
(18)www.Thuvienhoclieu.Com 18
Gọi , ,I J K tâm đường trịn có bán kính đơi tiếp xúc ngồi với tạo thành hình H
Trục đối xứng hình H đường cao tam giác IJK Chọn D
Câu 15: Tìm mệnh đềsai mệnh đề sau:
A Phép đối xứng trục bảo toàn khoảng cách hai điểm
B Phép đối xứng trục biến đường thẳng thành đường thẳng song song hoăc trùng với đường thẳng cho
C Phép đối xứng trục biến tam giác thành tam giác tam giác cho D Phép đối xứng trục biến đường tròn thành đường tròn đường tròn cho
Lời giải
Dựa vào tính chất phép đối xứng trục ta có câu B sai Chọn B
Vận dụng
Câu 16: Phát biểu sau phép đối xứng trục d:
A Phép đối xứng trục d biến M thành M MIIM (I giao điểm MM trục d)
B Nếu M thuộc d Đd M M
C Phép đối xứng trục khơng phải phép dời hình
D Phép đối xứng trục d biến M thành MMMd
Lời giải
A Chiều ngược lại sai MM khơng vng góc với d
B Đúng, phép đối xứng trục giữ bất biến điểm thuộc trục đối xứng C Sai, phép đối xứng trục phép dời hình
D Sai, cần MM d trung điểm MM suy M
ảnh M qua phép đối xứng trục d , tức cần d trung trực MM
Câu 17: Cho hình vng ABCD có hai đường chéo AC BDcắt I Hãy chọn phát biểu
đúng phát biểu sau
A Hai điểm A B đối xứng qua trục CD
B Phép đối xứng trục AC biến A thành C
C Phép đối xứng trục AC biến D thành B
D Hình vng ABCD có trục đối xứng AC BD
Lời giải:
A Sai
B Sai, phép đối xứng trục AC biến điểm A thành C Đúng
D Hình vng có trục đối xứng
Câu 18: Trong mặt phẳng với hệ trục tọa độ Oxy, cho phép đối xứng trục Ox Với bất kì, gọi M
là ảnh M qua phép đối xứng trục Ox Khi tọa độđiểm M là:
A. M x y' ; B M x y, C M x, y D M x ,y Lời giải:
(19)www.Thuvienhoclieu.Com 19 Câu 19: Trong mặt phẳng với hệ trục tọa độ Oxy Cho phép đối xứng trục Oy, với M x y , gọi
M ảnh M qua phép đối xứng trục Oy Khi tọa độđiểm Mlà:
A M x y , B M x y, C M x, y D M x ,y Lời giải:
Hai điểm đối xứng qua trục Oycó tung độ hồnh độđối
Câu 20: Hình sau có trục đối xứng (mỗi hình chữ in hoa):
A G B Ơ C N D M
Câu 21: Hình sau có trục đối xứng:
A Tam giác B Tam giác cân
C Tứ giác D Hình bình hành
Câu 22: Cho tam giác ABC Hỏi hình tam giác ABCcó trục đối xứng:
A Khơng có trục đối xứng B Có trục đối xứng
C Có trục đối xứng D Có trục đối xứng
Câu 23: Trong mặt phẳng với hệ trục tọa độ Oxy, cho phép đối xứng trục Ox Phép đối xứng trục
Ox biến đường thẳng d x y: 2 thành đường thẳng d có phương trình là:
A x y 2 B x y 2 0 C x y D. x y 2 0 Lời giải:
Gọi M x y ; ảnh M x y ; qua phép đối xứng trục Ox Khi đó:
x x x x
y y y y
2 2
M d x y x y xy
Vậy M thuộc đường thẳng d có phương trình x y 2
Câu 24: Trong mặt phẳng với hệ trục tọa độ Oxy Phép đối xứng trục Ox biến đường tròn
2 2
:
C x y thành đường trịn C có phương trình là:
A x1 2 y22 4 B x1 2 y224
C x1 2 y22 4 D x1 2 y224
Lời giải:
Gọi M x y ; ảnh M x y ; qua phép đối xứng trục Ox Khi đó:
x x x x
y y y y
2 2
1
M C x y 2 2
1
x y
Vậy M thuộc đường trịn C có phương trình x1 2 y224
Câu 25: Trong mặt phẳng với hệ trục tọa độ Oxy, cho phép đối xứng trục d y x: 0 Phép đối xứng trục d biến đường tròn C : x1 2 y421 thành đường trịn C có phương trình là:
A x1 2 y421 B x4 2 y121
C x4 2 y121 D x4 2 y12 1
(20)www.Thuvienhoclieu.Com 20 C có tâm I1;4 bán kính
Gọi I ảnh I1;4 qua phép đối xứng trục d y x: 0 Khi đó, d trung trực II Gọi H x y ; trung điểm II
3
1
d
H d x y
x y
x y
IH u
Do I4; 1
Phép đối xứng trục biến đường tròn thành đường trịn có bán kính nên ảnh
( )C : C : x4 2 y121
3. Phép đối xứng tâm Nhận biết
Câu 1: Cho hai điểm I 1;2 M3; 1 Hỏi điểm M có tọa độ sau ảnh M qua phép đối xứng tâm I?
A 2;1 B 1;5 C 1;3 D 5; 4
Lời giải: I trung điểm MM nên ta chọn câu B
Câu 2: Trong mặt phẳng Oxy cho đường thẳng d có phương trình x2 Trong đường thẳng sau đường thẳng ảnh d qua phép đối xứng tâm O?
A x 2 B y2 C x2 D y 2
Lời giải
Ảnh đường thẳng song song với d (vì tâm đối xứng O không thuộc d) nên ta chọn A
Câu 3: Trong mệnh đề sau mệnh đề đúng?
A Qua phép đối xứng tâm khơng có điểm biến thành
B Qua phép đối xứng tâm có điểm biến thành
C Có phép đối xứng tâm có hai điểm biến thành
D Có phép đối xứng tâm có vơ sốđiểm biến thành
Lời giải
Chọn B, phép đối xứng tâm giữ bất biến tâm đối xứng
Câu 4: Trong mặt phẳng Oxy, cho đường thẳng d có phương trình x y 4 Hỏi
đường thẳng sau đường thẳng biến thành d qua phép đối xứng tâm?
A 2x y 4 B x y 1 0 C 2x2y 1 D 2x2y 3
Lời giải
Phép đối xứng tâm biến đường thẳng thành đường thẳng song song trùng với
đường thẳng ban đầu, nên ta chọn đáp án C có đường thẳng câu C song song với d
Câu 5: Hình gồm hai đường trịn phân biệt có bán kính có tâm đối xứng?
(21)www.Thuvienhoclieu.Com 21 Lời giải
Câu 6: Trong hệ trục tọa độ Oxy cho điểm I a b ; Nếu phép đối xứng tâm I biến điểm M x y ; thành M x y ; ta có biểu thức:
A x a x
y b y
B
2
x a x
y b y
C
x a x y b y
D
2
x x a
y y b
Lời giải
Đáp án B
Phép đối xứng tâm I biến điểm M x y ; thành M x y ; I trung điểm
MM 2 2 x x
a x a x
y y b y b y
Câu 7: Trong mặt phẳng Oxy, cho phép đối xứng tâm I 1;2 biến điểm M x y ; thành
;
M x y Khi đó:
A
2 x x y y
B
2 x x y y
C
2 x x y y
D
2 x x y y
Lời giải
Đáp án B
Phép đối xứng tâm I biến điểm M x y ; thành M x y ; I trung điểm
MM
Đáp án B
Hình gồm hai đường trịn phân biệt có bán kính có tâm đối xứng, tâm đối xứng trung
điểm đoạn nối tâm
Thật vậy, giả sử hai đường tròn là:
2 2
1 1
2 2
2 2
: ;
:
C x x y y R
C x x y y R
Trung điểm đoạn nối tâm có tọa độ
1 2;
2
x x y y C
Lấy điểm 2 2
0; 1
M x y C x x y y R
Điểm đối xứng với M qua C có tọa độ M x 1x2x y0; 1y2y0
Ta chứng minh M C2 2 2 2 2
1 2 2 1
(22)www.Thuvienhoclieu.Com 22
1 2
2
4
2 x x
x x
y y y y
Câu 8: Một hình H có tâm đối xứng nếu:
A Tồn phép đối xứng tâm biến hình H thành
B. Tồn phép đối xứng trục biến hình H thành
C Hình H hình bình hành
D. Tồn phép dời hình biến hình H thành
Lời giải
Đáp án A
Câu 9: Hình sau khơng có tâm đối xứng?
A Hình vng B Hình trịn C Hình tam giác D Hình thoi
Lời giải. Chọn C
Hình tam giác khơng có tâm đối xứng
Câu 10: Trong mặt phẳng Oxy, tìm ảnh điểm A 5;3 qua phép đối xứng tâm I 4;1
A 5;3 . B 5; 3. C 3; 1 . D 9;2
Lời giải.
