1. Trang chủ
  2. » Nghệ sĩ và thiết kế

Trắc nghiệm giới hạn dãy số - Giáo viên Việt Nam

38 23 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 38
Dung lượng 1,44 MB

Nội dung

Ta nhận thấy số nghiệm nguyên dương của phương trình (1) bằng số các số k nguyên dương. cộng với 1[r]

(1)

BÀI TẬP TRẮC NGHIỆM GIỚI HẠN DÃY SỐ

A – LÝ THUYẾT VÀ PHƯƠNG PHÁP

GIỚI HẠN HỮU HẠN GIỚI HẠN VÔ CỰC

1 Giới hạn đặc biệt:

lim

n n

;

1

lim k ( )

n n k

  

  

lim n ( 1)

n q q

 

; nlim C C2 Định lí :

a) Nếu lim un = a, lim = b

 lim (un + vn) = a + b

 lim (un – vn) = a – b

 lim (un.vn) = a.b

 lim n

n

u a

vb (nếu b  0)

b) Nếu un  0, n lim un= a

a  lim una

c) Nếu unvn,n lim =

thì lim un =

d) Nếu lim un = a lim una

3 Tổng cấp số nhân lùi vô hạn

S = u1 + u1q + u1q2 + … =

1

u q

  q 1

1 Giới hạn đặc biệt:

lim n  limnk (k )    limqn (q1)

2 Định lí:

a) Nếu limu n

lim

n

u

b) Nếu lim un = a, lim =  lim n n

u v = 0

c) Nếu lim un = a  0, lim =

thì lim

n n

u v =

nn

neáu a v neáu a v

 

  

d) Nếu lim un = +, lim = a

thì lim(un.vn) =

0 nếu a nếu a

 

  

* Khi tính giới hạn có dạng vô

định: 0,

,  – , 0. phải tìm cách khử dạng vô định

B – BÀI TẬP

DẠNG 1: TÍNH GIỚI HẠN BẰNG ĐỊNH NGHĨA

Phương pháp:

 Để chứng minh limun 0 ta chứng minh với số a0 nhỏ tùy ý tồn số na

sao cho una  n na.

 Để chứng minh limunl ta chứng minh lim(unl) 0 .

 Để chứng minh limun  ta chứng minh với số M 0 lớn tùy ý, tồn số tự

nhiên n cho M unM  n n M

 Để chứng minh limun   ta chứng minh lim(un)

(2)

Câu Chọn mệnh đề mệnh đề sau:

A Nếu limu n , limu  n B Nếu limu n , limu   n

C Nếu limu  , limn u n 0. D Nếu limun a, limuna

Câu Giá trị lim

1 

n bằng:

A 0 B 1 C 2 D 3

Câu Giá trị lim k

n (k *) bằng:

A 0 B 2 C 4 D 5

Câu Giá trị

2

sin lim

2 

n n bằng:

A 0 B 3 C 5 D 8

Câu Giá trị lim(2n1) bằng:

A  B   C 0 D 1

Câu Giá trị

2

1 lim  n

n bằng:

A  B   C 0 D 1

Câu Giá trị

2 lim

1 

n bằng:

A  B   C 0 D 1

Câu Giá trị cos sin lim

1 

n n

n bằng:

A  B   C 0 D 1

Câu Giá trị

1 lim

2   n

n bằng:

A  B   C 0 D 1

Câu 10 Giá trị

3

2

3 lim nn

n bằng:

A  B   C 0 D 1

Câu 11 Giá trị lim

1 

n

n bằng:

A  B   C 0 D 1

Câu 12 Giá trị

2 lim

2  

n A

n bằng:

A  B   C 2 D 1

Câu 13 Giá trị

2

lim  

n B

n bằng:

A  B   C 0 D 1

Câu 14 Giá trị

2 1

lim  

n C

(3)

Câu 15 Giá trị

2 lim

2 

n n

A

n bằng:

A  B   C

1

2 D 1

Câu 16 Giá trị

2

2

sin

lim 

n n n

B

n bằng:

A  B   C  3 D 1

Câu 17 Giá trị lim

2

 

C

n n bằng:

A  B   C 0 D 1

Câu 18 Giá trị

4

lim

3

 

 

n D

n n bằng:

A  B   C 0 D 4

Câu 19 Giá trị lim !0

n

a

n bằng:

A  B   C 0 D 1

Câu 20 Giá trị limn a với a0 bằng:

A  B   C 0 D 1

DẠNG 2: TÌM GIỚI HẠN CỦA DÃY SỐ DỰA VÀO CÁC ĐỊNH LÝ VÀ CÁC GIỚI HẠN CƠ BẢN

Phương pháp:

 Sử dụng định lí giới hạn, biến đổi đưa giới hạn

 Khi tìm

( ) lim

( ) f n

g n ta thường chia tử mẫu cho nk

, k bậc lớn tử mẫu

 Khi tìm limk f n( ) mg n( ) lim ( ) lim ( )f ng n  ta thường tách sử dụng phương pháp nhân lượng liên

+ Dùng đẳng thức:

ab  ab a b; 3a 3b3a23ab3b2  a b

 Dùng định lí kẹp: Nếu unvn,n lim = lim un =

Khi tính giới hạn dạng phân thức, ta ý số trường hợp sau đây:  Nếu bậc tử nhỏ bậc mẫu kết giới hạn

 Nếu bậc từ bậc mẫu kết giới hạn tỉ số hệ số luỹ thừa cao tử mẫu

 Nếu bậc tử lớn bậc mẫu kết giới hạn + hệ số cao tử mẫu dấu kết – hệ số cao tử mẫu trái dấu

Câu Cho dãy số  un với n 4n n u

1

2

 

n n

u

(4)

A

4 B

1

2 C D 1.

Câu Kết cos lim

1

 

 

 

n n

n là:

A 4. B 5. C –4. D 4

1

Câu Giá trị

2 lim

1  

n A

n bằng:

A  B   C

2 

D 1

Câu Giá trị

2

2

4

lim

(3 1)

 

n n

B

n bằng:

A  B   C

4

9 D 1

Câu Kết

2

4

2 lim

3

  

n n

n

A 3 

B

2 

C

1 

D

1

Câu Giới hạn dãy số  un với

4

3

4

 

n

n n u

n là:

A   B . C

3

4 D 0

Câu Chọn kết

3 2 5

lim

3

 

n n

n :

A 5 B

2

5 C   D .

Câu Giá trị

2

2

2

lim

3

 

 

n n

A

n n bằng:

A  B   C

2

3 D 1

Câu Giá trị

2

2

2 lim

3

 

 

n n

B

n n bằng:

A  B   C 0 D

1 1

Câu 10 Giá trị

 4 9

17

2

lim

1

 

n n

C

n bằng:

(5)

Câu 11 Giá trị

3

2

4

1

lim

2

  

  

n n

D

n n n bằng:

A  B   C

3

4

1

2 

D 1

Câu 12 Giá trị

3

4

3

lim

2

  

  

n n

C

n n n bằng:

A  B   C 0 D 1

Câu 13 Giá trị

7

2

( 2) (2 1) lim

( 2)

 

n n

F

n bằng:

A  B   C 8 D 1

Câu 14 Giá trị

3

2

1 lim

(2 1)  

n C

n n bằng:

A  B   C

1

4 D 1

Câu 15 Giá trị

3

4

3

lim

4

 

 

n n

D

n n bằng:

A  B   C 0 D 1

Câu 16 Giá trị

3 2 1

lim

2

 

n n

E

n bằng:

A  B   C 0 D 1

Câu 17 Giá trị

4

3

2

lim

  

 

n n n

F

n n n bằng:

A  B   C

3

3 1 D 1

Câu 18 Cho dãy sốu với n  

2

1

1   

 

n

n

u n

n n Chọn kết limu là:n

A.  B.0 C.1 D..

Câu 19

10 lim

1

 

n n :

A. B.10 C.0 D. 

Câu 20 Tính giới hạn:

1 lim

1    

n

n n

A.1. B.0 C.1 D.

