Bài giảng môn Toán 9... Điều đó đúng hay sai?[r]
Bài giảng mơn Tốn BÀI 4: CƠNG THỨC NGHIỆM CỦA PHƯƠNG TRÌNH BẬC HAI 1.Cơng thức nghiệm Xét phương trình tổng quát ax2 + bx + c = (a 0) (1) a x2 + bx = - c b c x (do a ) a a 2 c b b b 2.x = a a 2a 2a b b2 4ac x 2a 4a x2 x2 + Người ta kí b2 4ac trình củab phương hiệulà biệt thức Gọi (2)( đọc x “đen ta” ) 2a 4a 2x2 + 5x +2 = 2x2 + 5x = - x + x =-1 2 5 x 2.x 4 4 x 16 x 4 1 =>x = - ; x = Vậy phương trình cho có nghiệm x1 = -2 ; x2 =1 BÀI 4: CƠNG THỨC NGHIỆM CỦA PHƯƠNG TRÌNH BẬC HAI 1.Cơng thức Hoạt động nhóm nghiệm Xét phương trình tổng qt ax2 + bx + c = (a 0) ?1 Hãy điền biểu thức thích hợp (1) a x2 + bx = -c b c vào ô trống ( ) : x2 x (do a ) a a a) Nếu > từ phương trình (2) 2 b c b b suy rax b x2 2.x = a 2a 2a a a 2a a + 2 b b 4ac Do đó, phương trình (1) có nghiệm x 2a 4a b b x1 , x2 Người ta kí b 4ac 2a 2a b hiệu b) Nếu = từ phương trình (2) (2) x 2a 4a suy rax b 2a b Do đó, phương trình (1) có nghiệm képx 2a = BÀI 4: CÔNG THỨC NGHIỆM CỦA PHƯƠNG TRÌNH BẬC HAI b 1.Cơng thức Do đó, phương trình (1) có nghiệm képx 2a Xét phương trình tổng quát nghiệm = từ phương trình (2) b x 4a 2a 2a Do đó, phương trình (1) có nghiệm b b x1 , x2 2a 2a b) Nếu = từ phương trình (2) b suyxra 2a BÀI 4: CƠNG THỨC NGHIỆM CỦA PHƯƠNG TRÌNH BẬC HAI 1.Cơng thức nghiệm Xét phương trình tổng qt Đối với phương trình ax2 + bx + c =0 (a ax2 + bx + c = (a 0) 2 b c b 0) biệt thức b b 4ac (1) x 2.x = + Người ta kí hiệu a) Nếu suy 2a a 2a 2a b b2 4ac x 2a 4a b 4ac b x 2a 4a (2) > từ phương trình (2) b x 4a 2a 2a Do đó, phương trình (1) có nghiệm b b x1 , x2 2a 2a b) Nếu = từ phương trình (2) b suyxra 2a b Do đó, phương trình (1) có nghiệm kép x 2a = c)Nếu phương trình có hai nghiệm phân biệt : x1 b b ; x2 2a 2a •Nếu = phương trình có nghiệm b kép x1 x2 2a •Nếu < phương trình vơ nghiệm +.Xác định hệ số a, b, c +.Tính +.Tính nghiệm theo cơng thức Kết luận phương trình vơ nghiệm < BÀI 4: CÔNG THỨC NGHIỆM CỦA PHƯƠNG TRÌNH BẬC HAI 1.Cơng thức +.Xác định hệ số a, b, c nghiệm Đối với phương trình ax2 + bx + c =0 (a +.Tính 0) biệt thức b2 4ac +.Tính nghiệm theo cơng thức •Nếu > phương trình có hai Kết luận phương trình vơ nghiệm nghiệm phân biệt : < b b x1 ; x2 2a 2a •Nếu = phương trình có nghiệm b kép x1 x2 2a •Nếu < phương trình vơ nghiệm áp dụng Ví dụ: Giải phương trình 3x2 + 5x – 1=0 Giải Ta có a = 3; b = 5; c = -1 b2 4ac = 52 – 4.3.