Chọn C
Gọi A x y ; ảnh A 5;3 qua phép đối xứng tâm I 4;1 Ta có: 2.4 3; 1
2 2.1
I A I A
x x x
A
y y y
Thông hiểu
Câu 11: Trong mặt phẳng Oxy cho đường thẳng d có phương trình x y 2 0, tìm phương trình đường thẳng d ảnh d qua phép đối xứng tâm I 1;2
A x y 4 0. B x y 4 C.x y 4 D.x y 4
Lời giải. Chọn B
Lấy M x y ; d Gọi M x y ; ảnh M qua phép đối xứng tâm I 1;2
Ta có: 2.1 2
2.2 4
x x x x x
y y y y y
Do M x y ; d nên ta có: x y 2 x y x y Mà M x y ; d nên phương trình d là: x y 4
Câu 12: Trong mặt phẳng Oxy, tìm phương trình đường trịn C ảnh đường tròn C :
2 2
3
x y qua phép đối xứng tâm O 0;0
(23)www.Thuvienhoclieu.Com 23 C x3 2 y129 D x3 2 y129
Lời giải
Chọn D
Đường tròn C : x3 2 y129 có tâm I3; 1 có bán kính R3
Điểm đối xứng với I3; 1 qua O 0;0 I 3;1 Vậy phương trình C là: x3 2 y12 9
Câu 13: Tìm mệnh đềsai mệnh đề sau:
A Phép đối xứng tâm bảo toàn khoảng cách điểm
B Nếu IM IM §I M M
C Phép đối xứng tâm biến đường thẳng thành đường thẳng song song trùng với đường thẳng cho
D Phép đối xứng tâm biến tam giác tam giác cho
Lời giải
Chọn B
Mệnh đề sai thiếu điều kiện ba điểm ,I M M, thẳng hàng
Câu 14: Trong mặt phẳng Oxy, cho điểm I x y 0; 0 Gọi M x y ; điểm tùy ý
;
M x y ảnh M qua phép đối xứng tâm I Khi biểu thức tọa độ phép đối xứng tâm I là:
A
0
' '
x x x
y y y
B
0
0
' '
x x x
y y y
C
0
2 '
2 '
x x x
y y y
D
0
' '
x x x y y y
Lời giải
Chọn A
Vì I trung điểm MM Vận dụng
Câu 15: Trong mặt phẳng Oxy, tìm phương trình đường trịn C ảnh đường tròn
C : 1x2 y2 qua phép đối xứng tâm I 1;0
A x22 y21. B x22y21. C x2y221. D x2y221 Lời giải
Chọn A
Đường trịn C : x2 y21 có tâm O 0;0 có bán kính R1 Điểm đối xứng với O 0;0 qua I 1;0 O x y ;
Ta có: 2.1 2;0 2.0 0
x
O y
(24)www.Thuvienhoclieu.Com 24 Câu 16: Trong mặt phẳng Oxy, cho đường tròn C : 1x 2 y32 16 Giả sử qua phép
đối xứng tâm I điểm A 1;3 biến thành điểm B a b ; Tìm phương trình đường trịn C
ảnh đường tròn C qua phép đối xứng tâm I
A x a 2 y b 2 1 B
2 2 x a y b
C x a 2 y b 2 9 D x a 2 y b 2 16 Lời giải
Chọn D
Đường tròn C : 1x 2 y3216 có tâm A 1;3 có bán kính R4
Qua phép đối xứng tâm I biến A 1;3 thành B a b ; nên B a b ; tâm
C Phép đối xứng tâm phép dời hình nên C có tâm R R Phương trình C là: x a 2 y b 2 16
Câu 17: Trong mặt phẳng với hệ trục tọa độ Oxy Cho phép đối xứng tâm O 0;0 biến điểm
2;3
M thành M có tọa độ là:
A M 4;2. B M 2; 3. C M2; 3 . D 2;3
M Lời giải
Chọn C
Ta có: 2.0 2 2; 3
2.0 3
M M
x
M y
Câu 18: Trong mặt phẳng với hệ trục tọa độ Oxy Cho phép đối xứng tâm I1; 2 biến điểm
2;4
M thành M có tọa độ là:
A M4;2. B M 4;8. C M 0;8 . D M0; 8 Lời giải
Chọn D Ta có:
2 2.1
0;
2 2
M I M
M I M
x x x
M
y y y
Câu 19: Trong mặt phẳng với hệ trục tọa độ Oxy Cho phép đối xứng tâm I 1;1 biến đường thẳng d x y: 0 thành đường thẳng d có phương trình là:
A x y 4 0. B x y 6 0. C x y 6 0. D
x y Lời giải
Chọn C
Lấy M x y ; d Gọi M x y ; ảnh M qua phép đối xứng tâm I 1;1
Ta có: 2.1 2
2.1 2
x x x x x
y y y y y
(25)www.Thuvienhoclieu.Com 25
Do M x y ; d nên ta có: x y 2 x y x y Mà M x y ; d nên phương trình d là: x y 6
Câu 20: Trong mặt phẳng với hệ trục tọa độ Oxy Cho phép đối xứng tâm 1;2 I
biến đường
tròn C : x1 2 y22 4 thành đường trịn C có phương trình là:
A x1 2 y224. B x1 2 y224. C x1 2 y22 4. D x2 2 y22 4 Lời giải
Chọn D
Đường tròn C : x1 2 y224 có tâm J1;2 , bán kính R2 Gọi J x y ; ảnh J qua phép đối xứng tâm 1;2
2 I
Ta có:
1
2
2;2
2.2 2
x
J y
Vậy phương trình C x2 2 y22 4. Câu 21: Hình sau có tâm đối xứng:
A Hình thang B Hình trịn C Parabol D Tam giác
Lời giải
Chọn B
Tâm đối xứng đường trịn tâm đường trịn
Câu 22: Hình sau có tâm đối xứng (một hình chữ in hoa):
A Q B P. C N. D E
Lời giải
Chọn C
Chữ N có tâm đối xứng trung điểm nét chéo
Cho hai điểm I 1;2 M3; 1 Hỏi điểm M có tọa độ sau ảnh M qua phép
đối xứng tâm I?
A 2;1 B 1;5 C 1;3 D 5; 4
Lời giải: I trung điểm MM nên ta chọn câu B
Câu 23: Trong mặt phẳng Oxy cho đường thẳng d có phương trình x2 Trong đường thẳng sau đường thẳng ảnh d qua phép đối xứng tâm O?
A x 2 B y2 C x2 D y 2
Lời giải
(26)www.Thuvienhoclieu.Com 26 Câu 24: Trong mệnh đề sau mệnh đề đúng?
A Qua phép đối xứng tâm khơng có điểm biến thành
B Qua phép đối xứng tâm có điểm biến thành
C Có phép đối xứng tâm có hai điểm biến thành
D Có phép đối xứng tâm có vơ sốđiểm biến thành
Lời giải
Chọn B, phép đối xứng tâm giữ bất biến tâm đối xứng
Câu 25: Trong mặt phẳng Oxy, cho đường thẳng d có phương trình x y 4 Hỏi
đường thẳng sau đường thẳng biến thành d qua phép đối xứng tâm?
A 2x y 4 B x y 1 0 C 2x2y 1 D 2x2y 3
Lời giải
Phép đối xứng tâm biến đường thẳng thành đường thẳng song song trùng với
đường thẳng ban đầu, nên ta chọn đáp án C có đường thẳng câu C song song với d
Buổi I Phép quay:
a) ĐN : Trong mặt phẳng cho điểm O cố định góc lượng giác Phép biến hình biến điểm M thành điểm M cho OM = OM (OM;OM ) = gọi phép quay tâm O với
Phép quay hoàn tồn xác định biết tâm góc quay Kí hiệu : Q o, Q .O
goùc quay
Chú ý : Chiều dương phép quay chiều dương đường tròn lựơng giác 2k
Q phép đồng , k (2k+1)
Q phép đối xứng tâm I , k b) Tính chất :
ĐL : Pheùp qua
y phép dời hình HQ : Phép quay biến:
Ba điểm thẳng hàng thành ba điểm thẳng hàng bảo toàn thứ tự điểm tương ứng Đường thẳng thành đường thẳng
Tia thaønh tia
Đoạn thẳng thành đoạn thẳng
(O ; )
Q Q
5 Tam giác thành tam giác (Trực tâm trực tâm , trọng tâm trọng tâm ) Q
6 Đường trịn thành đường trịn ( Tâm biến thành tâm : I I , R
I I
I = R )
7 Goùc thành góc
(27)www.Thuvienhoclieu.Com 27 Phép dời hình phép biến hình khơng làm thay đổi khoảng cách hai điểm bất kỳ, tức với hai điểm M N, và ảnh M N , của chúng, ta ln có:
M N MN.(Bảo toàn khoảng cách) 2/ Tính chất (của phép dời hình):
ĐL: Phép dời hình biến ba điểm thẳng hàng thành ba điểm thẳng hàng, ba điểm không thẳng hàng thành ba điểm không thẳng hàng
HQ: Phép dời hình biến:
+ Đường thẳng thành đường thẳng + Tia thành tia
+ Đoạn thẳng thành đoạn thẳng
+ Tam giác thành tam giác (Trực tâm trực tâm, trọng tâmtrọng tâm,…)
+ Đường trịn thành đường trịn (Tâm biến thành tâm: ,
II R R)
+ Góc thành góc
3/ Hai hình
KN: Hai hình gọi có phép dời hình biến hình thành hình
Bài tập vận dụng: Phép quay:
Dạng tập PP giải:
TÌM ẢNH CỦA MỘT ĐIỂM
B1 Trong mặt phẳng toạ độ Oxy cho A(3;4) Hãy tìm toạ độ điểm A ảnh o
A qua phép quay tâm O góc 90 HD :
Gọi B(3;0),C(0;4) hình chiếu A lên trục Ox,
Oy Pheùp o
quay tâm O góc 90 biến hình chữ nhật OABC thành hình chữ nhật OC A B Khi : C (0;3),B ( 4;0) Suy : A ( 4;3).