1

Câu 21 Tính giới hạn:

 

2

1 lim

3

    

n n

A.0 B.

1

3 C.

2

(6)

Câu 22 Chọn kết

2

2

1 lim

3

 

n

n

n .

A 4. B 3 C 2. D

1

Câu 23 Giá trị

1

1

lim

  

  

k k

p p

a n a n a D

b n b n b (Trong k p, số nguyên dương;

k p

a b ). bằng:

A  B   C Đáp án khác D 1

Câu 24 Kết

2

2 lim

3 2.5

 

n n n

là:

A

B

1 50 

C

5

2 D

25 

Câu 25

1

3 4.2

lim

3.2

 

n n n n

bằng:

A . B   C 0 D 1.

Câu 26 Giá trị 1

3.2 lim

2  

 

n n n n

C

bằng:

A  B   C

1 

D 1

Câu 27 Giá trị lim 3  

n n

là:

A   B . C 2. D 2.

Câu 28 Giá trị 1 3.2 lim

2  3

 

n n n n

K

bằng:

A

1 

B   C 2 D 1

Câu 29

5 lim

3  

n n

:

A. B.1 C.0 D. 

Câu 30

1

2

4

lim

3

 

n n n n

:

A.0 B.

1

2 C.

1

4 D..

Câu 31 Giá trị 1 3.3 lim

3 

 

n n

n n C

bằng:

A  B

1

2 C 0 D 1

1;

a b

2

1

lim     

n

a a a

(7)

A  B   C 1  

b

a D 1

Câu 33 Tính giới hạn dãy số

1

1

1

1

lim

 

 

   

   

k k

k k

p p

p p

a n a n a n a A

b n b n b n b với a bk p 0 :

A  B   C Đáp án khác D 1

Câu 34

2

lim sin

5

 

 

 

n

nn

bằng:

A . B 0 C 2. D  

Câu 35 Giá trị  

2

lim

  

M n n n

bằng:

A  B   C 3 D 1

Câu 36 Giá trị  

2

lim

   

H n n n

bằng:

A  B   C

1

2 D 1

Câu 37 Giá trị  

2

lim

  

B n n

bằng:

A  B   C 0 D 1

Bài 40 Giá trị  

2

lim

  

K n n n

bằng:

A  B   C

1

2 D 1

Câu 38 Giá trị  

2

lim n 1 3n 2 là:

A . B   C 0 D 1.

Câu 39 Giá trị  

2

lim

  

A n n n

bằng:

A  B   C 3 D 1

Câu 40 Giá trị  

3

lim

  

B n n n

bằng:

A  B   C 0 D 3

Câu 41 Giá trị  

3

2

lim 2

   

D n n n n

bằng:

A  B   C

1

3 D 1

Câu 42 Giá trị  

3

lim

   

M n n n

bằng:

A

1 12 

B   C 0 D 1

Câu 43 Giá trị  

3

2

lim

   

N n n n

bằng:

(8)

Câu 44 Giá trị  

3 2

lim

      

K n n n n n

bằng:

A  B   C

5 12 

D 1

Câu 45 Giá trị  

3

lim

   

N n n n

bằng:

A  B   C 0 D 1

Câu 46 Giá trị lim nn 1 n1 là:

A 1. B 0 C 1. D .

Câu 47 Giá trị  

3

lim

   

H n n n n

bằng:

A  B   C

2 

D 1

Câu 48 Giá trị  

2

lim 2

   

A n n n

bằng:

A  B   C 2 D 1

Câu 49 lim 200 35  n52n :2

A.0 B.1. C.. D. 

Câu 50 Giá trị

3

3

2 sin lim

1

 

n n

A

n bằng:

A  B   C 2 D 1

Câu 51 Giá trị

n

3

! lim

2 

n B

n n bằng:

A  B   C 0 D 1

Câu 52 Giá trị 2

1 lim

( 3 1)

 

  

n D

n n n bằng:

A  B   C

2

3 D 1

Câu 53 Giá trị Elim( n2   n )n bằng:

A  B   C 0 D 1

Câu 54 Giá trị F lim n 1 n bằng:

A  B   C 0 D 1

Câu 55 Giá trị H lim(k n2 1 pn21) bằng:

A  B   C Đáp án khác D 1

Câu 56 Tính giới hạn dãy số

1 1

2 2 ( 1)

   

    

n

u

n n n n :

A  B   C 0 D 1

Câu 57 Tính giới hạn dãy số

3 3

3

( 1)

3

   

 

n

n n

u

(9)

A  B   C

9 D 1

Câu 58 Tính giới hạn dãy số

1 1

(1 )(1 ) (1 )

   

n

n

u

T T T

( 1)

 

n n n T

:

A  B   C

1

3 D 1

Câu 59 Tính giới hạn dãy số

3 3

3 3

2 1

2 1

  

  

n

n u

n :

A  B   C

2

3 D 1

Câu 60 Tính giới hạn dãy số

2

2

 

n

n k

k

k u

:

A  B   C 3 D 1

Câu 61 Tính giới hạn dãy số un  q 2q2 nqn với q 1 :

A  B   C  

2

1 q

q

D  

2

1 q

q

Câu 62 Tính giới hạn dãy số 1

n n

k

n u

n k :

A  B   C 3 D 1

Câu 63 Tính giới hạn dãy số

3

2

1

lim

(2 3)

    

n n n n

B

n :

A  B   C 3 D

3 

Câu 64 Tính giới hạn dãy số  

2

lim

   

C n n n

:

A  B   C 3 D

1

Câu 65 Tính giới hạn dãy số  

3

2

lim

      

D n n n n n

:

A  B   C

1 

D 1

Câu 66 Cho dãy số ( )x xác định n

2

1

1

, ,

2 

nnn  

x x x x n

Đặt

1 1

1 1

   

   

n

n

S

x x x Tính limS n

A  B   C 2 D 1

Câu 67 Cho dãy ( )x xác định sau: k

1

2! 3! ( 1)!

   

k

k x

k

Tìm limu với n     2011

n n n

n n

u x x x

(10)

A  B   C 1

2012! 

D

1

2012! 

Câu 68 Cho dãy số ( )u xác định bởi: n

0

1

2011

   

 

n n n

u

u u

u Tìm

3

limun

n .

