1. Trang chủ
  2. » Giáo án - Bài giảng

12 de thi hsg toan 7

41 18 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 41
Dung lượng 1,86 MB

Nội dung

www.tailieugiaoduc.com.com PHÒNG GIÁO DỤC-ĐÀO TẠO ĐỀ THI CHỌN HỌC SINH GIỎI CẤP HUYỆN ĐỨC PHỔ NĂM HỌC 2015 - 2016 ĐỀ CHÍNH THỨC MƠN: TỐN - LỚP Thời gian: 120 phút (không kể thời gian giao đề) Ngày thi: 10/4/2016 Câu 1: (5 điểm) 1 + a− , với a = 2014 2016 2015 x −1 b) Tìm số ngun x để tích hai phân số số nguyên x +1 a) Tính giá trị biểu thức P = a − Câu 2: (5 điểm) a) Cho a > 2, b > Chứng minh ab > a + b b) Cho ba hình chữ nhật, biết diện tích hình thứ diện tích hình thứ hai tỉ lệ với 5, diện tích hình thư hai diện tích hình thứ ba tỉ lệ với 8, hình thứ hình thứ hai có chiều dài tổng chiều rộng chúng 27 cm, hình thứ hai hình thứ ba có chiều rộng, chiều dài hình thứ ba 24 cm Tính diện tích hình chữ nhật Câu 3: (3 điểm) Cho ∆DEF vng D DF > DE, kẻ DH vng góc với EF (H thuộc cạnh EF) Gọi M trung điểm EF · µ −F µ a) Chứng minh MDH =E b) Chứng minh EF - DE > DF - DH Câu 4: (2 điểm) Cho số < a1 < a2 < a3 < < a15 Chứng minh a1 + a2 + a3 + + a15 2, b > Chứng minh ab > a + b 1 Từ a > ⇒ < a 0.5 www.tailieugiaoduc.com Trang www.tailieugiaoduc.com.com 2đ 3đ 0.5 0.5 b) Cho ba hình chữ nhật, biết diện tích hình thứ diện tích hình thứ hai tỉ lệ với 5, diện tích hình thư hai diện tích hình thứ ba tỉ lệ với 8, hình thứ hình thứ hai có chiều dài tổng chiều rộng chúng 27 cm, hình thứ hai hình thứ ba có chiều rộng, chiều dài hình thứ ba 24 cm Tính diện tích hình chữ nhật Gọi diện tích ba hình chữ nhật S1 , S , S3 , chiều dài, chiều rộng tương ứng d1 , r1 ; d , r2 ; d3 , r3 theo đề ta có S1 S = ; = d1 = d ; r1 + r2 = 27; r2 = r3 , d = 24 S S3 Vì hình thứ hình thứ hai chiều dài S1 r1 r r r + r 27 = = ⇒ 1= = = =3 S r2 9 Suy chiều rộng r1 = 12cm, r2 = 15cm Vì hình thứ hai hình thứ ba chiều rộng 7d S2 d2 7.24 = = ⇒ d2 = = = 21cm S3 d 8 3đ 0.5 1 < b 1 a+b a + b b>2⇒ 0.5 0.5 0.25 0.25 0.25 0.25 0.25 Vậy diện tích hình thứ hai S = d r2 = 21.15 = 315 cm 0.25 4 0.25 Diện tích hình thứ S1 = S = 315 = 252 cm 5 0.25 8 Diện tích hình thứ ba S3 = S = 315 = 360 cm 7 Cho ∆DEF vuông D DF > DE, kẻ DH vng góc với EF (H thuộc cạnh EF) Gọi M trung điểm EF · µ −F µ a) Chứng minh MDH =E 0.5 Hình vẽ đúng, xác 0.25 Vì M trung điểm EF suy MD = ME = MF 0.25 µ = MDE · ⇒ ∆MDE cân M ⇒ E · µ phụ với E µ Mà HDE =F 0.25 · · · 0.25 Ta có MDH = MDE − HDE · µ −F µ Vậy MDH = E b) Chứng minh EF - DE > DF - DH Trên cạnh EF lấy K cho EK = ED, cạnh DF lấy I cho DI = DH 0.25 Ta có EF - DE = EF - EK = KF DF - DH = DF - DI = IF 0.25 www.tailieugiaoduc.com Trang www.tailieugiaoduc.com.com (2đ) (5đ) Ta cần chứng minh KF > IF · · - EK = ED ⇒ ∆DHK ⇒ EDK = EKD · · · · - EDK + KDI = EKD + HDK = 900 · · ⇒ KDI = HDK - ∆DHK = ∆DIK (c-g-c) · · ⇒ KID = DHK = 900 Trong ∆KIF vuông I ⇒ KF > FI điều phải chứng minh Cho số < a1 < a2 < a3 < < a15 a1 + a2 + a3 + + a15 4n – = n => n = a) (2điểm) 27 b) (2điểm) < 2n < 64 => 23 < 2n < 26 => n = 4, n = Câu Thực phép tính: (3điểm) 1 1 − − − − − 49 ( + + + + ) 8.15 15.22 43.50 217 1 1 1 1 − (1 + + + + + 49) + − + + − ) = (1 − + − 8 15 15 22 43 50 217 1 − (12.50 + 25) 49 − 625 7.7.2.2.5.31 = ) = =− =− = (1 − 50 217 50 7.31 7.2.5.5.7.31 Câu Tìm cặp số (x; y) biết: (2điểm) x y x y2 xy 405 a) = vµ xy=405 => = = = =9 25 81 5.9 45 => x2 = 9.25 = 152 => x = ± 15 => y2 = 9.81 = 272 => y = ± 27 Do x, y dấu nên: x = 15; y = 27 x = - 15; y = - 27 (2điểm) b) 1+5y 1+7y 1+9y = = 24 7x 2x Áp dụng tính chất dãy tỉ số ta có: 1+5y 1+7y 1+9y 1+ 9y − 1− 7y 2y 1+ 7y − 1− 5y 2y = = = = = = 24 7x 2x 2x − 7x −5x 7x − 24 7x − 24 2y 2y = => => - 5x = 7x – 24 => x = −5x 7x − 24 Thay x = vào ta được: + 5y y = => - - 25y = 24 y => - 49y = => y = − 24 −5 49 Vậy x = 2, y = − thoả mãn đề 49 Câu Tìm giá trị nhỏ lớn biểu thức sau: a) (2điểm) A= x +5 +5 Ta có : x + ≥ Dấu “=” xẩy ⇔ x = - ⇒ A ≥ www.tailieugiaoduc.com Trang www.tailieugiaoduc.com.com Vậy: Min A = ⇔ x = - 10 x + 17 ( x + ) + 10 B= = = + x2 + x2 + x2 + b) (2điểm) Ta có: x ≥ Dấu = xảy ⇔ x = ⇒ x + ≥ (2 vế dương) ⇒ 10 10 10 10 17 ⇒ B≤ ≤ ≤ 1+ => + x +7 x +7 7 Dấu “=” xảy ⇔ x = Vậy: Max B = 17 ⇔ x = Câu a) (3điểm) Từ I kẻ đường thẳng // BC cắt AB H Nối MH Ta có: ∆ BHM = ∆ IMH vì: · · (so le trong) BHM = IMH A · · (so le trong) BMH = IHM Cạnh HM chung =>BM = IH = MN H I ∆ AHI = ∆ IMN vì: IH = MN (kết trên) · · · AHI = IMN (= ABC) · · (đồng vị) AIH = INM B M N C => AI = IN (đpcm) b) (2điểm) Từ A kẻ đường thẳng song song với BC cắt EF P ∆ PKA = ∆ FKB vì: · · (đối đỉnh) PKA = FKB E · · (so le trong) APK = BFK A P AK = KB (gt) => AP = BF (1) K · · (đồng vị) EPA = KFC · · ( ∆ CFE cân) CEF = KFC · · => EPA => ∆ APE cân = CEF => AP = AF (2) Từ (1) (2) => AE = BF (đpcm) B F C www.tailieugiaoduc.com Trang www.tailieugiaoduc.com.com PHÒNG GIÁO DỤC VÀ ĐÀO TẠO HẬU LỘC ĐỀ GIAO LƯU HỌC SINH GIỎI CẤP HUYỆN Năm học: 2013-2014 Môn thi: Toán Lớp THCS Ngày thi: 07 tháng năm 2014 Thời gian : 150 phút (không kể thời gian giao đề) Đề có 01 trang ĐỀ THI CHÍNH THỨC Số báo danh … .