/
B2 Trong mặt phẳng Oxy cho điểm M(x;y) Tìm M = Q(O ; )(M) HD :
(28)www.Thuvienhoclieu.Com 28
(O ; )
HD :
x = rcos Gọi M(x;y) Đặt : OM = r , góc lượng giác (Ox;OM) = M
y = rsin
Q / / / /
Vì : M M Gọi M (x ;y ) độ dài OM = r (Ox;OM ) = + Ta có :
x = rcos( + ) = I
r.cos cos r.sin sin x cos ysin y = rsin( + ) = r.sin cos r.cos sin x sin y cos
x = x cos ysin /
Vaäy : M
y = xsin y cos
(O ; ) (I ; )
o o (I ; )
o o Đặc biệt :
Q // x = x cos ysin
M M
y = xsin y cos
Q / x x = (x x )coso o (y y )sin o
M M
y y = (x x )sin (y y )cos
I(x ;y ) o o o
Q M
I(x ;y ) I
I I
x x = (x x )cos (y y )sin
// o o o
M
y y = (x x )sino o (y y )coso
(29)www.Thuvienhoclieu.Com 29
B3 Trong mpOxy cho đường thẳng ( ) : 2x y+1= Tìm ảnh đường thẳng qua :
a) Phép đối xứng tâm I(1; 2)
b) Phép quay Q .
(O;90 ) Giải
a) Ta có : M (x ;y ) = Đ (MI
x x x x
) biểu thức tọa độ M
y 4 y y 4 y
Vì M(x;y) ( ) : 2x y+1= 0 2(2 x ) ( y ) 0 2x y 0
M (x ;y ) ( ) : 2x I (O;90 )
y 0 Ñ
Vaäy : ( ) ( ) : 2x y 0
Q
b) Caùch : Gọi M(x;y) M (x ;y ) Đặt (Ox ; OM) = , OM = r , Ta coù (Ox ; OM ) = + 90 ,OM r
x = rco Khi : M
I I (O;90 ) (O;90 ) Q
s M x r cos( 90 ) r sin y x y
y = rsin y r sin( 90 ) rcos x y x
Vì M(x;y) ( ) : 2(y ) ( x ) + = 0 x 2y + = 0 M (x ;y ) ( ) : x 2y 0
Q Vaäy : ( )
I
I ( ) : x 2y 0
(O;90 ) (O;90 ) (O;90 ) Q
Caùch : Laáy: M(0;1) ( ) M ( 1;0) ( ) Q
1
N( ;0) ( ) N (0; ) ( )
2
Q
( ) ( ) M N : x 2y I I I (O;90 ) (O;90 ) Q 1
Cách : Vì ( ) ( ) ( ) ( ) mà hệ số góc : k k
2 Q
M(0;1) ( ) M (1;0) ( ) Qua M (1;0)
( ) : hsg ; k = ( )
I
I
(30)www.Thuvienhoclieu.Com 30
PHƯƠNG PHÁP TÌM ẢNH CỦA MỘT ĐƯỜNG TRỊN
(O ; 45 )
B4 Trong mpOxy cho pheùp quay Q(O;45 ) Tìm ảnh : a) Điểm M(2;2)
2
b) Đường tròn (C) : (x 1) + y = Q
/ / /
Giải Gọi : M(x;y) M (x ;y ) Ta coù : OM = 2, (Ox; OM) =
I
x = rcos( +45 ) r cos cos45 r sin sin 45 x.cos 45 y.sin 45 /
Thì M
y = rsin( +45 ) r sin cos 45 r cos sin 45 y.cos 45 x.sin 45 2
x = x y
/ 2 2
M
2
y = x y
2
(O ; 45 )
(O ; 45 ) (O ; 45 )
Q
/
a) A(2;2) A (0 ;2 2)
Q /
Tâm I(1;0) Tâm I ?
b) Vì (C) : Bk : R = 2 (C ) :
Bk : R = R =
Q 2 2 2 2
/ 2
I(1;0) I ( ; ) Vaäy : (C ) : (x ) + (y ) =
2 2
I I
5 Phép dời hình hai hình bằng nhau:
XÉT PHÉP BIẾN HÌNH XEM CĨ PHẢI PHÉP DỜI HÌNH.
B1 Trong mpOxy cho phép biến hình f : M(x;y) M = f(M) = (3x; y) Đây có phải phép dời hình hay khơng ?
I
1 2
1 1
2 2
Giải : Lấy hai điểm bất kì M(x ; y ),N(x ;y ) Khi f : M(x ;y ) M = f(M) = (3x ; y ) f : N(x ;y ) N = f(N) = (3x ; y )
I I
2 2
2 2
1
Ta coù : MN = (x x ) (y y ) , M N = 9(x x ) (y y )
(31)www.Thuvienhoclieu.Com 31
B2 Trong mpOxy cho phép biến hình:
a) f : M(x;y) M = f(M) = (y ; x-2) b) g : M(x;y) M = g(M) = ( 2x ; y+1) Phép biến hình phép dời hình ?
HD :
I I
1
a) f phép dời hình b) g khơng phải phép dời hình ( Vì x x M N MN ) B3 Trong mpOxy cho phép biến hình :
a) f : M(x;y) I M = f(M) = (y + ; x) b)
1
g : M(x;y) M = g(M) = ( x ; 3y ) Phép biến hình phép dời hình ?
HD :
a) f phép dời hình b) g khơng phải phép dời hình ( Vì y y I
M N MN )
HAI HÌNH BẰNG NHAU.
B1 Cho hình chữ nhật ABCD Gọi E,F,H,I theo thứ tự trung điểm cạnh AB,CD,BC,EF Hãy tìm phép dời hình biến AEI thành FCH Từ KL chúng nhau.
HD : Thực hi
ện liên tiếp phép tịnh tiến theo AE phép đối xứng qua đường thẳng IH
T AE: AI E,EI B,II H TAE( AEI) EBH
B2 Cho hình chữ nhật ABCD Gọi O tâm đối xứng ; E,F,G,H,I,J theo thứ tự trung điểm
cạnh AB,BC,CD,DA,AH,OG Chứng minh : Hai hình thang AJOE GJFC
nhau HD :
Phép tịnh tiến theo AO biến A,I,O,E thành O,J,C,F Phép đối xứng qua trục OG biến O,J,C,F thành G,J,F,C
Từ suy phép dời hình có cách thực liên tiếp hai phép biến hình biến hình thang AJOE thành hình thang GJFC Do hai hình thang
ÑIH: E F,B C,H H Ñ ( EBH)IH FCH
ÑIH AE: T ( AEI) FCH
Do : ĐIH TAE( AEI) FCH AEI FCH
(32)www.Thuvienhoclieu.Com 32
TÌM ẢNH QUA PHÉP DỜI HÌNH (Thực liên tiếp qua số phép).
2 2
B1 Tìm ảnh đường trịn (C): x y 2x 4y có cách thực liên tiếp phép
tịnh tiến theo u = (3; 1) phép ĐOy
2 2
ÑS : (C ) : (x + 4) (y 3) 9
2
B2 Tìm ảnh đường tròn (C): x y 6x 2y có cách thực liên tiếp phép
quay Q phép ĐOx (O;90 )
HD : (C) có tâm I(3;1) , bk : R = Khi :
(C) : I(3;1)
(O;90 ) Ox
Q Ñ
, R = (C ) : I ( 1;3) , R = (C ) : I ( 1; 3) , R =
2
(C ) :(x + 1) (y 3)
I I
Bài tập trắc nghiệm: 4. Phép quay Nhận biết
Câu 1 Trong mặt phẳng Oxy, ảnh điểm M6;1qua phép quay QO,90o là:
A.M' 1; 6 B M' 1;6 C M' 6; 1 D M' 6;1 Câu 2.Trong mặt phẳng Oxy, qua phép quay QO,90o, M' 3; 2 là ảnh điểm :
A.M 3; B M 2;3 C M 3; 2 D M 2; 3 Câu 3 Trong mặt phẳng Oxy, ảnh điểm M 3; qua phép quay QO,45o là:
A ' 7 2;
2
M
B
2
' ;
2
M
C ' 2;
2
M
D
7 2
' ;
2
M
Câu 4.Trong mặt phẳng Oxy, qua phép quay QO, 135 o, M' 3; 2 ảnh điểm :
A 2;
2
M
B
2 ; 2
M
C 2; 2
M
D
2
;
2
M
Câu 5. Khẳng định sau phép đối xứng tâm:
A Nếu OM OM M ảnh M qua phép đối xứng tâm O
(33)www.Thuvienhoclieu.Com 33 C Phép quay phép đối xứng tâm
D Phép đối xứng tâm phép quay
Lời giải Chọn B
M ảnh M qua phép đối xứng tâm O OM OM0
Phép đối xứng tâm phép quay, phép quay chưa phép đối xứng tâm
Câu 6. Trong mặt phẳng Oxy, cho điểm M 1;1 Hỏi điểm sau điểm ảnh M qua phép quay tâm O, góc 45?
A.1;1. B. 1;0 . C 2;0. D 0; 2 Lời giải
Chọn D
Dựa vào hình vẽ chọn đáp án D
Chú ý: đáp án có đáp án điểm nằm trục Oy nên chọn đáp án D
Câu 7.Cho tam giác tâm O Hỏi có phép quay tâm O góc , 0 2, biến tam giác thành nó?
A Một B Hai C Ba D Bốn
Lời giải Chọn D
Với điều kiện 0 2 có giá trị tìm ,
3
,
3
2
Thông hiểu
Câu 8.Cho tam giác tâm O Hỏi có phép quay tâm O góc , 0 2, biến tam giác thành nó?
