1. Trang chủ
  2. » Khoa Học Tự Nhiên

Không gian vector

19 431 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 19
Dung lượng 180,08 KB

Nội dung

Chu . o . ng 3 Khˆong gian vector 3.1 Kha´i niˆe . m vˆe ` khˆong gian vector 3.1.1 D - i . nh nghı ˜ a khˆong gian vector D - i . nh nghı ˜ a 3.1. Cho mˆo . t tˆa . p ho . . p E kha´c rˆo ˜ ng va` mˆo . t tru . `o . ng sˆo ´ T cu`ng v´o . i hai phe´p toa´n: - Phe´p cˆo . ng: E × E −→ E (x, y) −→ x + y. - Phe´p nhˆan ngoa`i T × E −→ E (λ, x) −→λx. E cu`ng v´o . i hai phe´p toa´n trˆen lˆa . p tha`nh mˆo . t khˆong gian vector trˆen K, hay K- khˆong gian vector nˆe ´ u 8 tiˆen d¯ˆe ` sau d¯ˆay d¯u . o . . c thu . . c hiˆe . n: (1) (x + y) + z = x + (y + z); ∀x, y, z ∈ E; (2) ∃0 E ∈ E sao cho: x + 0 E = 0 E + x = x; ∀x ∈ E; (3) ∀x ∈ E, ∃ − x ∈ E sao cho: x + (−x) = (−x) + x = 0 E ; (4) x + y = y + x; ∀x, y ∈ E; (5) λ(x + y) = λx + λy; ∀x, y ∈ E; ∀λ ∈ K; (6) (λ + µ)x = λx + µx; ∀x ∈ E; ∀λ, µ ∈ K; (7) (λµ)x = λ(µx); ∀x ∈ E; ∀λ, µ ∈ K; 47 48 3. Khˆong gian vector (8) 1x = x, ∀x ∈ K. Mˆo ˜ i phˆa ` n tu . ’ cu ’ a E d¯u . o . . c go . i la` mˆo . t vector, mˆo ˜ i sˆo ´ thuˆo . c K go . i la` mˆo . t vˆo hu . ´o . ng. 3.1.2 V`ai v´ı du . . a. Tˆa . p ho . . p V = Mat m×n (K) ca´c ma trˆa . n cˆa ´ p m × n trˆen tru . `o . ng K cu`ng v´o . i phe´p toa´n cˆo . ng hai ma trˆa . n, nhˆan mˆo . t sˆo ´ cu ’ a tru . `o . ng K v´o . i mˆo . t ma trˆa . n la` mˆo . t K- khˆong gian vector. Vector −→ 0 la` ma trˆa . n O, vector d¯ˆo ´ i −A la` ma trˆa . n d¯ˆo ´ i cu ’ a ma trˆa . n A. b. Cho V la` tˆa . p ho . . p ca´c vector hı`nh ho . c v´o . i vector −→ 0 la` vector co´ mod¯un b˘a ` ng 0 va` co´ hu . ´o . ng tu`y y´, ta xa´c d¯i . nh phe´p cˆo . ng va` phe´p nhˆan ngoa`i trˆen V nhu . sau: Phe´p cˆo . ng: V × V −→ V ( −→ x , −→ y ) −→ −→ x + −→ y −→ x + −→ y d¯u . o . . c xa´c d¯i . nh theo quy t˘a ´ c hı`nh bı`nh ha`nh Vector d¯ˆo ´ i − −→ x la` vector cu`ng phu . o . ng v´o . i vector −→ x , co´ d¯ˆo . da`i b˘a ` ng d¯ˆo . da`i vector −→ x va` ngu . o . . c hu . ´o . ng v´o . i vector −→ x . Phe´p nhˆan ngoa`i v´o . i mˆo . t sˆo ´ : v´o . i α ∈ R, −→ x ∈ V , α −→ x la` mˆo . t vector cu`ng phu . o . ng v´o . i −→ x , co´ d¯ˆo . da`i b˘a ` ng tı´ch cu ’ a |α| v´o . i d¯ˆo . da`i cu ’ a −→ x va` co´ hu . ´o . ng cu`ng hu . ´o . ng v´o . i −→ x nˆe ´ u α > 0, ngu . o . . c hu . ´o . ng v´o . i −→ x nˆe ´ u α < 0. Dˆe ˜ thˆa ´ y r˘a ` ng tˆa . p V cu`ng v´o . i hai phe´p toa´n trˆen thoa ’ ma ˜ n 8 tiˆen d¯ˆe ` cu ’ a d¯i . nh nghı ˜ a khˆong gian vector. Vˆa . y V la` mˆo . t khˆong gian vector trˆen R. c. Cho tru . `o . ng K, v´o . i n ≥ 1, xe´t tı´ch D - ˆeca´c: K n = {(x 1 , x 2 , ., x n )/x i ∈ K, i = 1, 2, ., n} cu`ng hai phe´p toa´n: (x 1 , x 2 , ., x n ) + (y 1 , y 2 , ., y n ) = (x 1 + y 1 , x 2 + y 2 , ., x n + y n ) k(x 1 , x 2 , ., x n ) = (kx 1 , kx 2 , ., kx n ), k ∈ K. Dˆe ˜ thˆa ´ y K n cu`ng hai phe´p toa´n trˆen la` mˆo . t K− khˆong gian vector. Vector O = (0, 0, ., 0), vector d¯ˆo ´ i cu ’ a x = (x 1 , x 2 , ., x n ) la` −x = (−x 1 , −x 2 , ., −x n ). D - ˘a . c biˆe . t: Khi n = 1 thı` ba ’ n thˆan K cu ˜ ng la` mˆo . t K− khˆong gian vector. d. Tˆa . p ho . . p ca´c sˆo ´ thu . . c R v´o . i phe´p cˆo . ng sˆo ´ thu . . c va` phe´p nhˆan sˆo ´ thu . . c v´o . i sˆo ´ h˜u . u ty ’ la` mˆo . t Q− khˆong gian vector. e. Tˆa . p K[x] ca´c d¯a th´u . c mˆo . t biˆe ´ n hˆe . sˆo ´ trˆen K v´o . i phe´p cˆo . ng d¯a th´u . c va` phe´p nhˆan mˆo . t phˆa ` n tu . ’ thuˆo . c tru . `o . ng K v´o . i mˆo . t d¯a th´u . c la` mˆo . t K− khˆong gian vector. Ba`i gia ’ ng D - a . i sˆo ´ tuyˆe ´ n tı´nh 3.1. Kha´ i niˆe . m vˆe ` khˆong gian vector 49 3.1.3 Mˆo . t sˆo ´ tı´nh chˆa ´ t d¯o . n gia ’ n cu ’ a khˆong gian vector. Cho V la` mˆo . t K− khˆong gian vector tu`y y´. Khi d¯o´, ta luˆon co´: Tı´nh chˆa ´ t 3.1 (Tı´nh duy nhˆa ´ t cu ’ a phˆa ` n tu . ’ khˆong.). Chı ’ co´ duy nhˆa ´ t mˆo . t vector 0 ∈ V sao cho ∀x ∈ V : x + 0 = 0 + x = x. Thˆa . t vˆa . y, nˆe ´ u θ cu ˜ ng la` mˆo . t vector khˆong cu ’ a V thı`: θ = θ + 0 = 0. Tı´nh chˆa ´ t 3.2 (Tı´nh duy nhˆa ´ t cu ’ a phˆa ` n tu . ’ d¯ˆo ´ i.). V´o . i mˆo ˜ i x ∈ V , tˆo ` n ta . i duy nhˆa ´ t phˆa ` n tu . ’ d¯ˆo ´ i cu ’ a x la` −x sao cho: x + (−x) = 0. Thˆa . t vˆa . y, nˆe ´ u x  cu ˜ ng la` mˆo . t vector d¯ˆo ´ i cu ’ a x thı` : −x = −x + 0 = −x + (x + x  ) = (−x + x) + x  = 0 + x  = x  . Tı´nh chˆa ´ t 3.3. Luˆa . t gia ’ n u . ´o . c co´ hiˆe . u lu . . c trong V , t´u . c la`: +) (x + z = y + z) ⇒ (x = y), ∀x, y, z ∈ V ; +) (z + x = z + y) ⇒ (x = y), ∀x, y, z ∈ V. Thˆa . t vˆa . y, (x + z = y + z) ⇒ [(x + z) + (−z) = (y + z) + (−z)] ⇒ [x + (z − z) = y + (z − z)] ⇒ (x + 0 = y + 0) ⇒ (x = y). Tu . o . ng tu . . cho phˆa ` n co`n la . i. Tı´nh chˆa ´ t 3.4. ∀x, y, z ∈ V, (x + y = z) ⇔ (x = z − y). Thˆa . t vˆa . y, (x + y = z) ⇔ [(x + y) + (−y) = z + (−y)] ⇔ [x + (y − y) = z − y] ⇔ (x + 0 = z − y) ⇔ (x = z − y). Tı´nh chˆa ´ t 3.5. ∀λ ∈ K, ∀x ∈ V, λx = 0 ⇔  λ = 0 ∈ K x = 0 ∈ V Ch´u . ng minh. (⇐) λ0 = λ(0 + 0) = λ0 + λ0 ⇒ λ0 = 0 (theo luˆa . t gia ’ n u . ´o . c); 0x = (0 + 0)x = 0x + 0x ⇒ 0x = 0 (theo luˆa . t gia ’ n u . ´o . c). (⇒) Gia ’ su . ’ λx = 0 va` λ = 0. Khi d¯o´ ∃λ −1 ∈ K va` ta co´: x = 1x = (λ −1 λ)x = λ −1 (λx) = λ −1 0 = 0, t´u . c la` x = 0 ∈ V . Ba`i gia ’ ng D - a . i sˆo ´ tuyˆe ´ n tı´nh 50 3. Khˆong gian vector Tı´nh chˆa ´ t 3.6. ∀λ ∈ K, ∀x ∈ V, −(λx) = (−λ)x = λ(−x). Thˆa . t vˆa . y, λx + (−λ)x = [λ + (−λ)]x = 0x = 0 = λx + [−(λx)] ⇒ (−λ)x = −(λx); λx + λ(−x) = λ[x + (−x)] = λ0 = 0 = λx + [−(λx)] ⇒ λ(−x) = −(λx) Vˆa . y: −(λx) = (−λ)x = λ(−x). 3.2 Khˆong gian vector con. D - i . nh nghı ˜ a 3.2. Mˆo . t tˆa . p ho . . p con W = ∅ cu ’ a K− khˆong gian vector V d¯u . o . . c go . i la` khˆong gian vector con cu ’ a V nˆe ´ u W ˆo ’ n d¯i . nh d¯ˆo ´ i v´o . i phe´p toa´n cˆo . ng va` phe´p nhˆan ngoa`i trˆen V . T´u . c la`, x + y ∈ W va` λx ∈ W v´o . i mo . i x, y ∈ W, mo . i λ ∈ K. D - u . o . ng nhiˆen khi W la` mˆo . t khˆong gian vector con cu ’ a V thı` W cu ˜ ng la` mˆo . t khˆong gian vector trˆen tru . `o . ng K. Vı´ du . . (1) K− Khˆong gian vector V la` mˆo . t khˆong gian con cu ’ a chı´nh no´ va` d¯u . o . . c go . i la` khˆong gian con khˆong thu . . c su . . . Tˆa . p ho . . p {0 V } chı ’ gˆo ` m mˆo . t vector khˆong cu ˜ ng la` mˆo . t khˆong gian vector con cu ’ a V va` d¯u . o . . c go . i la` khˆong gian con tˆa ` m thu . `o . ng cu ’ a V . Ta go . i khˆong gian con thu . . c su . . cu ’ a V la` mˆo . t khˆong gian con kha´c {0 