…… Câu 1(5 điểm): a) Cho biểu thức: P = x - 4xy + y Tính giá trị P với x = 1,5; y = -0,75 b) Rút gọn biểu thức: A= 212.35 − 46.81 ( 3) + 84.35 Câu (4điểm): a) Tìm x, y, z, biết: 2x = 3y; 4y = 5z x + y + z = 11 b) Tìm x, biết: x + + x + + x + = x Câu 3(3 điểm) Cho hàm số: y = f(x) = -4x3 + x a) Tính f(0), f(-0,5) b) Chứng minh: f(-a) = -f(a) Câu 4: (1,0 điểm): Tìm cặp số nguyên (x;y) biết: x + y = x.y Câu 5(6 điểm):Cho ∆ ABC có góc A nhỏ 900 Vẽ ngồi tam giác ABC tam giác vng cân A ∆ ABM ∆ ACN a) Chứng minh rằng: ∆ AMC = ∆ ABN; b) Chứng minh: BN ⊥ CM; c) Kẻ AH ⊥ BC (H ∈ BC) Chứng minh AH qua trung điểm MN Câu (1 điểm):Cho ba số a, b, c thõa mãn: ≤ a ≤ b + ≤ c + a + b + c = Tìm giá trị nhỏ c Hết Chú ý: - Giám thị khơng giải thích thêm www.tailieugiaoduc.com Trang www.tailieugiaoduc.com.com - Học sinh khơng dùng máy tính PHÒNG GIÁO DỤC VÀ ĐÀO HUYỆN HẬU LỘC HƯỚNG DẪN CHẤM ĐỀ THI HỌC SINH GIỎI TOÁN NĂM HỌC 2013-2014 Câu Câu (5điểm) Nội dung a) Ta có: x = 1,5 ⇒ x = 1,5 x = -1,5 +) Với x = 1,5 y = -0,75 P = 1,5 -4.1,5(-0,75) -0,75 = 1,5(1 + 3) = -0,75 = 5,25 +) Với x = -1,5 y = - 0,75 P = -1,5 -4(-1,5).(-0,75) - 0,75 = -1,5(1+3) - 0,75 = -6,75 b) A = 212.35 − 46.81 ( 3) + 84.35 = 212.35 − 212.34 212.34 (3 − 1) = = 212.36 − 212.35 212.35 (3 − 1) x y y z x y y z = ; = ⇒ = ; = 15 10 10 x y z x + y + z 11 ⇒ = = = = = 15 10 15 + 10 + 33 10 ⇒ x = 5; y = ;z= 3 a) 2x = 3y; 4y = 5z ⇒ Câu (4 điểm) Câu (3điểm) Điểm 1,5 1,5 1 b) x + + x + + x + = x (1) Vì VT ≥ ⇒ x ≥ hay x ≥ 0, đó: x + = x + 1; x + = x + 2; x + = x + ⇒ x=6 (1) ⇒ x + + x + + x + = 4x a) f(0) = 1 1 f(-0,5) = -4.(- )3 - = − = 2 2 b) f(-a) = -4(-a)3 - a = 4a3 - a 1 0,5 www.tailieugiaoduc.com Trang 10 www.tailieugiaoduc.com.com Phòng Giáo dục- Đào tạo TRựC NINH ***** đề thức đề thi chọn học sinh giỏi cấp huyện năm học: 2008 - 2009 môn: Toán (Thời gian:120 phút, không kể thời gian giao đề) Đề thi gồm 01 trang Bài 1: (3,5 điểm) Thực phép tính:  −3   −4  a)  + ÷: +  + ÷:  11  11  11  11 1 1 − − − − − b) 99.97 97.95 95.93 5.3 3.1 Bài 2: (3,5 điểm) Tìm x; y; z biÕt: a) 2009 – x − 2009 = x b) ( x − 1) 2008 2008 + y ữ Bài 3: (3 ®iĨm) T×m sè a; b; c biÕt: + x+ y−z =0 3a − 2b 2c − 5a 5b − 3c = = vµ a + b + c = 50 Bài 4: (7 điểm) Cho tam giác ABC cân (AB = AC ; góc A tù) Trên cạnh BC lấy điểm D, tia đối cđa CB lÊy ®iĨm E cho BD = CE Trên tia đối CA lấy điểm I cho CI = CA C©u 1: Chøng minh: a) ∆ABD = ∆ICE b) AB + AC < AD + AE C©u 2: Từ D E kẻ đờng thẳng vuông góc với BC cắt AB; AI theo thứ tự M; N Chứng minh BM = CN Câu 3: Chứng minh chu vi tam giác ABC nhỏ chu vi tam giác AMN Bài (3 điểm): Tìm số tự nhiên a; b cho (2008.a + 3.b + 1).(2008a + 2008.a + b) = 225 www.tailieugiaoduc.com Trang 27 www.tailieugiaoduc.com.com Đáp án Đề thi HSG môn Toán 7-TRựC NINH Bài 1: điểm Câu a: điểm (kết = 0) Câu b: điểm 1 1 − − − − − 99.97 97.95 95.93 5.3 3.1 = 1 1   − + + + + ÷ 99.97  1.3 3.5 5.7 95.97  = 1 1 1 1  − 1 − + − + − + + − ÷ 99.97  3 5 95 97  1  − 1 − ÷ 99.97  97  48 = − 99.97 97 −4751 = 99.97 = Bài 2: 3,5 điểm Câu a: ®iÓm - NÕu x ≥ 2009 ⇒ 2009 – x + 2009 = x ⇒ 2.2009 = 2x ⇒ x = 2009 ⇒ - NÕu x < 2009 2009 – 2009 + x = x ⇒ 0=0 VËy víi ∀ x < 2009 thoả mÃn - Kết luận : víi x ≤ 2009 th× 2009 − x − 2009 = x Hoặc cách 2: 2009 x 2009 = x ⇒ 2009 − x = x − 2009 ⇒ x − 2009 = − ( x − 2009 ) x 2009 Câu b: 1,5 điểm x= ; y= ; z= 10 Bài 3: 2,5 điểm www.tailieugiaoduc.com Trang 28 www.tailieugiaoduc.com.com 3a 2b 2c − 5a 5b − 3c = = 15a − 10b 6c − 15a 10b − 6c ⇒ = = 25 ¸p dơng tÝnh chÊt d·y tØ sè b»ng cã: 15a − 10b 6c − 15a 10b − 6c 15a − 10b + 6c − 15a + 10b − 6c = = = =0 25 38 a b 2 = 15a − 10b = 3a = 2b    a c ⇒ 6c − 15a = ⇒ 2c = 5a ⇒  = 10b − 6c = 5b = 3c 2   c b 5 =  a b c VËy = =  a = −10  ¸p dơng tÝnh chÊt d·y tØ sè b»ng ⇒ b = 15 c = 25 Bài 4: điểm A M O B C E D N I C©u 1: câu cho 1,5 điểm Câu a: Chứng minh VABD =VICE ( cgc ) C©u b: cã AB + AC = AI V× VABD =VICE ⇒ AD = EI (2 cạnh tơng ứng) www.tailieugiaoduc.com Trang 29 www.tailieugiaoduc.com.com áp dụng bất đẳng thức tam giác VAEI có: AE + EI > AI hay AE + AD > AB + AC Câu 2: 1,5 điểm Chứng minh vBDM = vCEN (gcg) BM = CN Câu 3: 2,5 điểm Vì BM = CN ⇒ AB + AC = AM + AN (1) cã BD = CE (gt) ⇒ BC = DE Gọi giao điểm MN với BC O ta cã: V V MO > OD   ⇒ MO + NO > OD + OE NO > OE  ⇒ MN > DE ⇒ MN > BC ( ) Tõ (1) vµ (2) ⇒ chu vi VABC nhá chu vi VAMN Bài 5: điểm Theo đề bµi ⇒ 2008a + 3b + vµ 2008a + 2008a + b số lẻ Nếu a 2008a + 2008a số chẵn để 2008a + 2008a + b lỴ ⇒ b lỴ NÕu b lẻ 3b + chẵn 2008a + 3b + chẵn (không thoả mÃn) Vậy a = Víi a = ⇒ (3b + 1)(b + 1) = 225 V× b ∈ N ⇒ (3b + 1)(b + 1) = 3.75 = 45 = 9.25 3b + không chia hết cho 3b + > b + 3b + = 25 ⇒ ⇒b=8 b + = VËy a = ; b = PHÒNG GIÁO DỤC VÀ ĐÀO TẠO VIỆT YÊN ĐỀ THI HỌC SINH GIỎI CẤP HUYỆN NĂM HỌC 2012-2013 MƠN THI: TỐN ĐỀ CHÍNH THỨC Thời gian làm bài:120 phút Câu (4,0 điểm) 2 1   − 0, 25 +  0, − + 11 ÷: 2012 − 1) M =  ÷  1, − + 1 − 0,875 + 0, ÷ 2013 11   www.tailieugiaoduc.com Trang 30 www.tailieugiaoduc.com.com 2 2) Tìm x, biết: x + x − = x + Câu (5,0 điểm) 1) Cho a, b, c ba số thực khác 0, thoả mãn điều kiện:   b  a  a  c  a+ b− c b+ c − a c + a− b = = c a b c b Hãy tính giá trị biểu thức B = 1 + 1 + 1 +  2) Ba lớp 7A, 7B, 7C mua số gói tăm từ thiện, lúc đầu số gói tăm dự định chia cho ba lớp tỉ lệ với 5:6:7 sau chia theo tỉ lệ 4:5:6 nên có lớp nhận nhiều dự định gói Tính tổng số gói tăm mà ba lớp mua Câu (4,0 điểm) 1) Tìm giá trị nhỏ biểu thức A = x − + x − 2013 với x số nguyên 2) Tìm nghiệm nguyên dương phương trình x + y + z = xyz Câu (6,0 điểm) · Cho xAy =600 có tia phân giác Az Từ điểm B Ax kẻ BH vng góc với Ay H, kẻ BK vng góc với Az Bt song song với Ay, Bt cắt Az C Từ C kẻ CM vng góc với Ay M Chứng minh : a ) K trung điểm AC b ) ∆ KMC tam giác c) Cho BK = 2cm Tính cạnh ∆ AKM Câu (1,0 điểm) Cho ba số dương ≤ a ≤ b ≤ c ≤ chứng minh rằng: a b c + + ≤2 bc + ac + ab + Hết -Cán coi thi khơng giải thích thêm Họ tên thí sinh: Số báo danh: PHÒNG GIÁO DỤC VÀ ĐÀO TẠO VIỆT YÊN HD CHẤM THI HỌC SINH GIỎI CẤP HUYỆN NĂM HỌC 2012-2013 MƠN THI: TỐN Thời gian làm bài:120 phút www.tailieugiaoduc.com Trang 31 www.tailieugiaoduc.com.com Câu Nội dung Điểm 2 1   − 0, 25 +  0, − + 11 ÷: 2012 − 1) Ta có: M =  ÷  1, − + 1 − 0,875 + 0, ÷ 2013 11   1  2 2  − + 11 − + ÷ 2012 = − ÷: 7 7 7  − + − + ÷ 2013  11 10   1 1  1 1    − + 11 ÷  − + ÷ ÷ 2012 −   ÷: Câu =    − +   − +  ÷ 2013 (4 điểm)   11 ÷  ÷÷       2  2012 =  − ÷: =0  7  2013 KL:…… 2 2) x + x − > nên (1) => x + x − = x + hay x − = +) Nếu x ≥ (*) = > x -1 = => x = +) Nếu x x -1 = -2 => x = -1 KL:………… Câu 1) (5 điểm) +Nếu a+b+c ≠ Theo tính chất dãy tỉ số ,ta có: a + b− c b+ c − a c + a − b a + b − c + b + c − a + c + a − b = = = =1 a+ b+ c c a b mà => a+ b− c b+ c− a c+ a−b +1= +1= +1 c a b a+ b b+ c c+ a = = =2 c a b  b  a  c =2 => a+ b− c b+c− a c+ a−b +1= +1= +1 c a b a+ b b+ c c+ a = = =1 c a b 0.5đ 0.5đ 0.5đ 0.5đ 0.5đ 0.5đ 0.5đ 0.25đ 0.25đ 0.25đ 0.25đ b+a c+a b+c )( )( ) =8 Vậy B =  + ÷1 + ÷ + ÷ = ( a c b  a  c  b  +Nếu a+b+c = Theo tính chất dãy tỉ số ,ta có: a + b− c b+ c − a c + a − b a + b − c + b + c − a + c + a − b = = = =0 a+ b+ c c a b mà 0.5đ =1 0.25đ 0.25đ 0.25đ 0.25đ www.tailieugiaoduc.com Trang 32 www.tailieugiaoduc.com.com  b  a  c b+a c+a b+c )( )( ) =1 Vậy B =  + ÷1 + ÷ + ÷ = ( a c b  a  c  b  2) Gọi tổng số gói tăm lớp mua x ( x số tự nhiên khác 0) Số gói tăm dự định chia chia cho lớp 7A, 7B, 7C lúc đầu là: a, b, c Ta có: a b c a+b+c x 5x 6x x 7x = = = = ⇒ a = ;b = = ;c = 18 18 18 18 18 (1) Số gói tăm sau chia cho lớp a’, b’, c’, ta có: a , b, c , a , + b , + c, x 4x 5x x , x = = = = ⇒ a , = ; b, = = ;c = 15 15 15 15 15 6x x x − =4⇒ = ⇒ x = 360 15 18 90 (2) 0,5đ 0,5đ 0,5đ 0,25đ Vậy số gói tăm lớp mua 360 gói 0,5đ 1) Ta có: A = x − + x − 2013 = x − + 2013 − x ≥ x − + 2013 − x = 2011 Dấu “=” xảy (2 x − 2)(2013 − x) ≥ ⇔ ≤ x ≤ 0,5đ 0,25đ So sánh (1) (2) ta có: a > a’; b=b’; c < c’ nên lớp 7C nhận nhiều lúc đầu Vây: c’ – c = hay 0,5 đ 2013 KL:…… 2) Vì x,y,z nguyên dương nên ta giả sử ≤ x ≤ y ≤ z Câu Theo = + + ≤ + + = yz yx zx x2 x2 x2 x2 (4 điểm) 0,5đ 0,5đ 0,5đ 0,25đ 0,5đ => x ≤ => x = Thay vào đầu ta có + y + z = yz => y – yz + + z = => y(1-z) - ( 1- z) + =0 => (y-1) (z - 1) = TH1: y -1 = => y =2 z -1 = => z =3 TH2: y -1 = => y =3 z -1 = => z =2 Câu (6 điểm) Vậy có hai cặp nghiệp nguyên thỏa mãn (1,2,3); (1,3,2) V ẽ h ình , GT _ KL 0,5đ 0,25đ 0,25đ 0,25đ 0,25đ www.tailieugiaoduc.com Trang 33 www.tailieugiaoduc.com.com 1đ 1đ 0,5đ 0,25đ 0,25đ · · a, ∆ ABC cân B CAB = ·ACB (= MAC ) BK đường cao ⇒ BK đường trung tuyến ⇒ K trung điểm AC b, ∆ ABH = ∆ BAK ( cạnh huyền + góc nhọn ) ⇒ BH = AK ( hai cạnh t ) mà AK = AC ⇒ BH = AC Ta có : BH = CM ( t/c cặp đoạn chắn ) mà CK = BH = AC ⇒ CM = CK ⇒ ∆ MKC tam giác cân ( ) · Mặt khác : MCB = 900 ·ACB = 300 · ⇒ MCK = 600 (2) Từ (1) (2) ⇒ ∆ MKC tam giác c) Vì ∆ ABK vng K mà góc KAB = 300 => AB = 2BK =2.2 = 4cm Vì ∆ ABK vng K nên theo Pitago ta có: AK = AB − BK = 16 − = 12 Mà KC = AC => KC = AK = 12 ∆ KCM => KC = KM = 12 Theo phần b) AB = BC = AH = BK = HM = BC ( HBCM hình chữ nhật) => AM = AH + HM = 0,25đ 0,5đ 0,25đ 0,25đ 0,25đ 0,25đ 0,25đ 0,5đ 0,25đ www.tailieugiaoduc.com Trang 34 www.tailieugiaoduc.com.com Câu (1 điểm) Vì ≤ a ≤ b ≤ c ≤ nên: 1 c c ≤ ⇔ ≤ (1) ab + a + b ab + a + b a a b b ≤ ≤ Tương tự: (2) ; (3) bc + b + c ac + a + c a b c a b c + + ≤ + + Do đó: (4) bc + ac + ab + b + c a + c a + b a b c 2a 2b 2c 2(a + b + c) + + ≤ + + = = (5) Mà b+c a +c a +b a+b+c a +b+c a+b+c a+b+c a b c + + ≤ (đpcm) Từ (4) (5) suy ra: bc + ac + ab + (a − 1)(b − 1) ≥ ⇔ ab + ≥ a + b ⇔ 0,25đ 0,25đ 0,25đ 0,25đ Lưu ý: - Các tổ cần nghiên cứu kỹ hướng dẫn trước chấm - Học sinh làm cách khác mà cho điểm tối đa - Bài hình khơng có hình vẽ khơng chấm - Tổng điểm cho điểm lẻ đến 0,25đ ( ví dụ : 13,25đ , 14,5đ, 26,75đ) PHÒNG GD & ĐT CHƯƠNG MỸ ĐỀ CHÍNH THỨC (Đề gồm trang) ĐỀ THI GIAO LƯU HỌC SINH GIỎI NĂM HỌC: 2014 - 2015 Mơn thi: TỐN Thời gian: 120 phút (Khơng kể thời gian giao đề) Câu 3 + 11 12 + 1,5 + 1− 0,75 a Thực phép tính: 5 −0,265 + 0,5 − − 2,5 + − 1,25 11 12 b So sánh: 50 + 26 + 168 0,375 − 0,3 + Câu a Tìm x biết: x − + − x = x + b Tìm x; y ∈ Z biết: xy + x − y = c Tìm x; y; z biết: 2x = 3y; 4y = 5z 4x - 3y + 5z = Câu a Tìm đa thức bậc hai biết f(x) - f(x-1) = x Từ áp dụng tính tổng S = 1+2+3+ + n b Cho 2bz − 3cy 3cx − az ay − 2bx x y z = = Chứng minh: = = a 2b 3c a 2b 3c Câu www.tailieugiaoduc.com Trang 35 www.tailieugiaoduc.com.com · Cho tam giác ABC ( BAC < 90o ), đường cao AH Gọi E; F điểm đối xứng H qua AB; AC, đường thẳng EF cắt AB; AC M N Chứng minh rằng: a AE = AF; · b HA phân giác MHN ; c CM // EH; BN // FH Hết./ Họ tên: Số báo danh: PHÒNG GD & ĐT CHƯƠNG MỸ ĐÁP ÁN THI GIAO LƯU HỌC SINH GIỎI NĂM HỌC: 2012 - 2013 Mơn thi: TỐN Câu Ý a 0,5 điểm Câu 1,5 điểm b điểm Nội dung 3 3 3 − + + + − 10 11 12 + A= 53 5 5 5 − + − − + − 100 10 11 12 1 1   1 1 3 − + + ÷ 3 + − ÷ 3(165− 132 + 120 + 110)  10 11 12  +   = 1320 + − 53 − 66 + 60 + 55 −53  1   1 1 − 5( ) − 5 − + + ÷ 5 + − ÷ 660 100  10 11 12    100 A= 263 263 3 1320 + = 1320 + = 3945 + = −1881 = −53 49 −1749− 1225 −5948 29740 − 100 660 3300 Ta có: 50 > 49 = 4; 26 > 25 = Vậy: 50 + 26 + > + + = 13 = 169 > 168 Điểm 0.25 0.25 0.5 0,5 www.tailieugiaoduc.com Trang 36 www.tailieugiaoduc.com.com a điểm Câu điểm b 1.5 điểm c 1.5 điểm Câu 1.5 điểm a 0.5 điểm Nếu x >2 ta có: x - + 2x - = 2x + ⇔ x = ≤ x ≤ ta có: - x + 2x - = 2x + ⇔ x = - loại Nếu x< ta có: - x + - 2x = 2x + ⇔ x = Vậy: x = ; x = Ta có: xy + 2x - y = ⇔ x(y+2) - (y+2) = ⇔ (y+2)(x-1) = 3.1 =1.3 = (-1).