A  B   C 3 D 1

Câu 69 Cho dãy x0 xác định sau:

1 ( ) x  f x

x Tìm 0; .

A  B   C 2010 D 1

Câu 70 Tìm limu biết n

(2 1)

2

    

n

n n

u

n

A  B   C

1

2 D 1

Câu 71 Tìm limu biết n

3 2 2 1

( ) 1

3

   

 

 

  

x x

x

f x x

m x

A  B   C 2 D

3 6

2

Câu 72 Tìm limu biết n

2

1

( )

2   

 



   

x

x

f x x

x m x

A  B   C 2 D 1

Câu 73 Tìm limu biết n

2

( ) 1

2

   

 

 

  

x x

f x x

x

x mx m x1.

A  B   C

1

3 D 1

Câu 74 Tìm limu biết n

1

 

n n

k u

n k

A  B   C 3 D 1

Câu 75 Tìm limu biết n dau can

2 

    

n n u

A  B   C 2 D 1

Câu 76 Gọi g x( ) 0,   x dãy số xác định  Tìm xlim ( ) lim2 f xx2 2x 3  3

A  B   C

4

(11)

Câu 77 Cho dãy số

2

2 2

1 2 2

1 1

3

2

   

        

   

A x x x x x x x x

xác định sau

1

xx

Đặt 

x

Tìm  x32x 3 2 x 0 .

A  B   C

1

2 D 1

Câu 78 Cho a b, å,( , ) 1;a bnab1,ab2,  Kí hiệu r số cặp số ( , ) n u v å å

sao cho n au bv Tìm

1 lim

  

n n

r

n ab

A  B   C

1

ab D ab1

Câu 79 Cho dãy số có giới hạn (un) xác định :

1

1

1

,

2

    

  

 

n n

u

u n

u Tìm kết của

limu n

A.0 B.1. C.1. D.

1

Câu 80 Tìm giá trị

1 1

2

2

 

        

n

S

A. 1 B. 2 C.2 2 D.

1 .

Câu 81 Tính giới hạn:  

1 1

lim

1.2 2.3

 

  

 

n n

A.0 B.1. C.

3

2 D Khơng có

giới hạn

Câu 82 Tính giới hạn:  

1 1

lim

1.3 3.5

 

  

 

n n

A.1. B.0 C.

2

3 D.2.

Câu 83 Tính giới hạn:  

1 1

lim

1.3 2.4

 

  

 

n n

A.

3

4 B.1. C.0 D.

(12)

Câu 84 Tính giới hạn:

1 1

lim

1.4 2.5 ( 3)

 

  

 

n n  .

A 11

18 B 2. C 1. D

3

Câu 85 Tính giới hạn: 2

1 1

lim 1

2

     

  

     

 

     

n  .

A 1. B

1 C

1

4 D

3

ĐÁP ÁN VÀ LỜI GIẢI

A – LÝ THUYẾT VÀ PHƯƠNG PHÁP

GIỚI HẠN HỮU HẠN GIỚI HẠN VÔ CỰC

1 Giới hạn đặc biệt:

lim

n n  ;

1

lim k ( )

n n k

  

  

lim n ( 1)

n qq  ; nlim C C

2 Định lí :

a) Nếu lim un = a, lim = b

 lim (un + vn) = a + b

 lim (un – vn) = a – b

 lim (un.vn) = a.b

 lim n

n

u a

vb (nếu b  0)

b) Nếu un  0, n lim un= a

a  lim una

c) Nếu unvn,n lim =

thì lim un =

d) Nếu lim un = a

lim una 3 Tổng cấp số nhân lùi vô hạn

S = u1 + u1q + u1q2 + … =

1

u q

  q 1

1 Giới hạn đặc biệt:

lim n  limnk (k )    limqn (q1)

2 Định lí:

a) Nếu lim u n

lim

n

u

b) Nếu lim un = a, lim =  lim n n

u v

= c) Nếu lim un = a  0, lim =

thì lim

n n

u v

=

nn

neáu a v neáu a v

 

  

d) Nếu lim un = +, lim = a

thì lim(un.vn) =

0 neáu a neáu a

 

  

* Khi tính giới hạn có dạng vơ

định: 0,

,  – , 0. phải tìm cách khử dạng vơ định

(13)

DẠNG 1: TÍNH GIỚI HẠN BẰNG ĐỊNH NGHĨA

Phương pháp:

 Để chứng minh limun 0 ta chứng minh với số a0 nhỏ tùy ý tồn số

a

n cho una  n na

 Để chứng minh limunl ta chứng minh lim(unl) 0

 Để chứng minh limun  ta chứng minh với số M 0 lớn tùy ý, tồn số tự

nhiên n cho M unM  n n M

 Để chứng minh limun   ta chứng minh lim(un)

 Một dãy số có giới hạn giới hạn

Câu Chọn mệnh đề mệnh đề sau:

A Nếu limu n , limu  n B Nếu limu n , limu   n

C Nếu limu  , limn u n 0. D Nếu limun a, limuna

Hướng dẫn giải: Chọn C.

Theo nội dung định lý.

Câu Giá trị lim

1 

n bằng:

A 0 B 1 C 2 D 3

Hướng dẫn giải: Chọn A.

Với a0 nhỏ tùy ý, ta chọn

1  

a n

a ta có

1

1 1  

aa

a n n

n n nên có

1

lim

1 

n .

Câu Giá trị lim k

n (k *) bằng:

A 0 B 2 C 4 D 5

Hướng dẫn giải: Chọn A.

Với a0 nhỏ tùy ý, ta chọn

1 k a n

a ta có

1

    a

k k a

a n n

n n nên có

1 lim k 0

n .

Câu Giá trị

2

sin lim

2 

n n bằng:

A 0 B 3 C 5 D 8

Hướng dẫn giải: Chọn A.

Với a0 nhỏ tùy ý, ta chọn

2  

a n

a ta có

2

sin 1

2  2 2  

  aa

n

a n n

n n n nên có

2

sin

lim

2  

n

(14)

Câu Giá trị lim(2n1) bằng:

A  B   C 0 D 1

Hướng dẫn giải: Chọn A.

Với số dương M lớn tùy ý ta chọn

1

 

M M n

Ta có: 2n 1 2nM  1 M  n nM  lim(2n1).

Câu Giá trị

2

1 lim  n

n bằng:

A  B   C 0 D 1

Hướng dẫn giải: Chọn B.

Với số dương M lớn tùy ý ta chọn n thỏa M

2 1

 

M M n

M n

2 4

2

 

nMM M

Ta có:

2 1 1

lim

 

   M  

n n

M n n

n n

Vậy

2

1

lim  n  

n .

Câu Giá trị

2 lim

1 

n bằng:

A  B   C 0 D 1

Hướng dẫn giải: Chọn C.

Với a0 nhỏ tùy ý, ta chọn

2

1

 

   

 

a

n a

Suy

2

lim

1    1

a n na

n n .

Câu Giá trị cos sin lim

1 

n n

n bằng:

A  B   C 0 D 1

Hướng dẫn giải: Chọn C.