V } va` kha´c V . (2) Nˆe ´ u coi C la` mˆo . t R− khˆong gian vector thı` R ⊂ C la` mˆo . t khˆong gian vector con cu ’ a C. Nˆe ´ u coi C la` mˆo . t C− khˆong gian vector thı` R khˆong la` mˆo . t khˆong gian vector con cu ’ a C vı` R khˆong ˆo ’ d¯i . nh v´o . i phe´p nhˆan v´o . i mˆo . t sˆo ´ ph´u . c. (3) Tˆa . p W = {a 0 + a 1 x + a 2 x x + · · · + a n x n |a i ∈ K} trong d¯o´ n la` mˆo . t sˆo ´ tu . . nhiˆen cho tru . ´o . c, la` mˆo . t khˆong gian vector con cu ’ a K− khˆong gian vector K[x]. D - i . nh ly´ 3.1. Cho W la` mˆo . t tˆa . p con kha´c rˆo ˜ ng cu ’ a K− khˆong gian vector V . Khi d¯o´ W la` mˆo . t khˆong gian vector con cu ’ a V khi va` chı ’ khi λx + µy ∈ W, ∀x, y ∈ W, ∀λ, µ ∈ K. Ch´u . ng minh. (⇒) Gia ’ su . ’ W la` khˆong gian con cu ’ a V . Khi d¯o´, ∀x, y ∈ W, ∀λ, µ ∈ K do λx, µy ∈ W nˆen λx + µy ∈ W . (⇐) Cho . n λ = µ = 1 thı` ∀x, y ∈ W , ta d¯ˆe ` u co´ x + y ∈ W ; Ba`i gia ’ ng D - a . i sˆo ´ tuyˆe ´ n tı´nh 3.3. Su . . phu . thuˆo . c tuyˆe ´ n t´ınh v`a d¯ˆo . c lˆa . p tuyˆe ´ n t´ınh. 51 Cho . n λ = 1, µ = 0 thı` ∀x ∈ W, y = x, ta d¯ˆe ` u co´ λx + 0x = λx ∈ W. Do d¯o´ W la` mˆo . t khˆong gian vector con cu ’ a V . 3.3 Su . . phu . thuˆo . c tuyˆe ´ n t´ınh v`a d¯ˆo . c lˆa . p tuyˆe ´ n t´ınh. 3.3.1 Tˆo ’ ho . . p tuyˆe ´ n tı´nh va` biˆe ’ u thi . tuyˆe ´ n tı´nh. D - i . nh nghı ˜ a 3.3. Cho x 1 , x 2 , ., x n la` n vector (n ≥ 1) cu ’ a K− khˆong gian vector V va` λ 1 , λ 2 , ., λ n la` n vˆo hu . ´o . ng trong K. Vector x = λ 1 x 1 + λ 2 x 2 + · · · + λ n x n = n  i=1 λ i x i d¯u . o . . c go . i la` tˆo ’ ho . . p tuyˆe ´ n tı´nh cu ’ a hˆe . vector (x 1 , x 2 , ., x n ) = (x i ) i=1,n v´o . i ho . hˆe . sˆo ´ (λ 1 , λ 2 , ., λ n ) = (λ i ) i=1,n . Khi vector x la` mˆo . t tˆo ’ ho . . p tuyˆe ´ n tı´nh cu ’ a hˆe . (x i ) i=1,n thı` ta ba ’ o x biˆe ’ u thi . tuyˆe ´ n tı´nh d¯u . o . . c qua hˆe . (x i ) i=1,n . Vı´ du . . Cho −→ x 1 = (1, −2), −→ x 2 = (3, 1), −→ x = (5, −3) ∈ R 2 . Ta co´ 2 −→ x 1 + −→ x 2 = (5, −3) = −→ x . Vˆa . y −→ x la` tˆo ’ ho . . p tuyˆe ´ n tı´nh cu ’ a hˆe . ( −→ x 1 , −→ x 2 ), hay −→ x biˆe ’ u thi . tuyˆe ´ n tı´nh d¯u . o . . c qua hˆe . ( −→ x 1 , −→ x 2 ). Nhˆa . n xe´t. (1) Ca´ch biˆe ’ u diˆe ˜ n x = n  i=1 λ i x i no´i chung khˆong duy nhˆa ´ t. Vı´ du . . Trong khˆong gian vector thu . . c R 2 , xe´t 3 vector x 1 = (−1, 0), x 2 = (0, −1), x 3 = (1, 1). Khi d¯o´ vector khˆong 0 = (0, 0) biˆe ’ u thi . tuyˆe ´ n tı´nh d¯u . o . . c qua hˆe . (x 1 , x 2 , x 3 ) b˘a ` ng ı´t nhˆa ´ t hai ca´ch sau: 0 = 0x 1 + 0x 2 + 0x 3 ; 0 = 1.x 1 + 1.x 2 + 1.x 3 . (2) Nˆe ´ u x = 0 ∈ V thı` v´o . i mo . i hˆe . vector (x i ) i=1,n ⊂ V , x bao gi`o . cu ˜ ng biˆe ’ u thi . tuyˆe ´ n tı´nh d¯u . o . . c qua (x i ) i=1,n . Vı´ du . . 0 = n  i=1 λ i x i , λ i = 0, ∀i = 1, n. Trong tru . `o . ng ho . . p na`y ta no´i 0 biˆe ’ u thi . tuyˆe ´ n tı´nh tˆa ` m thu . `o . ng qua hˆe . trˆen. Nˆe ´ u 0 co´ ı´t nhˆa ´ t hai ca´ch biˆe ’ u thi . tuyˆe ´ n tı´nh qua hˆe . (x i ) i=1,n thı` ta no´i 0 biˆe ’ u thi . tuyˆe ´ n tı´nh khˆong tˆa ` m thu . `o . ng qua hˆe . (x i ) i=1,n . Ba`i gia ’ ng D - a . i sˆo ´ tuyˆe ´ n tı´nh 52 3. Khˆong gian vector 3.3.2 D - ˆo . c lˆa . p tuyˆe ´ n t´ınh v`a phu . thuˆo . c tuyˆe ´ n t´ınh. D - i . nh nghı ˜ a 3.4. Hˆe . n vector (n ≥ 1) (x i ) i=1,n trong K− khˆong gian vector V d¯u . o . . c go . i la` d¯ˆo . c lˆa . p tuyˆe ´ n tı´nh nˆe ´ u vector khˆong chı ’ co´ duy nhˆa ´ t mˆo . t ca´ch biˆe ’ u thi . tuyˆe ´ n tı´nh qua hˆe . d¯o´ b˘a ` ng tˆo ’ ho . . p tuyˆe ´ n tı´nh tˆa ` m thu . `o . ng. Hˆe . khˆong d¯ˆo . c la . p tuyˆe ´ n tı´nh go . i la` hˆe . phu . thuˆo . c tuyˆe ´ n tı´nh. Nhu . vˆa . y, hˆe . (x i ) i=1,n d¯ˆo . c lˆa . p tuyˆe ´ n tı´nh khi va` chı ’ khi  n  i=1 λ i x i = 0 ∈ V  ⇒ (λ 1 = λ 2 = · · · = λ n = 0 ∈ K). Co`n hˆe . (x i ) i=1,n phu . thuˆo . c tuyˆe ´ n tı´nh nˆe ´ u va` chı ’ nˆe ´ u co´ ı´t nhˆa ´ t mˆo . t ho . vˆo hu . ´o . ng (λ i ) i=1,n khˆong d¯ˆo ` ng th`o . i b˘a ` ng khˆong sao cho n  i=1 λ i x i = 0 ∈ V . Vı´ du . . (1) Cho V = R 3 la` mˆo . t R− khˆong gian vector. Xe´t hˆe . {x 1 = (1, 1, 1), x 2 = (1, 1, 0), x 3 = (1, 0, 0)}. Gia ’ su . ’ tˆo ` n ta . i λ 1 , λ 2 , λ 3 ∈ R sao cho: λ 1 x 1 + λ 2 x 2 + λ 3 x 3 = 0 ⇔ (λ 1 + λ 2 + λ 3 , λ 1 + λ 2 , λ 1 ) = 0 ⇔      λ 1 + λ 2 + λ 3 = 0 λ 1 + λ 2 = 0 λ 1 = 0 ⇔      λ 1 = 0 λ 2 = 0 λ 3 = 0 Vˆa . y hˆe . d¯a ˜ cho d¯ˆo . c lˆa . p tuyˆe ´ n tı´nh trong R 3 . (2) Cho V = R 2 la` mˆo . t R− khˆong gian vector. Xe´t hˆe . 3 vector : {x 1 = (1, −2), x 2 = (1, 4), x 3 = (3, 5)}. Gia ’ su . ’ co´ λ 1 , λ 2 , λ 3 ∈ R sao cho: λ 1 x 1 + λ 2 x 2 + λ 3 x 3 = 0 ⇔ (λ 1 + λ 2 + 3λ 3 , −2λ 1 + 4λ 2 + 5λ 3 ) = 0 ⇔  λ 1 + λ 2 + 3λ 3 = 0 −2λ 1 + 4λ 2 + 5λ 3 = 0 ⇔  λ 1 + λ 2 = −3λ 3 −2λ 1 + 4λ 2 = −5λ 3 ⇔      λ 1 = − 7 6 λ 3 λ 2 = − 11 6 λ 3 T`u . d¯ˆay ta co´ thˆe ’ cho . n ra rˆa ´ t nhiˆe ` u ho . vˆo hu . ´o . ng (λ i ) i=1,3 khˆong d¯ˆo ` ng th`o . i b˘a ` ng khˆong sao cho 3  i=1 λ i x i = 0 Vˆa . y hˆe . d¯a ˜ cho phu . thuˆo . c tuyˆe ´ n tı´nh. Ba`i gia ’ ng D - a . i sˆo ´ tuyˆe ´ n tı´nh 3.3. Su . . phu . thuˆo . c tuyˆe ´ n t´ınh v`a d¯ˆo . c lˆa . p tuyˆe ´ n t´ınh. 53 Quy u . ´o . c. Hˆe . ∅ la` hˆe . d¯ˆo . c lˆa . p tuyˆe ´ n tı´nh. Vector 0 ∈ V la` tˆo ’ ho . . p tuyˆe ´ n tı´nh tˆa ` m thu . `o . ng cu ’ a hˆe . ∅ va` la` vector duy nhˆa ´ t biˆe ’ u thi . tuyˆe ´ n tı´nh qua hˆe . ∅. Nhˆa . n xe´t. (1) { −→ 0 } la` hˆe . phu . thuˆo . c tuyˆe ´ n tı´nh. (2) Nˆe ´ u hˆe . ( −→ x i ) i=1,n d¯ˆo . c lˆa . p tuyˆe ´ n tı´nh trong V thı` v´o . i mo . i −→ x ∈ V , −→ x co´ khˆong qua´ mˆo . t ca´ch biˆe ’ u thi . tuyˆe ´ n tı´nh qua hˆe . ( −→ x i ) i=1,n . (3) Cho hˆe . ( −→ x i ) i=1,n d¯ˆo . c lˆa . p tuyˆe ´ n tı´nh trong V va` −→ x ∈ V , nˆe ´ u −→ x biˆe ’ u thi . tuyˆe ´ n tı´nh d¯u . o . . c qua hˆe . ( −→ x i ) i=1,n thı` ca´ch biˆe ’ u diˆe ˜ n d¯o´ la` duy nhˆa ´ t. Ch´u . ng minh. Gia ’ su . ’ −→ x biˆe ’ u thi . tuyˆe ´ n tı´nh d¯u . o . . c qua hˆe . ( −→ x i ) i=1,n t´u . c la` tˆo ` n ta . i ca´c λ i ∈ K sao cho −→ x = λ 1 −→ x 1 + λ 2 −→ x 2 + · · · + λ n −→ x n . Nˆe ´ u ngoa`i ca´c λ i trˆen co`n tˆo ` n ta . i ca´c µ i ∈ K sao cho −→ x = µ 1 −→ x 1 + µ 2 −→ x 2 + · · · + µ n −→ x n . Thı` ta co´: λ 1 −→ x 1 + λ 2 −→ x 2 + · · · + λ n −→ x n = µ 1 −→ x 1 + µ 2 −→ x 2 + · · · + µ n −→ x n ⇔ (λ 1 − µ 1 ) −→ x 1 + (λ 2 − µ 2 ) −→ x 2 + · · · + (λ n − µ n )x n = −→ 0 ⇒            λ 1 − µ 1 = 0 λ 2 − µ 2 = 0 · · · λ n − µ n = 0 (do hˆe . ( −→ x i ) i=1,n d¯ˆo . c lˆa . p tuyˆe ´ n tı´nh) ⇔ λ i = µ i , ∀i = 1, n. Vˆa . y su . . biˆe ’ u thi . tuyˆe ´ n tı´nh cu ’ a −→ x qua hˆe . ( −→ x i ) i=1,n la` duy nhˆa ´ t. 3.3.3 V`ai t´ınh chˆa ´ t vˆe ` hˆe . phu . thuˆo . c tuyˆe ´ n t´ınh v`a hˆe . d¯ˆo . c lˆa . p tuyˆe ´ n t´ınh. Tı´nh chˆa ´ t 3.7. (i) Hˆe . gˆo ` m mˆo . t vector { −→ x } d¯ˆo . c lˆa . p tuyˆe ´ n tı´nh khi va` chı ’ khi −→ x = −→ 0 . (ii) Mo . i hˆe . vector ch´u . a −→ 0 d¯ˆe ` u phu . thuˆo . c tuyˆe ´ n tı´nh. Tı´nh chˆa ´ t na`y kha´ d¯o . n gia ’ n, ba . n d¯o . c tu . . ch´u . ng minh. Ba`i gia ’ ng D - a . i sˆo ´ tuyˆe ´ n tı´nh 54 3. Khˆong gian vector Tı´nh chˆa ´ t 3.8. V´o . i hˆe . vector (x i ) i∈I tuy` y´ (I la` mˆo . t tˆa . p ho . . p bˆa ´ t ky` kha´c rˆo ˜ ng), hˆe . (x i ) i∈J go . i la` hˆe . con cu ’ a hˆe . (x i ) i∈I nˆe ´ u J ⊂ I. Khi d¯o´: (i) Nˆe ´ u hˆe . (x i ) i=1,n d¯ˆo . c lˆa . p tuyˆe ´ n tı´nh thı` mo . i hˆe . con cu ’ a no´ cu ˜ ng d¯ˆo . c lˆa . p tuyˆe ´ n tı´nh. (ii) Nˆe ´ u co´ ı´t nhˆa ´ t mˆo . t hˆe . con phu . thuˆo . c tuyˆe ´ n tı´nh thı` hˆe . (x i ) i=1,n cu ˜ ng phu . thuˆo . c tuyˆe ´ n tı´nh. Ch´u . ng minh. Gia ’ su . ’ (x i ) i=1,n la` hˆe . d¯ˆo . c lˆa . p tuyˆe ´ n tı´nh va` (x j ) j∈J la` mˆo . t hˆe . con tuy` y´ cu ’ a no´, t´u . c la` J ⊂ I = {1, 2, ., n}. Ta cˆa ` n ch´u . ng to ’ (x j ) j∈J d¯ˆo . c lˆa . p tuyˆe ´ n tı´nh. Thˆa . t vˆa . y, nˆe ´ u  j∈J λ j x j = 0 la` mˆo . t tˆo ’ ho . . p tuyˆe ´ n tı´nh b˘a ` ng 0 cu ’ a hˆe . (x j ) j∈J thı` 0 =  j∈J λ j x j +  i∈I\J 0.x i la` mˆo . t tˆo ’ ho . . p tuyˆe ´ n tı´nh b˘a ` ng 0 cu ’ a hˆe . (x i ) i=1,n . Ma` hˆe . (x i ) i=1,n la` hˆe . d¯ˆo . c lˆa . p tuyˆe ´ n tı´nh, suy ra λ j = 0, ∀j ∈ J, t´u . c la` (x j ) j∈J d¯ˆo . c lˆa . p tuyˆe ´ n. Vı` kha´i niˆe . m hˆe . phu . thuˆo . c tuyˆe ´ n tı´nh la` phu ’ d¯i . nh cu ’ a kha´i niˆe . m hˆe . d¯ˆo . c lˆa . p tuyˆe ´ n tı´nh nˆen hai kh˘a ’ ng d¯i . nh trong tı´nh chˆa ´ t na`y la` tu . o . ng d¯u . o . ng nhau. D - i . nh ly´ 3.2 (D - i . nh ly´ d¯˘a . c tru . ng cu ’ a hˆe . phu . thuˆo . c tuyˆe ´ n tı´nh). Hˆe . n vector (n ≥ 2) (x i ) i=1,n phu . thuˆo . c tuyˆe ´ n tı´nh khi va` chı ’ khi co´ (ı´t nhˆa ´ t) mˆo . t vector cu ’ a hˆe . biˆe ’ u thi . tuyˆe ´ n tı´nh d¯u . o . . c qua ca´c vector co`n la . i. Ch´u . ng minh. (⇒) Gia ’ su . ’ hˆe . (x i ) i=1,n phu . thuˆo . c tuyˆe ´ n tı´nh. Lu´c d¯o´ co´ ı´t nhˆa ´ t mˆo . t ho . vˆo hu . ´o . ng (λ i ) i=1,n khˆong d¯ˆo ` ng th`o . i triˆe . t tiˆeu sao cho 0 = n  i=1 λ i x i . Gia ’ su . ’ λ j = 0 ∈ K (1 ≤ j ≤ n). Khi d¯o´ n  i=1 λ i x i ⇒ −λ j x j =  i=j λ i x i ⇒ x j =  i=j  −λ i λ j  x i ; t´u . c la` x j biˆe ’ u thi . tuyˆe ´ n tı´nh d¯u . o . . c qua hˆe . ca´c vector co`n la . i (x i ) i∈{1,2, .,n}\{j} . (⇐) Ngu . o . . c la . i, gia ’ su . ’ co´ mˆo . t vector cu ’ a hˆe . ch˘a ’ ng ha . n x j (1 ≤ j ≤ n), biˆe ’ u thi . tuyˆe ´ n tı´nh d¯u . o . . c qua hˆe . ca´c vector co`n la . i, t´u . c la` co´ ca´c vˆo hu . ´o . ng λ i , i ∈ {1, 2, ., n}\{j} sao cho x j =  i=j λ i x i . Khi d¯o´ x j =  i=j λ i x i ⇒ 0 =  i=j λ i x i + (−1)x j D - ˆay la` mˆo . t tˆo ’ ho . . p tuyˆe ´ n tı´nh khˆong tˆa ` m thu . `o . ng b˘a ` ng 0 cu ’ a hˆe . (x i ) i=1,n . Vˆa . y hˆe . (x i ) i=1,n phu . thuˆo . c tuyˆe ´ n tı´nh. Ba`i gia ’ ng D - a . i sˆo ´ tuyˆe ´ n tı´nh 3.4. Ha . ng cu ˙’ a mˆo . t hˆe . vector. 