A Một B Hai C Ba D Bốn
Lời giải Chọn D
Với điều kiện 0 2 có giá trị tìm ,
3
,
3
2
Chú ý: giống câu 77
Câu 9. Cho hình chữ nhật có O tâm đối xứng Hỏi có phép quay tâm O góc , 0 2, biến hình chữ nhật thành nó?
O x
y
1
1 M 1;1
2
(34)www.Thuvienhoclieu.Com 34 A Khơng có B Hai C Ba D Bốn
Lời giải Chọn C
Với điều kiện 0 2 có giá trị tìm , 2
Câu 10. Có điểm biến thành qua phép quay tâm O góc k2, k số
ngun?
A Khơng có B Một C Hai D Vô số
Lời giải Chọn B
Với góc k2, k số ngun có điểm O Câu 11.Phép quay Q(O;) biến điểm M thành M Khi đó:
A OMOM OM OM, B OM OM OM OM,
C OMOM MOM D OM OM MOM
Lời giải Chọn B
Theo định nghĩa
Câu 12.Phép quay Q(O;) với 2 k2 ,k
biến điểm A thành M Khi đó: (I): O cách A M
(II): O thuộc đường tròn đường kính AM
(III): O nằm cung chứa góc dựng đoạn AM Trong câu câu là:
A Cả ba câu B chỉ (I) (II) C chỉ (I) D chỉ (I) (III)
Lời giải Chọn C
(I) theo định nghĩa có OA OM (II) chỉđúng ,
2 k k
(III) chỉđúng 0 180
Câu 13.Chọn câu sai câu sau:
A Qua phép quay Q(O;) điểm O biến thành
B Phép đối xứng tâm O phép quay tâm O, góc quay180
C Phép quay tâm O góc quay 90 phép quay tâm
O góc quay 90 hai phép quay
giống
D Phép đối xứng tâm O phép quay tâm O, góc quay 180
Lời giải Chọn C
Câu Ađúng
Phép quay tâm O, góc quay180 phép quay tâm O, góc quay 180 đều phép đối
xứng tâm O, nên câu B, Dđúng
Câu 14.Trong mặt phẳng Oxy, cho điểm A 3;0 Tìm tọa độảnh A điểm A qua phép quay
;
O
Q
(35)www.Thuvienhoclieu.Com 35 A A0; 3 . B A 0;3 . C A 3;0. D
2 3;2 3
A
Lời giải Chọn B
Dựa vào hình vẽ chọn đáp án B
Vận dụng
Câu 15.Trong mặt phẳng Oxy, cho điểm A 3;0 Tìm tọa độảnh A điểm A qua phép quay
;
O
Q
A A 3;0. B A 3;0 C A0; 3 . D 3;2 3
A
Lời giải Chọn C
Dựa vào hình vẽ chọn đáp án C
Câu 16.Khẳng định sau đúng phép quay?
O x
y
3
3;
A
2
3
0; 3
A
O x
y
3
3;0 A
3
(36)www.Thuvienhoclieu.Com 36 A Phép biến hình biến điểm O thành điểm O điểm M khác điểm O thành điểm M
sao cho OM OM, gọi phép quay tâm O với góc quay
B Nếu QO;90:M MM O OM OM C Phép quay không phải phép dời hình D Nếu QO;90:M MM O OM OM
Lời giải Chọn B
Đáp án A thiếu OM OM
Đáp án C sai
Đáp án D sai
Câu 17.Cho tam giác ABC, với góc quay sau phép quay tâm A biến điểm B thành điểm C?
A 30. B 90. C 120. D 150
Lời giải Chọn C
Câu 18.Trong mặt phẳng với hệ trục tọa độ Oxy, cho điểm M 2;0 điểm N 0;2 Phép quay tâm O biến điểm M thành điển N, góc quay là:
A 30. B 30 hoặc 45
C 90. D 90 hoặc 270
Lời giải Chọn D
Câu 19.Phép quay Q(O; ) biến điểm A thành M Khi đó:
(I) O cách A M
(II) O thuộc đường trịn đường kính AM
(III) O nằm cung chứa góc dựng đoạn AM
Trong câu câu là:
A Cả ba câu B (I) (II) C (I) D (I) (III)
Câu 20.Chọn câu sai:
A Qua phép quay Q(O; )điểm O biến thành
B Phép đối xứng tâm O phép quay tâm O, góc quay –1800
C Phép quay tâm O góc quay 900 phép quay tâm O góc quay –900 hai phép quay giống
nhau
D Phép đối xứng tâm O phép quay tâm O, góc quay 1800
Câu 21.Trong mặt phẳng Oxy cho điểm A(3;0) Tìm tọa độ ảnh A’ điểm A qua phép quay
) ; (O
Q
A A’(0; –3); B A’(0; 3); C A’(–3; 0); D A’(2 ; )
Câu 22.Trong mặt phẳng Oxy cho điểm A(3;0) Tìm tọa độ ảnh A’ điểm A qua phép quay
) ; (O
(37)www.Thuvienhoclieu.Com 37
A A’(–3; 0); B A’(3; 0); C A’(0; –3); D A’(–2 ;
2 )
Câu 23.Khẳng định sau đúng về phép quay:
A Phép biến hình biến điểm O thành điểm O điểm M khác điểm O thành điểm M/ cho
(OM; OM/) = gọi phép quay tâm O với góc quay
B Nếu Đ(O; 900): M M/ (M O) OM/ OM
C Phép quay khơng phải phép dời hình D Nếu Đ(O; 900): M M/ OM/ > OM
Câu 24.Cho tam giác ABC xác định góc quay phép quay tâm A biến B thành điểm C:
A 300 B 900 C 1200 D. 600 hoặc
0 60
Câu 25.Trong mặt phẳng với hệ trục tọa độ Oxy, cho điểm M(2; 0) điểm N(0; 2) Phép quay tâm O biến điểm M thành điển N, góc quay là:
A 300 B 300hoặc 450 C. 900 D 900 hoặc
0 270
5. Phép dời hình hình Nhân biết
Câu 1: Trong mặt phẳng Oxy cho điểm M(2; 1) Hỏi phép dời hình có cách thực liên tiếp phép đối xứng tâm O phép tịnh tiến theo vectơ v = (2; 3) biến điểm M thành điểm điểm sau?
A (1; 3) B (2; 0) C (0; 2) D (4; 4)
Câu 2: Trong mặt phẳng Oxy cho đường trịn (C) có phương trình (x – 1)2 + (y + 2)2 = Hỏi phép dời hình có cách thực liên tiếp phép đối xứng qua trục Oy phép tịnh tiến
theo vectơ
v = (2; 3) biến (C) thành đường tròn đường tròn có phương trình sau?
A x2 + y2 = B (x – 2)2 + (y – 6)2 =
C (x – 2)2 + (y – 3)2 = D (x – 1)2 + (y – 1)2 =
Câu 3: Trong mặt phẳng Oxy cho đường thẳng d có phương trình x + y – = Hỏi phép dời hình có cách thực liên tiếp phép đối xứng tâm O phép tịnh tiến theo vectơ v = (3; 2) biến đường thẳng d thành đường thẳng đường thẳng sau?
A 3x + 3y – = B x – y + = C x + y + = D x + y – =
Câu 4: Trong mệnh đề sau mệnh đề đúng?
A Thực liên tiếp hai phép tịnh tiến sẽđược phép tịnh tiến
B Thực liên tiếp hai phép đối xứng trục sẽđược phép đối xứng trụC
C Thực liên tiếp phép đối xứng qua tâm phép đối xứng trục sẽđược phép đối xứng qua tâm
D Thực liên tiếp phép quay phép tịnh tiến sẽđược phép tịnh tiến
(38)www.Thuvienhoclieu.Com 38 A Có một phép tịnh tiến theo vectơ khác khơng biến điểm thành
B Có một phép đối xứng trục biến điểm thành C Có một phép đối xứng tâm biến điểm thành
D Có một phép quay biến điểm thành
Câu 6: Hãy tìm khẳng định sai:
A Phép tịnh tiến phép dời hình B Phép đồng phép dời hình
C Phép quay phép dời hình D Phép vị tự phép dời hình
Câu 7: Trong phép biến hình sau, phép khơng phải phép dời hình ?