(- = 25 +12 > ÁP DỤNG1)CÔNG THỨC =37NGHIỆM, PHƯƠNG TRÌNH CĨ NGHIỆM 5 37 PHÂN : - 5BIỆT + 37 x ; x1= 6 BÀI 4: CƠNG THỨC NGHIỆM CỦA PHƯƠNG TRÌNH BẬC HAI 1.Cơng thức ?3 ÁP DỤNG CƠNG THỨC NGHIỆM ĐỂ GIẢI CÁC PHƯƠNG TRÌNH nghiệm Đối với phương trình ax2 + bx + c =0 (a 2–x+2=0 a) 5xSAU: 0) biệt thức b2 4ac •Nếu > phương trình có hai nghiệm phân biệt : b b x1 ; x2 2a 2a •Nếu = phương trình có nghiệm b kép x1 x2 2a •Nếu < phương trình vơ nghiệm áp dụng Ví dụ: Giải phương trình 3x2 + 5x – 1=0 Giải Ta có a = 3; b = 5; c = -1 b2 4ac = 52 – 4.3.(- = 25 +12 > ÁP DỤNG1)CÔNG THỨC =37NGHIỆM, PHƯƠNG TRÌNH CĨ NGHIỆM 5 37 PHÂN : - 5BIỆT + 37 x ; x1= 6 (1)2 4.5.2 39 Phương trình vơ nghiệm b) 4x2 – 4x + = (4)2 4.4.1 16 16 Phương trình có nghiệm x1 x2 kép c) -3x + x + =0 12 4.(3).5 61 Phương trình có nghiệm phân biệt1 61 61 61 x1 ; x2 6 6 Bạn An nói : “phương trình ax2 + bx + c = ( a khác 0) có a, c trái dấu phương trình ln có hai nghiệm phân biệt” Điều hay sai ? Giải BÀI 4: CƠNG THỨC NGHIỆM CỦA PHƯƠNG TRÌNH BẬC HAI 1.Cơng thức ?3 ÁP DỤNG CÔNG THỨC NGHIỆM ĐỂ GIẢI CÁC PHƯƠNG TRÌNH nghiệm Đối với phương trình ax2 + bx + c =0 (a 2–x+2=0 a) 5xSAU: 0) biệt thức b2 4ac •Nếu > phương trình có hai nghiệm phân biệt : b b x1 ; x2 2a 2a •Nếu = phương trình có nghiệm b kép x1 x2 2a •Nếu < phương trình vơ nghiệm (1)2 4.5.2 39 Phương trình vơ nghiệm b) 4x2 – 4x + = (4)2 4.4.1 16 16 Phương trình có nghiệm x1 x2 kép c) -3x + x + =0 12 4.(3).5 61 áp dụng Phương trình có nghiệm phân Chú ý biệt1 61 61 61 ; x2 Nếu phương trình ax2 + bx + c = 0(a 0) x1 6 6 có a c trái dấu, tức a.c < Bạn An nói : “phương trình b2 4ac 0thì ax2 + bx + c = (a khác 0) có Khi đó, phương trình có nghiệm phân a, c trái dấu phương trình biệt ln có hai nghiệm phân biệt” Điều hay sai ? Giải BÀI 4: CÔNG THỨC NGHIỆM CỦA PHƯƠNG TRÌNH BẬC HAI 1.Cơng thức Bài tập nghiệm Đối với phương trình ax2 + bx + c =0 (a Cho phương trình x2 + 5x + m = (m tham số) phương trình với m = 0; m= a Giải 0) biệt thức b2 4ac b.Tìm m để phương trình có nghiệm •Nếu > phương trình có hai phân biệt, có nghiệm kép, vơ nghiệm ? nghiệm phân biệt : b b x1 ; x2 Kết 2a 2a •Nếu = phương trình có nghiệm a)Với m = phương trình trở thành : b kép x1 x2 .x2 + 5x = 2a x (x+ 5) = •Nếu < phương