55 3.4 Ha . ng cu ˙’ a mˆo . t hˆe . vector. 3.4.1 Hˆe . con d¯ˆo . c lˆa . p tuyˆe ´ n t´ınh tˆo ´ i d¯a . i. D - i . nh nghı ˜ a 3.5. Gia ’ su . ’ I la` mˆo . t tˆa . p ho . . p h˜u . u ha . n va` J ⊂ I. Cho hˆe . vector (x i ) i∈I tu`y y´ trong mˆo . t K− khˆong gian vector na`o d¯o´. Hˆe . (x j ) j∈J go . i la` hˆe . con d¯ˆo . c lˆa . p tuyˆe ´ n tı´nh tˆo ´ i d¯a . i cu ’ a hˆe . d¯a ˜ cho nˆe ´ u no´ d¯ˆo . c lˆa . p tuyˆe ´ n tı´nh va` nˆe ´ u thˆem bˆa ´ t ky` vector x i na`o, i ∈ I\J, va`o hˆe . con d¯o´ ta d¯ˆe ` u nhˆa . n d¯u . o . . c mˆo . t hˆe . phu . thuˆo . c tuyˆe ´ n tı´nh. Vı´ du . . Trong R 3 cho hˆe . 3 vector {x 1 = (1, 2, 3), x 2 = (2, 4, 6), x 3 = (3, 6, 9)}. Khi d¯o´ mˆo ˜ i hˆe . 1 vector {x 1 }, {x 2 }, {x 3 } d¯ˆe ` u la` hˆe . con d¯ˆo . c lˆa . p tuyˆe ´ n tı´nh cu ’ a hˆe . d¯a ˜ cho. Ho . n n˜u . a, x 3 = 3x 1 , x 2 = 2x 1 , x 3 = 3 2 x 2 nˆen ca´c hˆe . con {x 1 , x 2 }, {x 1 , x 3 }, {x 2 , x 3 } d¯ˆe ` u phu . thuˆo . c tuyˆe ´ n tı´nh. Vˆa . y {x 1 }, {x 2 }, {x 3 } la` ca´c hˆe . con d¯ˆo . c lˆa . p tuyˆe ´ n tı´nh tˆo ´ i d¯a . i cu ’ a hˆe . {x 1 , x 2 , x 3 } d¯a ˜ cho. Tı´nh chˆa ´ t 3.9. Nˆe ´ u hˆe . con (x i ) i=1,n cu ’ a hˆe . (x i ) i∈I ({1, 2, ., n} ⊂ I) la` mˆo . t hˆe . con d¯ˆo . c lˆa . p tuyˆe ´ n tı´nh tˆo ´ i d¯a . i thı` mo . i vector x i , i ∈ I d¯ˆe ` u biˆe ’ u thi . tuyˆe ´ n tı´nh d¯u . o . . c qua hˆe . con d¯o´ va` ca´ch biˆe ’ u thi . la` duy nhˆa ´ t. Tı´nh chˆa ´ t na`y la` hˆe . qua ’ tru . . c tiˆe ´ p cu ’ a D - i . nh nghı ˜ a 3.5 va` D - i . nh ly´ 3.2. Bˆo ’ d¯ˆe ` 3.1 (Bˆo ’ d¯ˆe ` co . ba ’ n vˆe ` su . . phu . thuˆo . c tuyˆe ´ n tı´nh). Cho (x 1 , x 2 , ., x m ) va` (y 1 , y 2 , ., y n ) la` hai hˆe . vector trong khˆong gian vector V . Gia ’ su . ’ hˆe . (x i ) i=1,m d¯ˆo . c lˆa . p tuyˆe ´ n tı´nh va` mˆo ˜ i x i (i = 1, m) d¯ˆe ` u biˆe ’ u thi . tuyˆe ´ n tı´nh d¯u . o . . c qua hˆe . (y j ) j=1,n . Khi d¯o´ m ≤ n. D - i . nh ly´ 3.3. Mo . i hˆe . con d¯ˆo . c lˆa . p tuyˆe ´ n tı´nh tˆo ´ i d¯a . i cu ’ a mˆo . t hˆe . h˜u . u ha . n vector trong mˆo . t K− khˆong gian vector tu`y y´ d¯ˆe ` u co´ sˆo ´ vector b˘a ` ng nhau. Ch´u . ng minh. Gia ’ su . ’ (x i ) i∈I la` mˆo . t hˆe . vector h˜u . u ha . n. Nˆe ´ u x i = 0 v´o . i mo . i i ∈ I thı` (x i ) i∈I chı ’ co´ mˆo . t hˆe . d¯ˆo . c lˆa . p tuyˆe ´ n tı´nh tˆo ´ i d¯a . i duy nhˆa ´ t la` ∅ va` kh˘a ’ ng d¯i . nh cu ’ a d¯i . nh ly´ la` hiˆe ’ n nhiˆen. Gia ’ su . ’ hˆe . (x i ) i∈I co´ ch´u . a vector kha´c khˆong. Khi d¯o´ ca´c hˆe . con d¯ˆo . c lˆa . p tuyˆe ´ n tı´nh tˆo ´ i d¯a . i cu ’ a (x i ) i∈I co´ ı´t nhˆa ´ t mˆo . t vector. Gia ’ su . ’ (x j ) j∈J 1 va` (x j ) j∈J 2 la` hai hˆe . con d¯ˆo . c lˆa . p tuyˆe ´ n tı´nh tˆo ´ i d¯a . i cu ’ a (x i ) i∈I (J 1 ⊂ I, J 2 ⊂ I) v´o . i sˆo ´ vector lˆa ` n lu . o . . t la` m va` n (m, n ≥ 1). Vı` (x j ) j∈J 2 d¯ˆo . c lˆa . p tuyˆe ´ n tı´nh tˆo ´ i d¯a . i nˆen mo . i x j , j ∈ J 1 d¯ˆe ` u biˆe ’ u thi . tuyˆe ´ n tı´nh d¯u . o . . c qua (x j ) j∈J 2 . Ma` (x j ) j∈J 1 d¯ˆo . c lˆa . p tuyˆe ´ n tı´nh, do d¯o´ theo Bˆo ’ d¯ˆe ` 3.1, ta co´ m ≤ n. Tu . o . ng tu . . cu ˜ ng co´ n ≤ m. Vˆa . y n = m. Ba`i gia ’ ng D - a . i sˆo ´ tuyˆe ´ n tı´nh 56 3. Khˆong