A Phép chiếu vng góc lên đường thẳng B Phép vị tự tâm I(1; 2) tỉ số –1
C Phép đồng D Phép đối xứng trục
Câu 8: Cho hai đường thẳng d d’ vng góc với Hỏi hình tạo hai đường thẳng d, d’ có trục đối xứng:
A B C D Vô số
Câu 9: Cho hai đường thẳng d d’ song song với Hỏi hình tạo hai đường thẳng d, d’ có trục đối xứng:
A B C D Vô số
Câu 10: Trong mặt phẳng cho hai đường thẳng d d’ cắt Hỏi có phép đối xứng trục biến đường thẳng d thành đường thẳng d’:
A B C D Vô số
Câu 11: Cho hai đường thẳng d d’ song song với Hỏi có phép vị tự biến đường thẳng d thành đường thẳng d’
A B C D.Vô số
Câu 12: Trong mặt phẳng cho hai đường thẳng d d’ cắt Hỏi có phép vị tự biến hình tạo hai đường thẳng d d’ thành
A B C D Vô số
Câu 13: Trong mặt phẳng Oxy cho điểm M (3 ; ) Ảnh điểm M qua phép tịnh tiến theo vectơ
v=(2; 1) điểm có toạđộ :
A (5; 3 ) B (5; ) C (1; ) D (1; 1 )
Câu 14: Trong mặt phẳng Oxy cho điểm M’ (3 ; 2) ảnh điểm M qua phép quay tâm O góc 900 điểm M có toạđộ là:
A (2; 3 ) B (2; ) C (2; 3 ) D (3; 2 )
Thông hiểu
Câu 15: Trong mặt phẳng Oxy cho hai điểm M (3 ; ) M’(3; 2) M’ ảnh điểm M qua phép biến hình sau đây:
A Phép quay tâm O góc 900 B Phép quay tâm O góc 900
C Phép đối xứng trục tung D Phép quay tâm O góc 1800
Câu 16: Trong mặt phẳng Oxy cho đường thẳng d có phương trình 2x y + = Để phép tịnh tiến theo vectơ v biến đường thẳng d thành v phải vectơ vectơ sau:
A v = (2; 1) B v = (2; 1) C v = (1; 2) D v = (1; 2)
Câu 17: Trong mặt phẳng Oxy cho đường thẳng d có phương trình: 3x – 2y – = Ảnh đường
thẳng d qua phép quay tâm O góc 1800 có phương trình :
A 3x + 2y +1 = B 3x + 2y 1 =
(39)www.Thuvienhoclieu.Com 39
I
F H
E
G
C
A B
D
Câu 18:Trong mặt phẳng Oxy cho đường thẳng d có phương trình : 3x – 2y + = Ảnh đường thẳng d qua phép tịnh tiến theo véc tơ v = (2; 1) có phương trình :
A 3x + 2y + = B 3x + 2y 1 =
C 3x + 2y – = D 3x – 2y 1 =
Câu 19:Trong mặt phẳng Oxy cho đường trịn (C) có phương trình : x2 + y2 2x + 6y + = Ảnh của
đường tròn (C) qua phép tịnh tiến theo véc tơ v = (2; 1) có phương trình : A x2 + y2 6x + 8y + 16 = B x2 + y2 6x + 12y + =
C x2 + y2 + 6x + 8y 16 = D x2 + y2 2x + y + =
Vận dụng
Câu 20: Trong mặt phẳng Oxy cho u= (3;1) đường thẳng d: 2x – y = Ảnh đường thẳng d qua phép dời hình có cách thực liên tiếp phép quay Q(O;90 )o phép tịnh tiến theo vectơ u đường thẳng d’ có phương trình:
A x + 2y – = B x + 2y + =
C 2x + y – = D 2x + y + =
Câu 21:Trong mặt phẳng Oxy cho đường tròn (C) có phương trình : (x + 1)2 + (y 3)2 = Ảnh của
đường tròn (C) qua phép tịnh tiến theo véc tơ v= (2; 2)có phương trình : A (x 1)2 + (y 2)2 = B (x 1)2 + (y 1)2 =
C (x + 3)2 + (y 5)2 = D (x + 1)2 + (y + 1)2 =
Câu 22: Cho hình vng ABCD ( hình vẽ)
a) Phép biến hình sau biến tam giác DEI thành tam giác CFI
A Phép quay tâm H góc 90o
B Phép quay tâm H góc 90o
C Phép tịnh tiến theo véc tơ EI D Phép quay tâm I góc (ID,IC)
b) Phép quay tâm I góc 90o biến tam giác HIF thành tam giác sau đây:
A ∆FIG B ∆EIH C ∆IFC D ∆IED
Câu 23:Trong mặt phẳng Oxy cho đường trịn (C) có phương trình : x2 + y2 4x + 2y = Ảnh
của đường tròn (C) qua phép quay tâm O góc 90o có phương trình :
A (x 1)2 + (y 2)2 = B (x 1)2 + (y 2)2 = 3
(40)www.Thuvienhoclieu.Com 40
Câu 24: Trong mặt phẳng Oxy, cho đường thẳng d: x –2y + = Để phép tịnh tiến theo v biến d thành v phải vectơ vectơ sau :
A v(2;1) B v(2;1) C v(1;2) D v(1;2)
Câu 25:Trong mặt phẳng Oxy cho điểm M( 2;1) ảnh điểm M qua phép tịnh tiến theo vectơ điểm có tọa độ tọa độ sau
A.(0 ; 3) B.(3;0) C.(1 ; 2) D.(2;1)
Buổi I Phép vị tự:
a) ĐN : Cho điểm I cố đinh số k Phép vị tự tâm I tỉ số k
k
Kí hiệu : VI,k V , phép biến hình biến mơi điểm M thành điểm M cho IM k IM.I
I,k
b) Biểu thức tọa độ : Cho I(x ;y ) phép vo o ị tự V I,k
V x = kx+ (1 k)xo
M(x;y) M VI,k (M) (x ;y )
y = ky+ (1 k)yo
I
c) Tính chất:
1 M V I,k (M), N VI,k (N) M N = kMN , M N = |k|.MN
2 Biến ba điểm thẳng hàng thành ba điểm thẳng hàng bảo toàn thứ tự điểm tương ứng Biến đường thẳng thành đường thẳng song song trùng với đường thẳng cho Biến tia thành tia
5 Biến đoạn thẳng thành đoạn thẳng mà độ dài nhân lên |k| Biến tam giác thành tam giác đồng dạng với
7 Đường trịn có bán kính R thành đường trịn có bán kính R = |k|.R Biến góc thành góc
(41)www.Thuvienhoclieu.Com 41
a) ĐN : Phép biến hình F gọi phép đồng dạng tỉ số k (k > 0) với hai điểm M , N ảnh M , N ảnh chúng , ta có M N = k.MN
b) ĐL : Mọi phép đồng dạng F tỉ số k (k> 0) hợp thành phép vị tự tỉ số k phép dời hình D
c) Hệ quả(Tính chất ) Phép đồng dạng :
1 Biến điểm thẳng hàng thành điểm thẳng hàng (và bảo toàn thứ tự ) Biến đường thẳng thành đường thẳng
3 Biến tia thành tia
4 Biến đoạn thẳng thành đoạn thẳng mà độ dài nhân lên k ( k tỉ số đồng dạng ) Bi
ến tam giác thành tam giác đồng dạng với ( tỉ số k)
6 Biến đường trịn có bán kính R thành đường trịn có bán kính R = k.R Biến góc thành góc
d) Hai hình đồng
dạng :
ĐN : Hai hình gọi đồng dạng với có phép đồng dạng biến hình thành hình F
H đồng dạng G F đồng dạng : HI G
e) Các phép đồng dạng gồm: Nhóm phép dời hình (Phép đồng nhất, phép tịnh tiến, phép
đối xứng trục, phép đối xứng tâm, phép quay) Phép vị tự
Lưu ý: Kết việc thực liên tiếp phép đồng dạng, cho ta phép đồng dạng Bài tập tự luận:
Phép vị tự:
Dạng tập PP giải:
TÌM ẢNH CỦA MỘT ĐIỂM – MỘT ĐƯỜNG QUA PHÉP VỊ TỰ
PP: Sử dụng định nghĩa:
* Sử dụng đẳng thức véc tơ phép vị tự tính chất hai véc tơ , ta tìm kết
Ví dụ Trong mặt phẳng tọa độ Oxy , cho đường tròn (O) : x1 2 y12 4 Tìm phương trình đường trịn (O’) ảnh (O) qua phép vị tự tâm O tỉ số k=2
Giải
Tâm I (O) có tọa độ I(1;1) bán kính R=2 Nếu (O’) có tâm J bán kính R’ ảnh (O) qua phép vị tự tâm O ta có đẳng thức véc tơ :
' 2.1 '
OJ 2;
' 2.1 '
x x
OI J
y y
R’=2R=2.2=4 Vậy (O’) : x2 2 y22 16
Ví dụ ( Bài 1.23-BTHH11-CB-tr33)
Trong mặt phẳng tọa độ Oxy , cho đường thẳng d : 2x+y-4=0
a/ Viết phương trình đường thẳng d’ ảnh d qua phép vị tự tâm O tỉ số k=3 b/ Viết phương trình đường thẳng d’’ ảnh d qua phép vị tự tâm I(-1;2) tỉ số k=-2
Giải
(42)www.Thuvienhoclieu.Com 42
Theo tính chất phép vị tự :
'
' 3x 3
'
' '
3
x x x
OM OM
y y y
y
Thay (x;y) vào d: ' ' 2x ' ' 12
3
x y y
Vậy d’: 2x+y-12=0
b/ Tương tự ta có :
' 1 '
' 2 2
'
' 2 ' 2 '
2
x x
x
x x
IM IM
y y y y y
Thay vào d : ' ' 2x ' '
2 x y y
Do d’’: 2x+y+2=0
Ví dụ ( Bài 1.24-tr33-BTHH11)
Trong mặt phẳng tọa độ Oxy cho đường tròn (C ): x3 2 y129 Hãy viết phương trình
đường trịn (C’) ảnh đường tròn (C ) qua phép vị tự tâm I(1;2) tỉ số k=-2
Giải
Gọi O(3;-1) tâm (C ) có bán kính R=3 Đường trịn (C’) có tâm J(x;y) bán kính R’ ảnh (C ) qua phép vị tự tâm I tỉ số k=-2 Theo tính chất phép vị tự ta có :
1 3
IJ O 3;8
8 2
x x I J y y
R’=2R=2.3=6 Vậy (C’) : x3 2 y82 36
TÌM ẢNH CỦA MỘT HÌNH QUA MỘT PHÉP VỊ TỰ Phương pháp:
Sử dụng định nghĩa tính chất phép vị tự Từđịnh nghĩa tâm vị tự I(a;b) ,
điểm M(x;y); điểm M’(x’;y’) ảnh M phép vị tự tâm I tỉ số k, ta có :
' ' ' ' '
x a k x a x k x a a IM k IM
y b k y b y k y b b
(*)
Chính biểu thức tọa độ của phép vị tự tâm I tỉ số vị tự k Vận dụng:
Ví dụ Trong mặt phẳng tọa độ cho đường thẳng d: 3x+2y-6=0 Hãy viết phương trình đường thẳng d’ ảnh đường thẳng d qua phép vị tự tâm I(1;2) tỉ số vị tự k=-2 ?