(-3) = (-3).(-1) y+2 -1 -3 x-1 -3 -1 X -2 Y -1 -3 -5 Từ: 2x= 3y; 4y = 5z ⇒ 8x = 12y = 15z Nếu x y z 4x y 5z x − y + 5z = = = = = = = 12 ⇒ 1 1 1 = 1 − + 12 15 4 12 1 ⇒ x = 12 = ; y = 12 = 1; z = 12 = 12 15 Đa thức bậc hai cần tìm có dạng: f ( x ) = ax + bx + c (a ≠ 0) 0.25 0.25 5 0.5 0.5 Ta có : f ( x − 1) = a ( x − 1) + b ( x − 1) + c a =  2a =  f ( x ) − f ( x − 1) = 2ax − a + b = x ⇒  ⇒ b − a =  b = 1 Vậy đa thức cần tìm là: f ( x ) = x + x + c (c số tùy ý) 2 Áp dụng: + Với x = ta có : = f ( 1) − f ( ) + Với x = ta có : = f ( ) − f ( 1) ………………………………… + Với x = n ta có : n = f ( n ) − f ( n − 1) ⇒ S = 1+2+3+…+n = f ( n ) − f ( ) = b điểm 0.25 0.25 0.25 0.25 n ( n + 1) n2 n + +c−c = 2 2bz − 3cy 3cx − az ay − 2bx ⇔ = = a 2b 3c 2abz − 3acy 6bcx − 2abz 3acy − 6bcx = = a2 4b 9c 2abz − 3acy + 6bcx − 2abz + 3acy − 6bcx = =0 a + 4b + 9c 0.5 0.25 www.tailieugiaoduc.com Trang 37 www.tailieugiaoduc.com.com z y = (1) 3c 2b x z x y z ⇒ 3cx - az = ⇒ = (2); Từ (1) (2) suy ra: = = a 3c a 2b 3c ⇒ 2bz - 3cy = ⇒ Câu điểm Hình vẽ 5đ 0.25 0.25 F A N M E B C H a điểm Vì AB trung trực EH nên ta có: AE = AH (1) Vì AC trung trực HF nên ta có: AH = AF (2) Từ (1) (2) suy ra: AE = AF b Vì M ∈ AB nên MB phân giác EMH · ⇒ MB phân giác điểm ngồi góc M tam giác MNH · ⇒ NC phân giác ngồi Vì N AC nên NC phân giác FNH góc N tam giác MNH Do MB; NC cắt A nên HA phân giác góc H · tam giác HMN hay HA phân giác MHN · c Ta có AH ⊥ BC (gt) mà HM phân giác MHN ⇒ HB phân điểm giác góc H tam giác HMN MB phân giác ngồi góc M tam giác HMN (cmt) ⇒ NB phân giác góc N tam giác HMN ⇒ BN ⊥ AC ( Hai đường phân giác hai góc kề bù vng góc với nhau) ⇒ BN // HF ( vng góc với AC) Chứng minh tương tự ta có: EH // CM ∈ UBND HUYỆN CHÂU THÀNH PHÒNG GD ĐT CHÂU THÀNH ĐỀ THI CHÍNH THỨC 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 KỲ THI HỌC SINH GIỎI CẤP HUYỆN LỚP THCS - Năm học 2010 – 2011 MÔN : TỐN Thời gian 150 phút (khơng kể thời gian giao đề) www.tailieugiaoduc.com Trang 38 www.tailieugiaoduc.com.com (đề thi gồm trang) Câu 1: (2.0 điểm) Thực tính: A=  2  2 B =  −  −  −  11 13 36 − + + 0,5 − 24 41 24 41  5  5 Câu 2: (2.0 điểm) 4+ x a Tìm x, y biết: + y = x + y = 22 b Cho 2x + 3y + 4z x y y z = = Tính M = 3x + y + z Câu 3: (2.0 điểm) Thực tính: a S = 2010 − 2009 − 2008 − − b P = + 1 1 (1 + 2) + (1 + + 3) + (1 + + + 4) + + (1 + + + + 16) 16 Câu 4: (1.0 điểm) Vẽ đồ thị hàm số y = x Câu 5: (3.0 A điểm) Cho tam giác ABC có A = 90 , B = 500 Đường thẳng AH vuông góc với BC