Ta có 2

cos sin 

n n

n n mà 2

1 cos sin

lim lim

1 

  

n n

n n

Câu Giá trị

1 lim

2   n

n bằng:

A  B   C 0 D 1

(15)

Với số thực a0 nhỏ tùy ý, ta chọn

1

 

   

 

a

n a

Ta có:

1 1

lim

2

 

     

  a

n n

a n n

n n n .

Câu 10 Giá trị

3

2

3 lim nn

n bằng:

A  B   C 0 D 1

Hướng dẫn giải: Chọn A.

Với M 0 lớn tùy ý, ta chọn    

 

M

M n

Ta có:

3

2

3

3

     M

n n

n M n n

n n

Vậy

3

2

3

lim nn

n .

Câu 11 Giá trị lim

1 

n

n bằng:

A  B   C 0 D 1

Hướng dẫn giải: Chọn B.

Với M 0 lớn tùy ý, ta chọn

2

1

3

 

   

 

M n

a

Ta có:

2

1

1

        

  M

n

n n M n n

n n

Suy lim

1 

  

n

n .

Câu 12 Giá trị

2 lim

2  

n A

n bằng:

A  B   C 2 D 1

Hướng dẫn giải: Chọn C.

Với số thực a0 nhỏ tùy ý, ta chọn

2   

a n

a

Ta có:

2 5

2

2 2

     

  aa

n

a n n

n n n

Vậy A2.

Câu 13 Giá trị

2

lim  

n B

n bằng:

A  B   C 0 D 1

(16)

Chọn C.

Với số thực a0 nhỏ tùy ý, ta chọn n thỏa a

2

1 

 

a a

n

a n

2

1  13

naa a

a

Ta có:

2

1 

    

a

n

a n n B

n .

Câu 14 Giá trị

2 1

lim  

n C

n bằng:

A  B   C 0 D 1

Hướng dẫn giải: Chọn D.

Với số thực a0 nhỏ tùy ý, ta chọn

1  

a n

a

Ta có:

2 1 2 1

1

1 1

 

      

  aa

n n

a n n

n n n

Vậy C1

Câu 15 Giá trị

2 lim

2 

n n

A

n bằng:

A  B   C

1

2 D 1

Hướng dẫn giải: Chọn C.

Câu 16 Giá trị

2

2

sin

lim 

n n n

B

n bằng:

A  B   C D 1

Hướng dẫn giải: Chọn C.

Câu 17 Giá trị lim

2

 

C

n n bằng:

A  B   C 0 D 1

Hướng dẫn giải: Chọn C.

Câu 18 Giá trị

4

lim

3

 

 

n D

n n bằng:

A  B   C 0 D 4

Hướng dẫn giải: Chọn D.

Câu 19 Giá trị lim !0

n

a

n bằng:

(17)

Chọn C.

Gọi m số tự nhiên thỏa: m 1 a Khi với n m 1

Ta có:

0

! !

 

    

   

n m m

n a a

a a a a a a

n m m n m m

lim

1

 

 

 

n m

a

m Từ suy ra: lim !0

n

a

n .

Câu 20 Giá trị limn a với a0 bằng:

A  B   C 0 D 1

Hướng dẫn giải: Chọn D.

Nếu a1 ta có đpcm

 Giả sử a1 Khi đó:  1  1

 

    

 

n

n n

a a n a

Suy ra: 0  1 

na a

n nên limn a 1

 Với 0 a

1

1 lim lim

  n   n a

a a .

Tóm lại ta ln có: limna 1 với a0

DẠNG 2: TÌM GIỚI HẠN CỦA DÃY SỐ DỰA VÀO CÁC ĐỊNH LÝ VÀ CÁC GIỚI HẠN CƠ BẢN

Phương pháp:

 Sử dụng định lí giới hạn, biến đổi đưa giới hạn

 Khi tìm

( ) lim

( ) f n

g n ta thường chia tử mẫu cho nk

, k bậc lớn tử mẫu

 Khi tìm limk f n( ) mg n( ) lim ( ) lim ( )f ng n  ta thường tách sử dụng phương pháp nhân lượng liên

+ Dùng đẳng thức:

ab  ab  a b; 3a 3b3a23ab3b2 a b

 Dùng định lí kẹp: Nếu unvn,n lim = lim un =

Khi tính giới hạn dạng phân thức, ta ý số trường hợp sau đây:  Nếu bậc tử nhỏ bậc mẫu kết giới hạn

 Nếu bậc từ bậc mẫu kết giới hạn tỉ số hệ số luỹ thừa cao tử mẫu

(18)

Câu Cho dãy số  un với n 4n n u

1

2

 

n n

u

u Chọn giá trị limu số n sau:

A

4 B

1

2 C 0 D 1.

Hướng dẫn giải: Chọn C.

Chứng minh phương pháp quy nạp tốn học ta có n2 ,n   n

Nên ta có :

1

2

2 2

 

       

 

n n

n n n n n

n n n

n

Suy :

1

2       

n

n u

, mà

lim lim

2  

  

   

n

n u

Câu Kết cos lim

1

 

 

 

n n

n là:

A 4. B 5. C –4. D 4

1

Hướng dẫn giải: Chọn B.

2 2

cos

1 1

  

  

n n n n

n n n

Ta có 2

1

lim

1 /

lim

1

   

 

n

n n n ;lim 210

n

n

2

cos cos

lim lim 5

1

   

      

 

   

n n n n

n n .

Câu Giá trị

2 lim

1  

n A

n bằng:

A  B   C

2 

D 1

Hướng dẫn giải: Chọn C.

Câu Giá trị

2

2

4

lim

(3 1)

 

n n

B

n bằng:

A  B   C

4

9 D 1

Hướng dẫn giải: Chọn C.

Câu Kết

2

4

2 lim

3

  

n n

n

A 3 

B

2 

C

1 

D

(19)

Chọn A.

 2

2

4

1 / 1/

2 1 0

lim lim

3

3 /

  

     

  

 

n n

n n

n n .

Câu Giới hạn dãy số  un với

4

3

4

 

n

n n u

n là:

A   B . C

3

4 D 0

Hướng dẫn giải: Chọn A.

4

3

3 /

lim lim lim

4 5 /

 

   

 

n

n n n

u n

n n .

3 /

lim ;lim 1

4 /

 

 

n

n n

Câu Chọn kết

3 2 5

lim

3

 

n n

n :

A 5 B

2

5 C   D .

Hướng dẫn giải: Chọn D.

 3

3 2 5 / /

lim lim

3 /

 

 

 

 

n n

n n

n

n n .

1 / 5 / 3

1

lim ;lim

3 / 5

 

 

n n

n

n .

Câu Giá trị

2

2

2

lim

3

 

 

n n

A

n n bằng:

A  B   C

2

3 D 1

Hướng dẫn giải: Chọn C.

Ta có:

2

2

3

2 2

lim

1 3

3  

 

 

n n A

n n .

Câu Giá trị

2

2

2 lim

3

 

 

n n

B

n n bằng:

A  B   C 0 D

1 1

(20)

Ta có:

2

2

2

1

1

lim lim

1

3 1 3

  

 

 

n n

n n

B

n n

n n

Câu 10 Giá trị

 4 9

17

2

lim

1

 

n n

C

n bằng:

A  B   C 16 D 1

Hướng dẫn giải: Chọn C.