Giải
Gọi M(x;y) thuộc d ,M’(x’;y’) điểm bát kỳ thuộc d’ theo biểu thức tọa độ phép vị tự
ta có :
' '
' 2 2
' '
' 2 2
2
x x
x
x x
y y
y y y
(43)www.Thuvienhoclieu.Com 43
Thay vào phương trình đường thẳng d: ' ' 3x ' '
2
x y y
Do d’: 3x+2y-9=0
Ví dụ ( Bài 1.23-tr33-BTHH11CB) Trong mặt phẳng Oxy cho đường thẳng d: 2x+y-4=0
a/ Hãy viết phương trình đường thẳng d’ ảnh đường thẳng d qua phép vị tự tâm O tỉ số vị tự
k=3
b/ Hãy viết phương trình đường thẳng d’’ ảnh d qua phép vị tự tâm I (-1;2) tỉ số vị tự k=-2
Giải
a/ Từ công thức tọa độ :
'
' 3 ' '
2 ' ' 12
' 3
'
3
x x
x x x y
x y y
y y y
Do đường thẳng d’: 2x+y-12=0
b/ Tương tự :
' '
' 2 2 ' 3 ' 6
2 2x ' '
' ' 2
' 2 2
2
x x
x
x x x y
y
y y
y y y
Do đường thẳng d’’: 2x+y+8=0
Ví dụ ( Bài 1.24-tr33-BTHH11-CB)
Trong mặt phẳng Oxy cho đường tròn (C ): x3 2 y129 Hãy viết phương trình đường tròn (C’) ảnh đường tròn (C ) qua phép vị tự tâm I(1;2) tỉ số k=-2
Giải
Đường trịn (C ) có tâm O(3;-1) bán kính R=3 Gọi O’ (x’;y’) tâm (C’) ,R’ bán kính (C’) Ta có tọa độ O’ thỏa mãn biểu thực tọa độ phép vị tự :
2
' '
2
'
' ' ' '
' 2 2
2 2
' ' 2.3 6
2
x x
x
x x
y y x y
y y y
R R R
2 2
' ' 36
x y
Vậy (C’) : x3 2 y62 36 Bài tập trắc nghiệm: 1 Phép vị tự
Nhận biết
Câu 1: Trong măt phẳng Oxy cho điểm M(–2; 4) Phép vị tự tâm O tỉ số k = –2 biến điểm M thành
điểm điểm sau?
A (–3; 4) B (–4; –8) C (4; –8) D (4; 8)
Câu 2: Trong măt phẳng Oxy cho đường thẳng d có phương trình 2x + y – = Phép vị tự tâm O tỉ
(44)www.Thuvienhoclieu.Com 44 A 2x + y + = B.2x + y – = C 4x – 2y – = D 4x + 2y – =
Câu 3: Trong măt phẳng Oxy cho đường thẳng d có phương trình x + y – = Phép vị tự tâm O tỉ
số k = – biến d thành đường thẳng đường thẳng có phương trình sau ?
A 2x + 2y = B 2x + 2y – = C.x + y + = D x + y – =
Câu 4: Trong mặt phẳng Oxy cho đường trịn (C) có phương trình
(x – 1)2 + (y – 2)2 = Phép vị tự tâm O tỉ số k = – biến (C) thành đường tròn
đường trịn có phương trình sau ?
A (x – 2)2 + (y – 4)2 = 16 B (x – 4)2 + (y – 2)2 =
C (x – 4)2 + (y – 2)2 = 16 D.(x + 2)2 + (y + 4)2 = 16
Câu 5: Trong mặt phẳng Oxy cho đường trịn (C) có phương trình (x – 1)2 + (y – 1)2 = Phép vị tự
tâm O tỉ số k = biến (C) thành đường tròn đường trịn có phương trình sau ?
A (x –1)2 + (y – 1)2 = B (x – 2)2 + (y – 2)2 =
C.(x – 2)2 + (y – 2)2 = 16 D (x + 2)2 + (y + 2)2 = 16
Câu 6: Phép vị tự tâm O tỉ số k (k 0) biến điểm M thành điểm M’ cho :
A. 1OM'
k
OM B OM kOM' C OM kOM' D OM'OM Câu 7: Chọn câu đúng:
A Qua phép vị tự có tỉ số k 1, đường thẳng qua tâm vị tự biến thành
B.Qua phép vị tự có tỉ số k 0, đường tròn qua tâm vị tự biến thành
C Qua phép vị tự có tỉ số k 1, khơng có đường trịn biến thành
D Qua phép vị tự V(O, 1)đường tròn tâm O biến thành
Thơng hiểu
Câu 8: Nếu phép vị tự tỉ số k biến hai điểm M, N thành hai điểm M’và N’ thì:
A M'N'kMNvà M’N’ = –kMN B. M'N'kMNvà M’N’ = kMN
C M'N' kMNvà M’N’ = kMN D M'N'//MNvà M’N’ = MN
Câu 9: Xét phép biến hình sau:
(I) Phép đối xứng tâm (II) Phép đối xứng trục
(III) Phép đồng (IV) Phép tịnh tiến theo vectơ khác Trong phép biến hình trên:
A Chỉ có (I) phép vị tự B Chỉ có (I) (II) phép vị tự
C.Chỉ có (I) (III) phép vị tự D Tất cảđều phép vị tự
Câu 10: Hãy tìm khẳng định sai :
A.Nếu phép vị tự có hai điểm bất động điểm bất động
B Nếu phép vị tự có hai điểm bất động phép đồng
C Nếu phép vị tự có điểm bất động khác với tâm vị tự phép vị tựđó có tỉ số
k =
(45)www.Thuvienhoclieu.Com 45 Câu 11: Cho tam giác ABC với trọng tâm G Gọi A’, B’, C’ trung điểm cạnh BC, AC, AB tam giác ABC. Khi phép vị tự biến tam giác A’B’C’ thành tam giác ABC ?
A Phép vị tự tâm G, tỉ số B.Phép vị tự tâm G, tỉ số –2
C Phép vị tự tâm G, tỉ số –3 D Phép vị tự tâm G, tỉ số
Câu 12: Cho phép vị tự tâm O tỉ số k đường trịn tâm O bán kính R Để đường trịn (O) biến thành đường trịn (O), tất số k phải chọn :
A 1 B R C 1 –1 D –R
Câu 13: Trong mệnh đề sau, mệnh đề sai?
A Có phép vị tự biến thành
B Có vơ số phép vị tự biến điểm thành
C.Thực liên tiếp hai phép vị tự sẽđược phép vị tự
D Thực liên tiếp hai phép vị tự tâm I sẽđược phép vị tự tâm I
Câu 14: Cho hình thang ABCD, với AB
CD Gọi I giao điểm hai đường chéo AC BD. Gọi V phép vị tự biến AB thành CD Trong mệnh đề sau mệnh đề đúng:
A V phép vị tự tâm I tỉ số k =
B V phép vị tự tâm I tỉ số k =
C.V phép vị tự tâm I tỉ số k = –2 D V phép vị tự tâm I tỉ số k =
Vận dụng
Câu 15: Cho tam giác ABC, với G trọng tâm tam giác, D trung điểm BC. Gọi V phép vị
tự tâm G biến điển A thành điểm D. Khi V có tỉ số k là:
A k =
B k = –
C k =
2 D k =
1
Câu 16: Trong mặt phẳng với hệ trục tọa độ Oxy Cho phép vị tự tâm I(2; 3) tỉ số k = –2 biến điểm M(–7;2) thành M/ có tọa độ là:
A (–10; 2) B.(20; 5) C (18; 2) D (–10; 5)
Câu 17: Trong mặt phẳng với hệ trục tọa độ Oxy Cho hai điểm M(4; 6) M/(–3; 5) Phép vị tự
tâm I tỉ số k =
1 biến điểm M thành M/ Khi đó tọa độđiểm I là:
A I(–4; 10) B I(11; 1) C I(1; 11) D.I(–10; 4)
Câu 18: Trong mặt phẳng với hệ trục tọa độ Oxy Cho hai điểm A(1;2), B(–3; 4) I(1; 1) Phép vị
tự tâm I tỉ số k = –
1 biến điểm A thành A/, biến điểm B thành B/ Trong mệnh đề sau mệnh đề
nào đúng:
A
3 ; B
A/ / B. ' ' 4;
3
A B
C A/B/ 203 D
;0 B , ;
A/ /
Câu 19: Trong mặt phẳng với hệ trục tọa độ Oxy Cho ba điểm I(–2; –1), M(1; 5) M/(–1; 1) Giả
(46)www.Thuvienhoclieu.Com 46
A.