H Gọi d đường thẳng vng góc với BC B Trên đường thẳng dBthuộc nửa mặt phẳng bờ BC không chứa điểm A lấy H C điểm D cho BD = HA (Hình vẽ bên) D a Chứng minh ∆ ABH = ∆ DHB b Tính số đo góc BDH c Chứng minh đường thẳng DH vng góc với đường thẳng AC _ Hết _ Họ tên thí sinh: …………………………………………… Số báo danh ………… Chữ ký giám thị 1: ……………………… … Giám thị ……………………………… ĐÁP ÁN-CHÂU THÀNH www.tailieugiaoduc.com Trang 39 www.tailieugiaoduc.com.com Câu 1: (Mỗi bước cho 0,25 điểm) 11 13 36 + − − + 0,5 24 24 41 41 24 41 = − + 0,5 24 41 2 2 B = − 7 −  5 7 2 2 = − 7 + − −  5 7 = − ( 5) A= = - + 0,5 = 0,5 =-2 Câu 2: a) ⇒28 + x = 28 + y 0,25 đ x y x+ y = 0,25 đ 4+7 x y 22 ⇒ = = = ⇒x = 8; y = 14 0,25 đ 11 x y x y y z y z x y z ⇒ = = b) = ⇒ = ; = ⇒ = 15 20 20 24 15 20 24 2x 3y 4z 2x + 3y + 4z (1) ⇒ = = = 30 60 96 30 + 60 + 96 3x y z 3x + y + z = = (1) ⇒ = 45 80 120 45 + 80 + 120 x + y + z x + y + z 2x 3x ⇒ : = : 30 + 60 + 96 45 + 80 + 120 30 45 2x + 3y + 4z 245 x + y + z 186 =1⇒ M = = ⇒ 186 3x + y + 5z 3x + y + z 245 ⇒ = (1) 0,25 đ 0,25 đ 0,25 đ 0,25 đ Câu 3: a) 2S = 2011 − 2010 − 2009 − 2 − 2S-S = 2011 − 2010 − 2010 − 2009 + 2009 − 2 + 2 − + + S = 2011 − 2.2 2010 + S = 2011 − 2011 + = b) 2.3 3.4 4.5 16.17 + + + + 2 16 2 17 = + + + + + 2 2 P = 1+ 0,25 đ 0,25 đ 0,25 đ 0,25 đ 0,25 đ 0,25 đ 0,25 đ www.tailieugiaoduc.com Trang 40 www.tailieugiaoduc.com.com (1 + + + + 17 − 1)  17.18  =  − 1 = 76 2  = 0,25 đ 0,25 đ Câu 4: (Mỗi bước cho 0,25 điểm) - Vẽ hệ trục toạ độ - Xác định toạ độ điểm A ≠ O thuộc đồ thị hàm số y = x - Biểu diễn điểm A - Vẽ đồ thị hàm số y = x (Đường thẳng OA) Câu 5: (Mỗi bước cho 0,25 điểm) a Xét ∆ ABH ∆ DHB có: µ =H µ (= 900) B HB chung BD = HA ⇒ ∆ ABH = ∆ DHB (c-g-c) µ = 900 b Xét ∆ ABH có Bµ = 500 H · µ ) = 400 ⇒ BAH = 180 - ( Bµ + H Từ ∆ ABH = ∆ DHB có: A B C H D · · BAH = BDH · ⇒ BDH = 400 c Từ ∆ ABH = ∆ DHB có: ·ABH = DHB · ⇒AB song song với DH AB ⊥ AC ⇒ DH ⊥ AC Các bạn vào tải thêm tài liệu tại: https://tailieugiaoduc.com/category/lop-7-2/ www.tailieugiaoduc.com Trang 41 ... Với x = -1,5 y = - 0 ,75 P = -1,5 -4(-1,5).(-0 ,75 ) - 0 ,75 = -1,5(1+3) - 0 ,75 = -6 ,75 b) A = 212. 35 − 46.81 ( 3) + 84.35 = 212. 35 − 212. 34 212. 34 (3 − 1) = = 212. 36 − 212. 35 212. 35 (3 − 1) x y y...  − + + + + ÷ 99. 97  1.3 3.5 5 .7 95. 97  = 1 1 1 1  − 1 − + − + − + + − ÷ 99. 97  3 5 95 97  1  − 1 − ÷ 99. 97  97  48 = − 99. 97 97 − 475 1 = 99. 97 = Bµi 2: 3,5 ®iĨm C©u a: ®iĨm - NÕu... 8.15 15.22 43.50 2 17 1 1 1 1 − (1 + + + + + 49) + − + + − ) = (1 − + − 8 15 15 22 43 50 2 17 1 − (12. 50 + 25) 49 − 625 7. 7.2.2.5.31 = ) = =− =− = (1 − 50 2 17 50 7. 31 7. 2.5.5 .7. 31 Câu Tìm cặp

Ngày đăng: 24/12/2020, 12:40

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN

w