gian vector 3.4.2 Ha . ng cu ˙’ a mˆo . t hˆe . vector. D - i . nh nghı ˜ a 3.6. Cho V la` mˆo . t K− khˆong gian vector, (x i ) i∈I la` mˆo . t hˆe . vector bˆa ´ t ky` trong V . Nˆe ´ u hˆe . con d¯ˆo . c lˆa . p tuyˆe ´ n tı´nh tˆo ´ i d¯a . i cu ’ a (x i ) i∈I co´ sˆo ´ phˆa ` n tu . ’ h˜u . u ha . n b˘a ` ng r thı` r d¯u . o . . c go . i la` ha . ng cu ’ a hˆe . (x i ) i∈I . Kı´ hiˆe . u: rank((x i ) i∈I ) = r. Vı´ du . . Xe´t la . i hˆe . vector {x 1 = (1, 2, 3), x 2 = (2, 4, 6), x 3 = (3, 6, 9)} cu ’ a R 3 . Vı` {x 1 } la` mˆo . t hˆe . con d¯ˆo . c lˆa . p tuyˆe ´ n tı´nh tˆo ´ i d¯a . i cu ’ a hˆe . {x 1 , x 2 , x 3 } nˆen rank(x 1 , x 2 , x 3 ) = 1. Nhˆa . n xe´t. Khi cho (s) = (x i ) i=1,n la` mˆo . t hˆe . vector trong V va` r =rank(s) thı`: (i) r ≤ n, (ii) Nˆe ´ u (s) = (x i ) i=1,n d¯ˆo . c lˆa . p tuyˆe ´ n tı´nh thı` rank(s) = r = n. 3.4.3 C´ac hˆe . vector trong K n . Trong khˆong gian K n xe´t m vector sau: a 1 = (a 11 , a12, ., a 1n ) a 2 = (a 21 , a22, ., a 2n ) . a m = (a m1 , am2, ., a mn ) Go . i A = (a ij ) m×n la` ma trˆa . n cˆa ´ p m × n trˆen K ma` ca´c do`ng chı´nh la` a 1 , a 2 , ., a m . Khi d¯o´ ta co´ ca´c kh˘a ’ ng d¯i . nh sau d¯ˆay: D - i . nh ly´ 3.4. V´o . i hˆe . (a 1 , a 2 , ., a m ) va` ma trˆa . n A d¯u . o . . c d¯i . nh nghı ˜ a nhu . trˆen, ta co´: (1) Hˆe . (a 1 , a 2 , ., a m ) d¯ˆo . c lˆa . p tuyˆe ´ n tı´nh trong K n ⇔ rank(A) = m. (2) Hˆe . (a 1 , a 2 , ., a m ) phu . thuˆo . c tuyˆe ´ n tı´nh trong K n ⇔ rank(A) = m. D - i . nh ly´ 3.5. Ha . ng cu ’ a mˆo . t ma trˆa . n cˆa ´ p m × n trˆen K b˘a ` ng ha . ng cu ’ a hˆe . vector cˆo . t (tu . o . ng ´u . ng, do`ng) cu ’ a no´ trong K m (tu . o . ng ´u . ng, K n ). T`u . 2 d¯i . nh ly´ trˆen ta suy ra mˆo . t ca´ch d¯ˆe ’ xe´t tı´nh d¯ˆo . c lˆa . p tuyˆe ´ n tı´nh hay phu . thuˆo . c tuyˆe ´ n tı´nh cu ˜ ng nhu . tı`m ha . ng cu ’ a mˆo . t hˆe . vector trong K n la` d¯i tı`m ha . ng cu ’ a ma trˆa . n d¯u . o . . c ta . o nˆen bo . ’ i ca´c vector d¯o´. Vı´ du . . Xe´t tı´nh d¯ˆo . c lˆa . p tuyˆe ´ n tı´nh hay phu . thuˆo . c tuyˆe ´ n tı´nh va` tı`m ha . ng cu ’ a ca´c hˆe . vector sau: Ba`i gia ’ ng D - a . i sˆo ´ tuyˆe ´ n tı´nh [...]... = 2 < 3 (sˆ vector cua hˆ), do d´ (v1, v2 , v3 ) phu thuˆc a o ¯o 4 ´ tuyˆ n tı trong R va rank(v1, v2 , v3 ) = 2 e ´nh ` ´ ` ˙ ’ Co so - Sˆ chiˆu - Toa d o cua khˆng gian vector o e o ¯ˆ ˙ ’ 3.5 3.5.1 ˙ ˙ ’ ’ Co so cu a khˆng gian vector o - ˜ Dinh nghı a 3.7 Cho K− khˆng gian vector V Hˆ vector = (e1 , e2 , , en ) o e o.c goi la mˆt co so cua V nˆ u d oc lˆp tuyˆ n tı va moi vector ´ ´ ’... khˆng gian vector, (S) la mˆt hˆ vector ` o o ` o e o.c goi la hˆ sinh cua khˆng gian vector V nˆ u moi x ∈ V , x ´ ’ trong V (S) d ` e ¯u o e cu ng biˆ u thi tuyˆ n tı d o.c qua hˆ (S) d´ ’ ˜ ´ ´nh ¯u bao gi` o e e e ¯o Nhˆn xe t a ´ ’ ’ (1) Mˆt co so cua K− khˆng gian vector V la mˆt hˆ sinh nhu.ng d ` u ngu.o.c o o ` o e ¯iˆ e lai khˆng d ´ ng o ¯u ’ ’ (2) Trong K− khˆng gian vector. .. K3 nhˆn hˆ vector gˆm 3 vector : o a e o → → − e2 e3 (e) = {→ = (1, 0, 0), − = (0, 1, 0), − = (0, 0, 1)} e1 -ˆ ` o ` ’ e lam co so nˆn dimV = 3 Day la mˆt khˆng gian h˜.u han chiˆu ` o u e 2 3 (2) K− khˆng gian vector K[x] nhˆn hˆ vector (e) = {1, x, x , x , } la mˆt o a e ` o so Day la mˆt