Ta có:

8 9

2

17

17 17

1 2

(2 ) (1 ) (2 ) (1 )

lim lim 16

1

(1 )

   

  

 

n n

n n n n

C

n

n n

Câu 11 Giá trị

3

2

4

1

lim

2

  

  

n n

D

n n n bằng:

A  B   C

3

4

1

2 

D 1

Hướng dẫn giải: Chọn C.

Ta có:

3

2 3

4

3

1

1

1

lim

2

1

2

 

  

 

 

 

  

  

 

 

n

n n

D

n

n n

Câu 12 Giá trị

3

4

3

lim

2

  

  

n n

C

n n n bằng:

A  B   C 0 D 1

Hướng dẫn giải: Chọn C.

Chia tử mẫu cho n2 ta có

4

5

3

3 1

lim

3 1

2

 

 

  

n n n

C

n n n .

Câu 13 Giá trị

7

2

( 2) (2 1) lim

( 2)

 

n n

F

n bằng:

A  B   C 8 D 1

(21)

Ta có:

7

5

2

2

1

lim

5

   

 

   

   

 

 

 

 

n n

F

n

Câu 14 Giá trị

3

2

1 lim

(2 1)  

n C

n n bằng:

A  B   C

1

4 D 1

Hướng dẫn giải: Chọn C.

Câu 15 Giá trị

3

4

3

lim

4

 

 

n n

D

n n bằng:

A  B   C 0 D 1

Hướng dẫn giải: Chọn C.

Câu 16 Giá trị

3 2 1

lim

2

 

n n

E

n bằng:

A  B   C 0 D 1

Hướng dẫn giải: Chọn A.

Câu 17 Giá trị

4

3

2

lim

  

 

n n n

F

n n n bằng:

A  B   C

3

3 1 D 1

Hướng dẫn giải: Chọn C.

Câu 18 Cho dãy sốu với n  

2

1

1   

 

n

n

u n

n n Chọn kết limu là:n

A.  B.0 C.1 D.

Hướng dẫn giải: Chọn B

Ta có:

 

2

lim lim

1 

 

 

n

n

u n

n n

  2 

4

1 2

lim

1

 

 

n n

n n

3

4

2 2

lim

1

  

 

n n n

n n

(22)

2

2

2 2

lim

1

1

  

 

 

n n n n

n n

Câu 19

10 lim

1

 

n n :

A.. B.10 C.0 D. 

Hướng dẫn giải: Chọn C

Ta có:

4

2

2

10 10

lim lim

1

1  1

   

n n n

n n

Nhưng

1

lim 1  1

n n

10 lim 0

n

Nên

10

lim

1

 

n n

Câu 20 Tính giới hạn:

1 lim

1  

 

n

n n

A.1. B.0 C.1 D.

1

Hướng dẫn giải: Chọn B

Ta có:

2

2

1

1

lim lim

1

1 1

1

 

 

  

 

 

n n n n

n n

n n

Câu 21 Tính giới hạn:

 

2

1 lim

3

    

n n

A.0 B.

1

3 C.

2

3 D.1.

Hướng dẫn giải: Chọn B

Ta có:

 

2

2

1 1

lim lim lim

4

3 4 3

    

  

  

n n

n n

n

Câu 22 Chọn kết

2

2

1 lim

3

 

n

n

n .

A 4. B 3 C 2. D

1

(23)

2

2

1 lim

3

 

n

n n

2

2

1

1 1

lim

3 2

1 

  

n n

n

1

3

1

   

Câu 23 Giá trị

1

1

lim

  

  

k k

p p

a n a n a D

b n b n b

(Trong k p, số nguyên dương;

k p

a b ). bằng:

A  B   C Đáp án khác D 1

Hướng dẫn giải: Chọn C.

Ta xét ba trường hợp sau

kp Chia tử mẫu cho nk ta có:

1

0

if 0

lim

if

    

 

  

   

k

k k k p

p k p

p k k

a a

a a b

n n

D

b b a b

n n .

kp Chia tử mẫu cho nk ta có:

1

0

lim

  

 

 

k

k k

k

k

k k

a a

a a

n n

D

b b

b

n .

kp Chia tử mẫu cho np :

0

0

lim

  

 

 

k

p k p

p p

a a

n n

D

b b

n .

Câu 24 Kết

2

2 lim

3 2.5

 

n n n

là:

A

B

1 50 

C

5

2 D

25 

Hướng dẫn giải: Chọn B.

2 1

2 5 25 25

lim lim

3 2.5 50

2

  

  

   

    

n n

n n n

Câu 25

1

3 4.2

lim

3.2

 

n n n n

bằng:

A . B   C 0 D 1.

(24)

1

2

3

3

3 4.2 3 2.2

lim lim lim

3.2 3.2 2

4

4

     

 

     

     

     

 

     

        

 

n n

n

n n n n

n n n n n

n

2

1

3

3

lim

4 2

3

4

     

 

     

     

   

   

 

   

        

 

n n

n

n

Câu 26 Giá trị 1

3.2 lim

2  

 

n n n n

C

bằng:

A  B   C

1 

D 1

Hướng dẫn giải: Chọn C.

Ta có:

1

2

3

3.2 3

lim lim

2 3

2

3

 

    

  

  

  

    

n

n n

n n n

C

Câu 27 Giá trị lim 3  

n n

là:

A   B . C 2. D 2.

Hướng dẫn giải: Chọn B.

 

lim lim

5          

  

 

n

n n n

3

lim ;lim 1

5        

 

 

n n

Câu 28 Giá trị 1 3.2 lim

2  3

 

n n n n

K

bằng:

A

1 

B   C 2 D 1

Hướng dẫn giải: Chọn A.

2

3

1

lim

3

2

3  

    

 

      

n

n

K

5 lim

3 

(25)

A. B.1 C.0 D. 

Hướng dẫn giải: Chọn A

Ta có:

1

5

lim lim

3

5                        n n n n n Nhưng

lim 1

5                  n , lim 5               n n * 5                  n n n Nên lim    n n Câu 30 4 lim     n n n n :

A.0 B.

1

2 C.

1

4 D..

Hướng dẫn giải: Chọn B Ta có: 4 lim     n n n n 2 lim 4           n n 1 2 lim 4                 n n

lim 0; lim

2               n n

Câu 31 Giá trị 1 3.3 lim

3 

   n n n n C bằng:

A  B

1

2 C 0 D 1

Hướng dẫn giải: Chọn B.

Câu 32 Cho số thực a,b thỏa a 1;b 1 Tìm giới hạn

2 lim          n n

a a a

I

b b b .

A  B   C

1  

b

a D 1

Hướng dẫn giải: Chọn C.

Ta có 1, , , ,a a2 a cấp số nhân công bội n a

1 1         n n a

a a a

a Tương tự 1         n n b

b b b

(26)

Suy lim

1

1

1

1

lim

1

1

 

 

 

n

n

a

b a

I

b a

b

( Vì a 1,b1  liman1limbn10).

Câu 33 Tính giới hạn dãy số

1

1

1

1

lim

 

 

   

   

k k

k k

p p

p p

a n a n a n a A

b n b n b n b

với a bk p 0 :

A  B   C Đáp án khác D 1

Hướng dẫn giải: Chọn C.