3
B
4
C 3 D 4
Câu 20: Trong mặt phẳng với hệ trục tọa độ Oxy Cho đường thẳng : x + 2y – = điểm I(1;0) Phép vị tự tâm I tỉ số k tùy ý biến đường thẳng thành / có phương trình là:
A x – 2y + = B x + 2y +1 = C 2x – y + = D.x + 2y -1 =
Câu 21: Trong mặt phẳng với hệ trục tọa độ Oxy Cho hai đường thẳng 1 và2 có phương
trình : x – 2y +1 = x – 2y +4 = 0, điểm I(2 ; 1) Phép vị tự tâm I tỉ số k biến đường thẳng 1
thành 2 giá trị k :
A 1 B 2 C 3 D.4
Câu 22: Trong mặt phẳng với hệ trục tọa độ Oxy Cho đường trịn (C) có phương trình:(x–1)2 +(y– 5)2 = điểm I(2; –3) Gọi (C/) ảnh (C) qua phép vị tự V tâm I tỉ số k = –2 (C/) có phương trình là:
A.(x–4)2 +(y+19)2 = 16 B (x–6)2 +(y+9)2 = 16
C (x+4)2 +(y–19)2 = 16 D (x+6)2 +(y+9)2 = 16
Câu 23: Trong mặt phẳng với hệ trục tọa độ Oxy Cho hai đường tròn (C) (C/), (C/) có phương trình :(x+2)2 +(y+1)2 = Gọi V phép vị tự tâm I(1 ; 0) tỉ số k = biến đường tròn (C)
thành (C/) Khi phương trình (C) là:
A y
3
x
2
B
3 y x
2
2
C. x8 2 y32 81 D x2 + y2 =
Câu 24: Trong mặt phẳng với hệ trục tọa độ Oxy cho A(1; 2), B(–3; 1) Phép vị tự tâm I(2; –1) tỉ số
k=2 biến điểm A thành A/, phép đối xứng tâm B biến A/ thành B/ tọa độđiểm B/ là:
A (0; 5) B (5; 0) C.(–6; –3) D (–3; –6)
Câu 25: Trong mặt phẳng Oxy cho hai điểm M (3 ; ) M’(3; 2) M’ ảnh điểm M qua phép biến hình sau đây:
A Phép tịnh tiến theo véc tơ v = (1; 1) B Phép quay tâm O góc 900
C Phép vị tự tâm O tỉ số 1 D Phép vị tự tâm I 4 1; 3 3
tỉ số 2 2 Phép đồng dạng
Câu 1: Trong mp Oxy, cho đường tròn (C)(x2)2(y2)24 Hỏi phép đồng dạng có được
bằng cách thực liên tiếp phép vị tự tâm O, tỉ số k = 1/2 phép quay tâm O góc 90o biến (C) thành đường tròn sau đây:
A x2 2 y12 1 B x2 2 y22 1
C x1 2 y12 1 D x1 2 y12 1 Câu 2: Cho M(2;4) Thực liên tiếp phép vị tự tâm O tỉ số k 1
2
phép đối xứng qua trục Oy biến M thành điểm nào?
A. (1;2) B (-2;4)
(47)www.Thuvienhoclieu.Com 47 Câu 3: Ảnh điểm P( -1 , 3) qua phép đồng dạng cĩ cách thực liên tiếp phép quay tâm O(0, 0) gĩc quay 1800 phép vị tự tâm O(0,0) tỉ số
A M( 2, -6) B N( -2, 6) C E( 6, 2) D F( -6, -2)
Câu 4: Cho đường tron (C) co phương trình (x− 1)2 +(y+2)2 =4 qua phép đồng dạng phép đối xứng trụcOy phép tịnh tiến theo v (2;1) biến (C) thành đường trịn nào?
A (x1 1)) (2 y 24 B x2y2 4 C (x2 6))2 (y 24 D (x2 3) )2 (y 24
Câu 5: Cho đường thẳng d có phương trình x+y− =0 qua phép đồng dạng phép đối xứng tâm O(0;0) phép tịnh tiến theo v 3;2 biến d thành đường thẳng nào?
A x+y− =0 B 3x+3y− 2=0 C x+y+2 =0 D x+y− 3=0
Câu 6: Trong măt phẳng Oxy cho điểm M(2; 4) Phép đồng dạng có cách thực liên tiếp phép vị tự tâm O tỉ số k =
2
phép đối xứng qua trục Oy biến M thành điểm
điểm sau?
A (1; 2) B (–2; 4) C (–1; 2) D.(1; –2) Nhân biết
Câu 7: Trong măt phẳng Oxy cho đường thẳng d có phương trình 2x – y = Phép đồng dạng có
được cách thực liên tiếp phép vị tự tâm O tỉ số k = –2 phép đối xứng qua trục Oy
biến d thành đường thẳng đường thẳng sau?
A.2x – y = B 2x + y = C 4x – y = D 2x + y – =
Câu 8: Trong mặt phẳng Oxy cho đường trịn (C) có phương trình (x – 2)2 + (y – 2)2 = Phép đồng dạng có cách thực liên tiếp phép vị tự tâm O tỉ số k =
2
phép quay tâm O góc 900 biến (C) thành đường tròn đường tròn sau?
A (x – 2)2 + (y – 2)2 = B (x – 1)2 + (y – 1)2 =
C.(x + 2)2 + (y – 1)2 = D (x + 1)2 + (y – 1)2 =
Câu 9: Mọi phép dời hình phép đồng dạng tỉ số
A.k = B k = –1 C k = D k =
Câu 10: Các phép biến hình biến đường thẳng thành đường thẳng song song trùng với kể là:
A Phép vị tự B Phép đồng dạng, phép vị tự
C.Phép đồng dạng, phép dời hình, phép vị tự D Phép dời dình, phép vị tự
Câu 11: Trong mặt phẳng với hệ trục tọa độ Oxy cho A(1; 2), B(–3; 1) Phép vị tự tâm I(2; –1) tỉ số
k=2 biến điểm A thành A/, phép đối xứng tâm B biến A/ thành B/ tọa độđiểm B/ là:
A (0; 5) B.(5; 0) C (–6; –3) D (–3; –6)
Câu 12: Trong mệnh đề sau mệnh đề sai?
(48)www.Thuvienhoclieu.Com 48 B Phép đồng dạng biến đường thẳng thành đường thẳng song song trùng với
C Phép vị tự tỉ số k phép đồng dạng tỉ số k
D Phép đồng dạng bảo tồn độ lớn góC
Câu 13: Trong mặt phẳng với hệ trục tọa độ Oxy cho A(–2; –3), B(4; 1) phép đồng dạng tỉ số k =
2 1
biến điểm A thành A/, biến điểm B thành B/ Khi đó độ dài A/B/ là:
A 2 52
B 52 C
2 50
D 50
Câu 14: Trong mặt phẳng với hệ trục tọa độ Oxy cho đường thẳng d: x – 2y + = 0, Phép vị tự tâm I(0; 1) tỉ số k= –2 biến đường thẳng d thành đường thẳng d/ phép đối xứng trục Ox biến đường thẳng d/ thành đường thẳng d
1 Khi phép đồng dạng biến đường thẳng d thành d1 có phương
trình là:
A 2x – y + = B.2x + y + = C 2x – 2y + = D 2x + 2y + =
Câu 15: Trong mặt phẳng với hệ trục tọa độ Oxy, cho đường trịn (C) tâm I(3; 2), bán kính R = Gọi (C/) ảnh (C) qua phép đồng dạng tỉ số k = mệnh đề sau mệnh đề
sai:
A (C/) có phương trình (x – 3)2 + (y – 2)2 = 36
B (C/) có phương trình x2+ y2 – 2y – 35=
C (C/) có phương trình x2+ y2 + 2x – 36= D.(C/) có bán kính bằng
Thông hiểu
Câu 16: Trong mặt phẳng với hệ trục tọa độ Oxy, cho đường tròn (C) (C/) có phương trình : x2+ y2 – 4y – 5= x2+ y2 – 2x + 2y – 14= Gọi (C/) ảnh của (C) qua phép đồng dạng tỉ số k,
khi giá trị k là:
A 3 4
B 4 3
C 16
9
D 9 16
Câu 17: Trong mặt phẳng với hệ trục tọa độ Oxy, cho hai Elip (E1) (E2) có phương trình
là: 1
9 5
2
y
x
1
5 9
2
y
x
Khi (E2) ảnh (E1) qua phép đồng dạng tỉ số k bằng:
A 9 5
B 5 9
C k 1 D k =
Câu 18: Trong mặt phẳng với hệ trục tọa độ Oxy, cho phép đồng dạng biến đường thẳng d: x+y– 1=0 thành đường thẳng d/: 2008x + 2007y + 2006 = phép đồng dạng tỉ số k bằng:
A
2007 2008
B 1 C
2008 2007
(49)www.Thuvienhoclieu.Com 49 A Phép dời phép đồng dạng tỉ số k =
B Phép đồng dạng biến đường thẳng thành đường thẳng song song trùng với
C.Phép vị tự tỉ số k phép đồng dạng tỉ số k
D Phép đồng dạng bảo tồn độ lớn góC.