trình vơ nghiệm x = x + = x = x = -5 áp dụng Vậy với m = phương trình có nghiệm Chú ý Nếu phương trình ax2 + bx + c = 0(a 0) x1 = 0; x2 = -5 có a c trái dấu, tức a.c < •Với m = thay vào phương trình ta b 4ac : .x2 + 5x + = Khi đó, phương trình có nghiệm phân ‘ biệt x1 = -2 ; x2 = -3 BÀI 4: CƠNG THỨC NGHIỆM CỦA PHƯƠNG TRÌNH BẬC HAI 1.Công thức Bài tập nghiệm Đối với phương trình ax2 + bx + c =0 (a Cho phương trình x2 + 5x + m = (m tham số) phương trình với m = 0; m= a Giải 0) biệt thức b2 4ac b.Tìm m để phương trình có nghiệm •Nếu > phương trình có hai phân biệt, có nghiệm kép, vơ nghiệm ? nghiệm phân biệt : b b x1 ; x2 Kết 2a 2a •Nếu = phương trình có nghiệm b Ta có a = ; b = 5; c = m b b 4ac kép x1 x2 2a = 52 – 4.1.m = 25 – 4m •Nếu < phương trình vơ nghiệm +.Phương trình có nghiệm phân biệt 25 áp dụng = 25 - 4m > m Chú ý +.Phương0trình có nghiệm kép : 25 Nếu phương trình ax2 + bx + c = 0(a 0) = 25 – 4m = m có a c trái dấu, tức a.c < 0 Nghiệm x1 x2 2 b 4ac 0thì : +.Phương trình vơ nghiệm : 25 Khi đó, phương trình có nghiệm phân m = 25 – 4m < biệt BÀI 4: CƠNG THỨC NGHIỆM CỦA PHƯƠNG TRÌNH BẬC HAI 1.Cơng thức Bài tập nghiệm Đối với phương trình ax2 + bx + c =0 (a Cho phương trình: 0) biệt thức b 4ac (m2 +2m + 2).x2 +3x – = (m – •Nếu > phương trình có hai tham số) Tìm m để phương nghiệm phân biệt : trình có hai nghiệm phân biệt ? b b x1 ; x2 2a 2a •Nếu = phương trình có nghiệm b kép x1 x2 2a •Nếu < phương trình vơ nghiệm áp dụng Chú ý Nếu phương trình ax2 + bx + c = 0(a 0) có a c trái dấu, tức a.c < b2 4ac 0thì Khi đó, phương trình có nghiệm phân biệt Giải Ta có a = m2 + 2m + .= (m2 + 2m +1) +1 .= (m + 1)2 + > với m Còn c = -1 < a.c < Phương trình ln có nghiệm phân biệt với m Chân thành cảm ơn ... DỤNG1)CƠNG THỨC =37NGHIỆM, PHƯƠNG TRÌNH CĨ NGHIỆM 5 37 PHÂN : - 5BIỆT + 37 x ; x1= 6 BÀI 4: CÔNG THỨC NGHIỆM CỦA PHƯƠNG TRÌNH BẬC HAI 1.Cơng thức ?3 ÁP DỤNG CƠNG THỨC NGHIỆM ĐỂ GIẢI CÁC PHƯƠNG TRÌNH... ln có hai nghiệm phân biệt” Điều hay sai ? Giải BÀI 4: CÔNG THỨC NGHIỆM CỦA PHƯƠNG TRÌNH BẬC HAI 1.Cơng thức ?3 ÁP DỤNG CƠNG THỨC NGHIỆM ĐỂ GIẢI CÁC PHƯƠNG TRÌNH nghiệm Đối với phương trình ax2... đó, phương trình (1) có nghiệm b b x1 , x2 2a 2a b) Nếu = từ phương trình (2) b suyxra 2a BÀI 4: CÔNG THỨC NGHIỆM CỦA PHƯƠNG TRÌNH BẬC HAI 1.Cơng thức nghiệm Xét phương trình