Ta chia làm trường hợp sau

TH 1: n k , chia tử mẫu cho nk, ta

1

1 0

lim

  

 

  

k

k k

k

p p

p k

a a

a a

n n

A

b b b

b

n n .

TH 2: kp, chia tử mẫu cho nk, ta

1

1

1

0

lim

  

    

 

  

 

  

k

k k k p

p p k p

k p k p k

a a

a a b

n n

A

b b b a b

n n n

TH 3: kp, chia tử mẫu cho np, ta

1

1

1 0

lim

  

  

 

  

k k

p k p k p

p

p p

a a a

n n n

A

b b

b

n n .

Câu 34

2

lim sin

5

 

 

 

n

nn

bằng:

A . B 0 C 2. D  

Hướng dẫn giải: Chọn C.

2 3 sin

lim sin lim

5

n n

n n n

n  

 

 

 

     

 

   

 

3 sin

lim ;lim 2

n n

n

 

 

   

 

 

sin 1 1 sin

5 ;lim 0 lim 2 2

n n

n n n n

   

 

     

 

  .

 

lim

  

(27)

A  B   C 3 D 1

Hướng dẫn giải: Chọn C.

2

6

lim

6

 

 

n M

n n n

Câu 36 Giá trị  

2

lim

   

H n n n

bằng:

A  B   C

1

2 D 1

Hướng dẫn giải: Chọn C.

Ta có:

2

2

1

1

lim lim

2 1

1 1 1

 

  

  

  

n n

H

n n n

n n

Câu 37 Giá trị  

2

lim

  

B n n

bằng:

A  B   C 0 D 1

Hướng dẫn giải: Chọn A.

Ta có:

1 lim  1

    

 

 

B n

n

Bài 40 Giá trị  

2

lim

  

K n n n

bằng:

A  B   C

1

2 D 1

Hướng dẫn giải: Chọn C.

Câu 38 Giá trị  

2

lim n 1 3n 2 là:

A  B   C 0 D 1.

Hướng dẫn giải: Chọn B.

 2   2

lim n 1 3n 2 limn 1/ n  / n  

Vì  

2

limn;lim 1/ n  / n  1 0

Câu 39 Giá trị  

2

lim

  

A n n n

bằng:

A  B   C 3 D 1

Hướng dẫn giải: Chọn C.

Ta có  

2

2

2

6

lim lim

6  

   

 

n n n

A n n n

(28)

2

6

lim lim

6

6 1 1

  

   

n

n n n

n

Câu 40 Giá trị  

3

lim

  

B n n n

bằng:

A  B   C 0 D 3

Hướng dẫn giải: Chọn D.

Ta có:  

3

lim

  

B n n n

 

2

2 3

3 2

3

9 lim

9

   

n

n n n n n n

2

9

lim

9

1 1

 

 

   

 

nn

Câu 41 Giá trị  

3

2

lim 2

   

D n n n n

bằng:

A  B   C

1

3 D 1

Hướng dẫn giải: Chọn C.

Ta có:    

3

2

lim lim

     

D n n n n n n

2

3

2 3 2 2

2

lim lim

2 ( )

 

     

n n

n n n n n n n n n

2

3

2

lim lim

3

2 2

1 (1 ) 1

  

     

n n n .

Câu 42 Giá trị  

3

lim

   

M n n n

bằng:

A

1 12 

B   C 0 D 1

Hướng dẫn giải: Chọn A.

Ta có:

2

3

2 2

3

1

lim

12

(1 )

 

     

n M

n n n n n n

Câu 43 Giá trị  

3

2

lim

   

N n n n

bằng:

A  B   C 0 D 1

(29)

Ta có:    

3

2

lim lim

     

N n n n n n

Mà:  

2

2

1

lim lim

4

   

 

n n

n n

3 

3

2 2

3

lim lim

(8 )

   

   

n n n n

n n n n n n

Vậy N 0

Câu 44 Giá trị  

3 2

lim

      

K n n n n n

bằng:

A  B   C

5 12 

D 1

Hướng dẫn giải: Chọn C.

Ta có:    

3 2

lim 3lim

       

K n n n n n n

Mà:  

3

lim

3

   

n n n

;  

2

lim

4

   

n n n

Do đó:

1

3 12

  

K

Câu 45 Giá trị  

3

lim

   

N n n n

bằng:

A  B   C 0 D 1

Hướng dẫn giải: Chọn D.

2

3

3 2 2

3

3

lim

( 1)

 

     

n N

n n n n n n

Câu 46 Giá trị lim nn 1 n1 là:

A 1. B 0 C 1. D .

Hướng dẫn giải: Chọn C.

   

 

1

lim 1 lim lim

1 1 1/ 1/

    

         

         

 

n n n n

n n n

n n n n n

Câu 47 Giá trị  

3

lim

   

H n n n n

bằng:

A  B   C

2 

D 1

Hướng dẫn giải: Chọn C.

3   

lim lim

3

      

(30)

Câu 48 Giá trị  

2

lim 2

   

A n n n

bằng:

A  B   C 2 D 1

Hướng dẫn giải: Chọn A.

Ta có

2

2

lim  1

     

 

A n

n n

Do

2

2

lim ;lim 1  12

 

 

n

n n

Câu 49 lim 200 35  n52n :2

A.0 B.1. C.. D. 

Hướng dẫn giải: Chọn D

Ta có:

5 5

5

200

lim 200 3 n 2n limn  3

n n

Nhưng

5

5

200

lim  3  3 0

n n lim n

Nên lim 200 35  n52n2  

Câu 50 Giá trị

3

3

2 sin lim

1

 

n n

A

n bằng:

A  B   C 2 D 1

Hướng dẫn giải: Chọn C.

3

3

sin 2

lim

1

 

 

n n A

n

Câu 51 Giá trị

n

3

! lim

2 

n B

n n bằng:

A  B   C 0 D 1

Hướng dẫn giải: Chọn C.

Ta có:

n n

3 3

!

0

2     

  

n

n n n

B

n n n n n n

Câu 52 Giá trị 2

1 lim

( 3 1)

 

  

n D

n n n bằng:

A  B   C

2

3 D 1

(31)

Câu 53 Giá trị Elim( n2  n )n bằng:

A  B   C 0 D 1

Hướng dẫn giải: Chọn B.

Câu 54 Giá trị F lim n 1 n bằng:

A  B   C 0 D 1

Hướng dẫn giải: Chọn A.

Câu 55 Giá trị H lim(k n2 1 pn21) bằng:

A  B   C Đáp án khác D 1

Hướng dẫn giải: Chọn C.

Xét trường hợp

TH1: kpH   TH 2: kpH  TH 3: k p H 0

Câu 56 Tính giới hạn dãy số

1 1

2 2 ( 1)

   

    

n

u

n n n n :

A  B   C 0 D 1

Hướng dẫn giải: Chọn D.

Ta có:

1 1

(k1) k k k 1 kk1

Suy

1

1 lim

1

   

n n

u u

n

Câu 57 Tính giới hạn dãy số

3 3

3

( 1)

3

   

 

n

n n

u

n n :

A  B   C

1

9 D 1

Hướng dẫn giải: Chọn C.