khˆng gian vˆ han chiˆu ` ’ -ˆ ` o o o e co - ` Dinh ly 3.7 Cho V la mˆt K− khˆng gian vector n chiˆu... khˆng gian n chiˆu (n ∈ N tuy ´ ) d o.c goi chung la ca c a ´ o e ` y ¯u ` ´ u han chiˆu ` khˆng gian h˜ o u e ´ ´ ’ng - o Bai gia Dai sˆ tuyˆ n tı ` e ´nh 60 3 Khˆng gian vector o ` ´ e ´ (2) V goi la khˆng gian vˆ han chiˆu, kı hiˆu dim V = ∞, nˆ u no khˆng h˜.u o e e ´ o u ` o ` ` ’ ’ han chiˆu, t´.c hˆ vector co so cua V co vˆ han phˆn tu e u e ´ o a ’ Vı du ´ ` (1) K− khˆng gian vector. .. o ’ (3) Trong K− khˆng gian vector Kn , hˆ vector o e (e) = {e1 = (1, 0, 0, , 0, 0), e2 = (0, 1, 0, , 0, 0), , en = (0, 0, 0, , 0, 1)} ´ ’ ` ` ¯u ` ’ ’ la mˆt co so va co so nay con d o.c goi la co so chuˆ’n t˘ c cua Kn ` o ’ ’ ` a a ’ (4) Trong K− khˆng gian vector K[x], hˆ vector (e) = {1, x, x2 , x3 , } la mˆt o e ` o so ’ co 3.5.2 ˙ ’ Hˆ sinh cu a mˆt khˆng gian vector e o o - ˜ Dinh... cua V d` u biˆ u thi tuyˆ n tı qua ¯ˆ e e’ e ´nh Nhˆn xe t a ´ ´ ` ’ ’ (1) V´.i mˆt khˆng gian vector bˆ t ky bao gi` cu ng tˆn tai mˆt co so cua o o o a ` o ˜ o o no ´ ´ ’ ’ (2) Co so cua mˆt khˆng gian vector la khˆng duy nhˆ t o o ` o a Vai vı du ` ´ (1) Trong K− khˆng gian vector K3 cho hˆ gˆm 3 vector : o e ` o − → → (e) = {→ = (1, 0, 0), − = (0, 1, 0), − = (0, 0, 1)} e e e 1 2 3 ˜ a ´... Khˆng gian h˜.u han v` vˆ han chiˆu o e o u a o e - ˜ Dinh nghı a 3.9 Cho V la mˆt K− khˆng gian vector va n la mˆt sˆ tuy ´ ` o o ` ` o o ` y ´ ` ´ e ’ ’ ’ (1) Ta bao V la mˆt khˆng gian n chiˆu (n ≥ 1) nˆ u hˆ vector co so cua V ` o o e e b˘ ng n Ta cu ng bao sˆ chiˆu cua V la n va kı hiˆu dim ˜ ´ a ’ ` ´ ` ’ o co sˆ phˆn tu a ´ o ` e ’ ` ` ´ e V = n ´ ’ ` Khˆng gian khˆng (chı gˆm mˆt vector. .. a o ´ ng minh r˘ ng R cung v´.i hai phe p toa n trˆn la mˆt khˆng gian ` Ch´ u a o ´ ´ e ` o o + ` c vector thu 3.2 Xe t xem R2 cung v´.i hai phe p toa n sau co lˆp thanh mˆt R− khˆng gian ´ ` o ´ ´ ´ a ` o o vector khˆng? o ´ ´ ’ng - o Bai gia Dai sˆ tuyˆ n tı ` e ´nh ´ ` ˙ ’ o e o 3.5 Co so - Sˆ chiˆu - Toa d o cua khˆng gian vector ¯ˆ ˙ ’ 63 a (a, b) + (c, d) = (a, b); λ(a, b) = (λa, λb),... → + x → + x → − − − − − ∀x ´ x 1 2 3 1 e1 2 e2 3 e3 ’ ’ Vˆy (e) la mˆt co so cua K3 a ` o (2) Trong K− khˆng gian vector K3 cho hˆ gˆm 3 vector : o e ` o − − → (u) = {→ = (1, 1, 1), → = (1, 1, 0), − = (1, 0, 0)} u u u 1 ´ ´ ’ng - o Bai gia Dai sˆ tuyˆ n tı ` e ´nh 2 3 58 3 Khˆng gian vector o → − − − Ta co λ1 → + λ2 → + λ3 → = 0 ´ − u1 u2 u3   λ1 + λ 2 + λ 3 = 0  λ1 = 0   → − ⇔ (λ1 + λ2 +... nghı a 3.11 Cho V la mˆt K− khˆng gian vector n chiˆu, (e) = ` o o e → → − − − → − − → ` ’ ’ a e’ {→, →, , − } va (e ) = { e1 , e2 , , en } la hai co so cua V Ma trˆn chuyˆ n e1 e2 en ` so t` (e) sang (e ) la mˆt ma trˆn vuˆng cˆ p n v´.i cˆt th´ j la toa d o cua ´ co ’ u ` o a o a o o u ` ¯ˆ ’ → − ´ ’ vector ej d o i v´.i co so (e) ¯ˆ o Vı du Trong K− khˆng gian vector K3 : ´ o − → → (e) = {→ . cu ˙’ a khˆong gian vector. 3.5.1 Co . so . ˙’ cu ˙’ a khˆong gian vector. D - i . nh nghı ˜ a 3.7. Cho K− khˆong gian vector V . Hˆe . vector  = (e 1. Khˆong gian vector con. D - i . nh nghı ˜ a 3.2. Mˆo . t tˆa . p ho . . p con W = ∅ cu ’ a K− khˆong gian vector V d¯u . o . . c go . i la` khˆong gian vector

Ngày đăng: 23/10/2013, 14:20

Xem thêm

TỪ KHÓA LIÊN QUAN

w