Câu 20: Trong mặt phẳng với hệ trục tọa độ Oxy cho A(–2; –3), B(4; 1) phép đồng dạng tỉ số k =
2 1
biến điểm A thành A/, biến điểm B thành B/ Khi độ dài A/B/ là:
A 2 52
B 52 C
2 50
D 50
Câu 21: Trong mặt phẳng với hệ trục tọa độ Oxy cho đường thẳng d: x – 2y + = 0, Phép vị tự tâm I(0; 1) tỉ số k= –2 biến đường thẳng d thành đường thẳng d/ phép đối xứng trục Ox biến đường thẳng d/ thành đường thẳng d
1 Khi phép đồng dạng biến đường thẳng d thành d1 có phương
trình là:
A 2x – y + = B 2x + y + = C 2x – 2y + = D 2x + 2y + =
Câu 22: Trong mặt phẳng với hệ trục tọa độ Oxy, cho đường tròn (C) tâm I(3; 2), bán kính R = Gọi (C/) ảnh của (C) qua phép đồng dạng tỉ số k = đó mệnh đề sau mệnh đề
sai:
A (C/) có phương trình (x – 3)2 + (y – 2)2 = 36 B.(C/) có phương trình x2+ y2 – 2y – 35=
C (C/) có phương trình x2+ y2 + 2x – 36=
D (C/) có bán kính bằng
Vận dụng ( câu 23-25 1-5)
Câu 23: Trong mặt phẳng với hệ trục tọa độ Oxy, cho đường trịn (C) (C/) có phương trình : x2+ y2 – 4y – 5= x2+ y2 – 2x + 2y – 14= Gọi (C/) ảnh của (C) qua phép đồng dạng tỉ số k,
khi giá trị k là:
A 3 4
B 4 3
C 16
9
D 9 16
Câu24: Trong mặt phẳng với hệ trục tọa độ Oxy, cho hai Elip (E1) (E2) có phương trình
là: 1
9 5
2
y
x
1
5 9
2
y
x
Khi (E2) ảnh (E1) qua phép đồng dạng tỉ số k bằng:
A 9 5
B.
5 9
C k 1 D k =
Câu 25: Trong mặt phẳng với hệ trục tọa độ Oxy, cho phép đồng dạng biến đường thẳng d: x+y– 1=0 thành đường thẳng d/: 2008x + 2007y + 2006 = phép đồng dạng tỉ số k bằng:
A 2007 2008
B 1 C
2008 2007
(50)www.Thuvienhoclieu.Com 50 Ma trận đề kiểm tra
MỨC ĐỘ NHẬN THỨC
STT CÁC CHỦĐỀ
NHẬN BIẾT
THÔNG HIỂU
VẬN DỤNG THẤP
VẬN DUNG CAO
TỔNG SỐ
CÂU HỎI
1 Phép tịnh tiến 1
2 Phép đối xứng trục 1 3
3 Phép đối xứng tâm 1 2 3
4 Phép Quay 1 2 1 4
5 Phép dời hình hai hình
1
6 Phép vị tự 1 1
7 Phép đồng dạng 3 3
TỔNG 25
IV Đề bài:
Câu 1: Trong mặt phẳng Oxycho điểm A 2;5 Phép tịnh tiến theo vectơ v 1;2 biến A thành
điểm có tọa độ là:
A 3;1 B 1;6 C 3;7 D 4;7
Câu 2: Trong mặt phẳng Oxycho điểm A 2;5 Hỏi A ảnh điểm điểm sau qua phép tịnh tiến theo vectơ v 1;2 ?
A 3;1 B 1;6 C 4;7 D 1;3
Câu 3: Trong mặt phẳngOxy, ảnh đường tròn: x2 2 y12 16qua phép tịnh tiến theo vectơ v 1;3 đường trịn có phương trình:
A. x2 2 y1216 B.x2 2 y1216.
C x3 2 y42 16 D x3 2 y42 16.
Câu 4: Trong mặt phẳng với hệ trục tọa độ Oxy.Cho điểm M10;1và M 3;8 Phép tịnh tiến theo véctơ v biến điểm M thành điểm M, tọa độ véctơ v ?
A.v 13;7 B.v13; 7 C.v13;7. D v 13; 7 Câu 5: Hình vng có trục đối xứng?
(51)www.Thuvienhoclieu.Com 51
Câu 6: Trong mặt phẳng Oxy cho điểm M 2;3 Hỏi bốn điểm sau điểm ảnh
M qua phép đối xứng trục Ox?
A 3;2 B 2; 3 C 3; 2 D 2;3 Câu 7: Trong mặt phẳng Oxy , cho parabol P :y2 x Hỏi parabol sau đây ảnh của
parabol P qua phép đối xứng trục Oy ?
A y2x B. y2 x C x2 y D x2 y
Câu 8: Cho hai điểm I 1;2 M3; 1 Hỏi điểm M có tọa độ sau ảnh M qua phép đối xứng tâm I?
A 2;1 B. 1;5 C 1;3 D 5; 4 Câu 9: Trong mặt phẳng Oxy cho đường thẳng d có phương trình x y 2 0, tìm phương trình đường thẳng d ảnh d qua phép đối xứng tâm I 1;2
A x y 4 0. B x y 4 C.x y 4 D.x y 4 Câu 10: Trong mặt phẳng với hệ trục tọa độ Oxy Cho phép đối xứng tâm 1;2
2 I
biến đường
tròn C : x1 2 y22 4 thành đường trịn C có phương trình là:
A x1 2 y224. B x1 2 y224. C x1 2 y22 4. D x2 2 y22 4
Câu 11 : Trong mặt phẳng Oxy, ảnh điểm M6;1qua phép quay QO,90o là:
A.M' 1; 6 B M' 1;6 C M' 6; 1 D M' 6;1 Câu 12 : Trong mặt phẳng Oxy, qua phép quay QO, 135 o, M' 3; 2 ảnh điểm :
A 2;
2
M
B
2 ; 2
M
C 2; 2
M
D
2;
2
M
Câu 13: Chọn câu sai câu sau:
A Qua phép quay Q(O;) điểm O biến thành
B Phép đối xứng tâm O phép quay tâm O, góc quay180
C Phép quay tâm O góc quay 90 phép quay tâm
O góc quay 90 hai phép quay
giống
D Phép đối xứng tâm O phép quay tâm O, góc quay 180
Câu 14: Trong mặt phẳng với hệ trục tọa độ Oxy, cho điểm M(2; 0) điểm N(0; 2) Phép quay tâm O biến điểm M thành điển N, góc quay là:
(52)www.Thuvienhoclieu.Com 52
Câu 15: Trong mặt phẳng Oxy cho điểm M(2; 1) Hỏi phép dời hình có cách thực liên tiếp phép đối xứng tâm O phép tịnh tiến theo vectơ v = (2; 3) biến điểm M thành điểm điểm sau?
A (1; 3) B (2; 0) C.(0; 2) D (4; 4)
Câu 16 : Trong mặt phẳng Oxy cho đường thẳng d có phương trình x + y – = Hỏi phép dời hình có cách thực liên tiếp phép đối xứng tâm O phép tịnh tiến theo vectơ v = (3; 2) biến đường thẳng d thành đường thẳng đường thẳng sau?
A 3x + 3y – = B x – y + = C x + y + = D.x + y – = Câu 17: Trong phép biến hình sau, phép khơng phải phép dời hình ?
A Phép chiếu vng góc lên đường thẳng B Phép vị tự tâm I(1; 2) tỉ số –1 C Phép đồng D Phép đối xứng trục
Câu 18: Trong mặt phẳng Oxy cho u= (3;1) đường thẳng d: 2x – y = Ảnh đường thẳng d qua phép dời hình có cách thực liên tiếp phép quay Q(O;90 )o phép tịnh tiến theo
vectơ u đường thẳng d’ có phương trình:
A x + 2y – = B x + 2y + = C 2x + y – = D 2x + y + =
Câu 19: Trong măt phẳng Oxy cho điểm M(–2; 4) Phép vị tự tâm O tỉ số k = –2 biến điểm M thành
điểm điểm sau?
A (–3; 4) B (–4; –8) C (4; –8) D (4; 8)
Câu 20: Trong măt phẳng Oxy cho đường thẳng d có phương trình 2x + y – = Phép vị tự tâm O tỉ số k = biến d thành đường thẳng đường thẳng có phương trình sau?
A 2x + y + = B.2x + y – = C 4x – 2y – = D 4x + 2y – =
Câu 21 : Trong mặt phẳng Oxy cho đường tròn (C) có phương trình (x – 1)2 + (y – 1)2 = Phép vị
tự tâm O tỉ số k = biến (C) thành đường tròn đường trịn có phương trình sau?
A (x –1)2 + (y – 1)2 = B (x – 2)2 + (y – 2)2 =
C.(x – 2)2 + (y – 2)2 = 16 D (x + 2)2 + (y + 2)2 = 16
Câu 22: Trong mặt phẳng với hệ trục tọa độ Oxy Cho hai điểm M(4; 6) M/(–3; 5) Phép vị tự
tâm I tỉ số k =
biến điểm M thành M/ Khi tọa độđiểm I là:
A I(–4; 10) B I(11; 1) C I(1; 11) D.I(–10; 4) Câu 23: Trong mp Oxy, cho đường trịn (C)(x2)2(y2)24 Hỏi phép đồng dạng có được
bằng cách thực liên tiếp phép vị tự tâm O, tỉ số k = 1/2 phép quay tâm O góc 90o biến (C) thành đường trịn sau đây:
A x2 2 y12 1 B x2 2 y22 1
C x1 2 y12 1 D x1 2 y12 1
Câu 24: Trong măt phẳng Oxy cho đường thẳng d có phương trình 2x – y = Phép đồng dạng có
được cách thực liên tiếp phép vị tự tâm O tỉ số k = –2 phép đối xứng qua trục Oy
biến d thành đường thẳng đường thẳng sau?
(53)www.Thuvienhoclieu.Com 53
Câu 25: Trong mặt phẳng với hệ trục tọa độ Oxy cho đường thẳng d: x – 2y + = 0, Phép vị tự tâm I(0; 1) tỉ số k= –2 biến đường thẳng d thành đường thẳng d/ phép đối xứng trục Ox biến đường thẳng d/ thành đường thẳng d1 Khi phép đồng dạng biến đường thẳng d thành d1 có phương
trình là:
A 2x – y + = B 2x + y + = C 2x – 2y + = D 2x + 2y + =