Ta có:

2

3 3 ( 1)

1

3 

 

    

 

n n n

Suy

2

3

( 1)

lim

3(3 2)

  

 

n n

n n

u u

n n .

Câu 58 Tính giới hạn dãy số

1 1

(1 )(1 ) (1 )

   

n

n

u

T T T

( 1)

 

n n n T

:

A  B   C

1

3 D 1

(32)

Ta có:

1 ( 1)( 2)

1

( 1) ( 1)

 

   

 

k

k k

T k k k k

Suy

1

lim

3

  

n n

n

u u

n .

Câu 59 Tính giới hạn dãy số

3 3

3 3

2 1

2 1

  

  

n

n u

n :

A  B   C

2

3 D 1

Hướng dẫn giải: Chọn C.

Ta có

3

3

1 ( 1)( 1)

1 ( 1)[( 1) ( 1) 1]

   

     

k k k k

k k k k

Suy

2

2

lim

3 ( 1)

 

   

n n

n n

u u

n n

Câu 60 Tính giới hạn dãy số

2

 

n

n k

k

k u

:

A  B   C 3 D 1

Hướng dẫn giải: Chọn C.

Ta có: 1

1 1 1

2 2 2  

 

      

 

n n n n

n

u u

1

1

lim

2 2 

n   nn

n

u u

Câu 61 Tính giới hạn dãy số un  q 2q2 nqn với q 1 :

A  B   C  

2

1

q q

D  

2

1

q q

Hướng dẫn giải: Chọn C.

Ta có: unqun  q q2q3 qnnqn1

1

1 (1 )

1

   

n n n

q

q u q nq

q Suy lim n 1 2

q u

q

Câu 62 Tính giới hạn dãy số 1

n n

k

n u

n k :

A  B   C 3 D 1

Hướng dẫn giải: Chọn D.

Ta có: 2 2

1

1 1

 

     

n   n

n n n

n u n u

n n n n n

2

1 lim

1

n    n

n

u u

(33)

Câu 63 Tính giới hạn dãy số

3

2

1

lim

(2 3)

    

n n n n

B

n :

A  B   C 3 D

3 

Hướng dẫn giải: Chọn D.

Chia tử mẫu cho n2 ta có được:

3

5

2

1

1

1

lim

4

3

    

  

 

 

 

n n n n

B

n .

Câu 64 Tính giới hạn dãy số  

2

lim

   

C n n n

:

A  B   C 3 D

1

Hướng dẫn giải: Chọn D.

Ta có:

2

2

1

1

lim lim

4 1

4 4 2

 

  

  

  

n n

C

n n n

n n

Câu 65 Tính giới hạn dãy số  

3

2

lim

      

D n n n n n

:

A  B   C

1 

D 1

Hướng dẫn giải: Chọn C.

Ta có:    

3

2

lim 2lim

       

D n n n n n n

Mà:  

2

2

1

lim lim

1 

   

   n

n n n

n n n

1

1 1

lim

2 1

1

 

  

n

n n

3 

3

3 2 2

3

1

lim lim

( 1)

   

     

n

n n n

n n n n n n

2

2

3

4

1

1 1

lim

3

1 1

1 1

 

 

     

 

 

n

n n n n

Vậy

1

2

  

D

(34)

Câu 66 Cho dãy số ( )x xác định n

2

1

1

, ,

2 

nnn  

x x x x n

Đặt

1 1

1 1

   

   

n

n

S

x x x Tính limS n

A  B   C 2 D 1

Hướng dẫn giải: Chọn C.

Từ công thức truy hồi ta có: xn1xn,  n 1, 2,

Nên dãy ( )x dãy số tăng.n

Giả sử dãy ( )x dãy bị chặn trên, tồn lim n xn x

Với x nghiệm phương trình : xx2xx 0 x1 vơ lí Do dãy ( )x không bị chặn, hay lim n xn

Mặt khác:

1 1

( 1)

  

 

n n n n n

x x x x x

Suy ra:

1 1

1   

n n n

x x x

Dẫn tới: 1 1

1 1

2 lim lim

  

       

n n

n n n

S S

x x x x

Câu 67 Cho dãy ( )x xác định sau: k

1

2! 3! ( 1)!

   

k

k x

k

Tìm limu với n     2011

n n n

n n

u x x x

A  B   C

1

2012! 

D

1

2012! 

Hướng dẫn giải: Chọn C.

Ta có:

1

( 1)! ! ( 1)! k

k k k nên

1

( 1)!  

k

x

k

Suy 1

1

0 ( 2)! ( 1)!

 

     

 

k k k k

x x x x

k k

Mà: 2011    2011  2011 2011

n n n n

n

x x x x x

Mặt khác: 2011 2011 2011

1

lim lim 2011

2012!

n   

x x x

Vậy

1

lim

2012!  

n u

Câu 68 Cho dãy số ( )u xác định bởi: n

0

1

2011

   

 

n n n

u

u u

u Tìm

3

limun

n .

(35)

Chọn C.

Ta thấy un 0, n

Ta có:

3

1

3

3

    

n n

n n

u u

u u (1) Suy ra: un3 u3n1 3 un3u033n (2)

Từ (1) (2), suy ra:  

3 3

1 3 2

0 0

1 1

3

3 3

        

 

n n n

u u u

u n u n n n

Do đó:

3

0

1

1 1

3

3  

     

n n

n

k k

u u n

k k (3)

Lại có:

1 1 1

1 2

1.2 2.3 ( 1)

       

n

k k n n n

2

1

1

2

 

 

 

n n

k k

n n

k k

Nên:

3 3

0

2

3

9

  n     n

u n u u n

Hay

3 3

0 2

3

9

uun  u  

n n n n n

Vậy

3

limun 3

n .

Câu 69 Cho dãy x0 xác định sau:

1 ( ) x  f x

x Tìm 0;  .

A  B   C 2010 D 1

Hướng dẫn giải: Chọn C.

Ta có

2

1

1

2010 2010

 

 

  nn nn

n n

n n n

u u u u

u u

u u u

1

1

2010

 

 

    

 

n

n n n

u

u u u

Ta có 1 1

1 1

2010( ) 2010(1 )

  

   

n

n n n

u

u u u u

Mặt khác ta chứng minh được: limun 

Nên

lim( ) 2010

u n

u

u .

Câu 70 Tìm limu biết n

(2 1)

2

    

n

n n

u

n

A  B   C

1

2 D 1

Hướng dẫn giải: Chọn C.

Ta có: 2    n1n2 nên

1 lim

2 

(36)

Câu 71 Tìm limu biết n

3 2 2 1

( ) 1

3

   

 

 

  

x x

x

f x x

m x

A  B   C 2 D

3 6

2

Hướng dẫn giải: Chọn D.

Ta có:

( 1)

2     n n n

2 2 ( 1)(2 1)

1

6

 

  nn n n

Nên

3 6

lim

2 

n u

Câu 72 Tìm limu biết n

2

1

( )

2   

 



   

x

x

f x x

x m x

A  B   C 2 D 1

Hướng dẫn giải: Chọn D.

Ta có:

1 1

(k1) k k k 1 kk1 Suy

1

1 lim

1

   

n n

u u

n

Câu 73 Tìm limu biết n

2

( ) 1

2

   

 

 

  

x x

f x x

x

x mx m x1.

A  B   C

1

3 D 1

Hướng dẫn giải: Chọn C.

Ta có:

1 ( 1)( 2)

1

( 1) ( 1)

 

   

 

k

k k

T k k k k Suy

1

lim

3

  

n n

n

u u

n .

Câu 74 Tìm limu biết n

1

 

n n

k u

n k

A  B   C 3 D 1

Hướng dẫn giải: Chọn D.

Ta có: 2

1 1

, 1, 2, ,

  

  

k n

n n n k n Suy   1

n

n n

u

n n n

Mà 2

lim lim

1

 

 

n n

n n n nên suy limun 1.

Câu 75 Tìm limu biết n dau can

2 

    

(37)

Hướng dẫn giải: Chọn C.

Ta có:

2

1

1 1 1

2

2 2

2

  

    

 

 

n n

n

u ,nên

1

2

lim lim 2

      

 

n

n

u .

Câu 76 Gọi g x( ) 0,   x dãy số xác định  Tìm xlim ( ) lim2 f xx2 2x 3  3

A  B   C

4

3 D 1

Hướng dẫn giải: Chọn C.

Ta có 3

4 8

0 3

9 9

uuu   u    uu

nên dãy ( )u dãy tăng n

Dễ dàng chứng minh

*

4 ,

   

n

u n

.Từ tính

4 lim

3 

n u

Câu 77 Cho dãy số

2

2 2

1 2 2

1 1

3

2

   

        

   

A x x x x x x x x

xác định sau

1

xx

Đặt 

x

Tìm  x32x 3 2 x 0 .

A  B   C

1

2 D 1

Hướng dẫn giải: Chọn C.

Ta có:

2 2

1 ( )( 2) ( 1)

        

n n n n n n n

u u u u u u u

un23un1

Suy ra: 1

1 1

1 ( 1)( 2)

1

      

  

n n n

n n n

u u u

u u u

Suy ra:

1 1

2  1 

  

n n n

u u u

Do đó, suy ra: 1 1

1 1 1

1 1

   

 

      

    

 

n n

i i i n n

v

u u u u u

Mặt khác, từ un1 un23un1 ta suy ra: 13

n n

u

Nên

1

lim

1

 

n

u Vậy

1 lim

2 

n v

Câu 78 Cho a b,  ,( , ) 1;a bnab1,ab2, 

å

Kí hiệu r số cặp số ( , ) n u v å å

sao cho n au bv Tìm

1 lim

  

n n

r

(38)

A  B   C

ab D ab1

Hướng dẫn giải: Chọn C.

Xét phương trình

1 0; 

 

 

 

n

n (1)

Gọi ( , )u v nghiệm nguyên dương (1) Giả sử 0 ( , )u v nghiệm nguyên dương

khác ( , )u v (1) 0

Ta có au0bv0 n au bv n suy ,   a u u(  0)b v v(  0) 0 tồn k nguyên dương

sao cho u u 0kb v v,  0 ka Do v số nguyên dương nên

0

1

1 

   v

v ka k

a (2)

Ta nhận thấy số nghiệm nguyên dương phương trình (1) số số k nguyên dương

cộng với Do

01 1 1

   

     

   

n

v n u

r

a ab b a .

Từ ta thu bất đẳng thức sau:

0 1 1.

u   nu  

n n

r

ab b a ab b a

Từ suy :

0

1 1 1

u  rn   u  

ab nb na n ab nb na n

Từ áp dụng nguyên lý kẹp ta có

1 lim

  

n n

r

n ab

Câu 79 Cho dãy số có giới hạn (un) xác định :

1

1

1

,

2

    

  

 

n n

u

u n

u

Tìm kết limu n

A.0 B.1. C.1. D.

1

Hướng dẫn giải: Chọn B

Ta có:

1

; ; ; ; ;

2

    

u u u u u

Dự đoán n  1

n u

n với n *

Dễ dàng chứng minh dự đoán phương pháp quy nạp

Từ

1

lim lim lim

1

1 1

  

 

n

n u

n

n .

Câu 80 Tìm giá trị

1 1

2

2

 

        

n

S

(39)

A. 1 B. 2 C.2 2 D.

1 .

Hướng dẫn giải: Chọn C

Ta có:

1 1 1

2 2

1

2 1

2

 

         

n  

S

Câu 81 Tính giới hạn:  

1 1

lim

1.2 2.3

 

  

 

n n

A.0 B.1. C.

3

2 D Khơng có

giới hạn

Hướng dẫn giải: Chọn B

Đặt :

 

1 1

1.2 2.3

   

A

n n  1 2 31 1   1n n 11  1 n11nn1

 

1 1

lim lim lim

1

1.2 2.3 1 1

 

        

 

  

n

n n n

n

Câu 82 Tính giới hạn:  

1 1

lim

1.3 3.5

 

  

 

n n

A.1. B.0 C.

2

3 D.2.

Hướng dẫn giải: Chọn B

Đặt

 

 

1 1

1.3 3.5

2 2

2

1.3 3.5

1 1 1 1

2

3 5

1

2

2

2

   

    

         

   

 

 

A

n n

A

n n

A

n n n

A

n n

n A

n

Nên

 

1 1 1

lim lim lim

1

1.3 3.5 2 2

 

     

 

 

  

n

n n n

(40)

Câu 83 Tính giới hạn:  

1 1

lim

1.3 2.4

 

  

 

n n

A.

3

4 B.1. C.0 D.

2

Hướng dẫn giải: Chọn A

Ta có :    

1 1 2

lim lim

1.3 2.4 2 1.3 2.4

   

      

   

 

n n   n n

1 1 1 1

lim

2

 

         

n n

1 1

lim

2 2

 

    

n

Câu 84 Tính giới hạn:

1 1

lim

1.4 2.5 ( 3)

 

  

 

n n  .

A 11

18 B 2. C 1. D

3

Hướng dẫn giải: Chọn A.

Cách 1:

1 1 1 1 1 1

lim lim

1.4 2.5 ( 3)

    

             

     

 

 

n nn n

1 1 1

lim

3 3

  

        

  

 

n n n

     

2

11 12 11 11

lim

18 18

   

    

  

 

n n

n n n

Cách 2: Bấm máy tính sau:  

100

1

1  x x

so đáp án (có thể thay 100 số nhỏ lớn hơn)

Câu 85 Tính giới hạn: 2

1 1

lim 1

2

     

  

     

 

     

n  .

A 1. B

1

2 C

1

4 D

3

Hướng dẫn giải: Chọn B.

Cách 1:

2 2

1 1 1 1 1

lim 1 lim 1 1 1

2 2 3

                 

         

                 

   

                 

n   n n

1 1

lim 2 3

 

 

  

 

n n

n n

1 1

lim

2

n

n

Cách 2: Bấm máy tính sau:

100

2

1

 

 

 

x

Ngày đăng: 25/12/2020, 11:13

TỪ KHÓA LIÊN QUAN

w