Mục tiêu của đề tài là muốn giúp học sinh thấy được mối liên hệ giữa kiến thức môn Toán học với các môn học khác đặc biệt là môn Vật lí, Địa lí, Sinh học,... thực tế. Từ đó việc tiếp thu kiến thức của học sinh cũng trở nên hệ thống, khoa học và sâu sắc hơn và học sinh biết vận dụng kiến thức đã học vào giải quyết các tình huống trong cuộc sống.
1. Lời giới thiệu Dạy học tích hợp liên mơn là một trong những phương pháp ngày càng được quan tâm trong những năm gần đây. Đó là một trong những phương pháp dạy học mới đem đến cho giáo dục những giá trị thực tiễn. Vì trong một giờ học, học sinh được tiếp cận với nhiều mơn học chứ khơng phải một mơn học khơ cứng. Hơn nữa học sinh có thể vận dụng các kiến thức nhiều mơn học trong bài học để giải quyết các tình huống nảy sinh trong thực tế. Nhưng hiện nay, v iệc dạy học ở trường phổ thơng đa phần các em mới được học kiến thức một cách riêng rẽ, chưa được tiếp cận vấn đề trong một chỉnh thể chung, thống nhất. Các em mới chỉ được nhìn vấn đề theo phương diện từng mơn, trong khi tất cả những sự kiện, những vấn đề các em gặp phải ngồi đời sống đều cần đến kiến thức đa mơn để giải quyết. Dạy học theo chủ đề tích hợp là một trong những ngun tắc quan trọng trong dạy học nói chung và dạy học Tốn học nói riêng, đây được coi là một quan niệm dạy học hiện đại, nhằm phát huy tính tích cực của học sinh, đồng thời nâng cao chất lượng giáo dục. Dạy học tích hợp làm cho người học nhận thức được sự phát triển xã hội một cách liên tục, thống nhất, thấy được mối liên hệ hữu cơ giữa các lĩnh vực của đời sống xã hội, khắc phục được tính tản mạn rời rạc trong kiến thức Trong đó, mơn Tốn là mơn học có đặc thù khó tích hợp được với các mơn học khác. Tuy nhiên cũng có một số bài có thể tích hợp được với một số mơn học và tơi đã chọn “Tích hợp liên mơn trong dạy học chủ đề Xác suất của biến cố’’ làm đề tài sáng kiến kinh nghiệm của mình Thơng qua sáng kiến kinh nghiệm này, ngồi kiến thức Tốn cần đạt được các em có thể khắc sâu thêm các phần kiến thức đã học ở bộ mơn khác: Lịch sử, Sinh học, GDCD, Hình học,…và các tình huống thường gặp trong thực tế. Khơng những thế, thơng qua cơng việc được giao, các em chủ động lĩnh hội kiến thức, tăng kĩ năng làm việc theo nhóm hiệu quả. Qua vận dụng sáng kiến này, các em cũng có hiểu biết sâu sắc về ứng dụng của xác suất với đời sống và các mơn học khác, tăng cường ý thức bảo vệ sức khoẻ mình, ý thức bảo vệ mơi trường và giải quyết được nhiều vấn đề trong thực tiễn cuộc sống. 2. Tên sáng kiến “Tích hợp liên mơn trong dạy học chủ đề Xác suất của biến cố” 3.Tác giả sáng kiến: Họ và tên: Nguyễn Thị Thanh Hịa Địa chỉ: Trường THPT Trần Hưng Đạo – Tam Dương – Vĩnh Phúc Số điện thoại: 0987.444.700 Email: nguyenthanhhoa.gvtranhungdao@vinhphuc.edu.vn 4. Chủ đầu tư tạo ra sáng kiến: Nguyễn Thị Thanh Hịa 5. Lĩnh vực áp dụng sáng kiến: Mơn Đại số và Giải Tích lớp 11 ban cơ bản Trong phạm vi đề tài này, tơi thực hiện nghiên cứu đưa ra các phương pháp, nội dung tích hợp kiến thức Lịch sử, Địa lí, Sinh học, GDCD, Thực tế để dạy chủ đề Xác suất của biến cố thuộc chương trình Đại số và Giải tích 11 6. Ngày sáng kiến được áp dụng lần đầu: Ngày 25 tháng 10 năm 2019 7. Mơ tả bản chất của sáng kiến: 7.1. Nội dung của sáng kiến PHẦN I. MỞ ĐẦU 7.1.1. Lí do chọn đề tài Tích hợp trong dạy học nói chung, trong Tốn học nói riêng có ý nghĩa quan trọng trong giáo dưỡng, giáo dục, rèn luyện và phát triển kĩ năng tư duy, phân tích tổng hợp, khái quát hóa, trừu tượng hóa. Sự phát triển nhanh chóng của khoa học kĩ thuật trong giai đoạn hiện nay đang địi hỏi sự thay đổi căn bản và tồn diện về nội dung và phương pháp giáo dục. Từ cách tiếp cận nội dung, giáo dục chuyển sang tiếp cận năng lực. Điều đó đặt ra những u cầu về ngun tắc và phương pháp giáo dục theo hướng tích hợp để giải quyết vấn đề đặt ra trên đây. Việc thực hiện vận dụng kiến thức Vật lí, Địa lí, Sinh học trong dạy học Tốn học nói chung đã được nhiều giáo viên mơn Tốn thực hiện trong những năm qua. Tuy nhiên, việc thực hiện tích hợp kiến thức như thế nào trong dạy học Tốn học đảm bảo tính vừa sức và nâng cao hứng thú, tính tích cực và khả năng tư duy sáng tạo của học sinh trong học tập cịn nhiều hạn chế, nhất là việc đưa ra các phương pháp, cách thức tích hợp kiến thức Vật lí, Địa lí, Sinh học, Tin học, trong dạy học Tốn học Cùng với những hạn chế cịn tồn tại trong q trình thực hiện vận dụng kiến thức Vật lí, Địa lí, Sinh học, GDCD trong giảng dạy Tốn học; với mong muốn nâng cao hứng thú của học sinh trong học tập bộ mơn, từ đó góp phần nâng cao chất lượng và hiệu quả giáo dục, tơi lựa chọn nội dung “Tích hợp liên mơn trong dạy học chủ đề Xác suất của biến cố làm đề tài sáng kiến kinh nghiệm của mình 7.1.2. Mục đích nghiên cứu của đề tài Qua đề tài này, tơi muốn giúp học sinh thấy được mối liên hệ giữa kiến thức mơn Tốn học với các mơn học khác đặc biệt là mơn Vật lí, Địa lí, Sinh học, thực tế. Từ đó việc tiếp thu kiến thức của học sinh cũng trở nên hệ thống, khoa học và sâu sắc hơn và học sinh biết vận dụng kiến thức đã học vào giải quyết các tình huống trong cuộc sống Tìm hiểu, nghiên cứu và áp dụng các phương pháp tích hợp kiến Vật lí, Địa lí, Sinh học, GDCD, thực tế trong dạy học chủ đề Xác suất của biến cố góp phần nâng cao hứng thú và năng lực tư duy sáng tạo của học sinh trong học tập bộ mơn, góp phần nâng cao chất lượng giáo dục 7.1.3. Đối tượng, khách thể nghiên cứu: Đối tượng nghiên cứu: Nghiên cứu việc vận dụng tích hợp Vật lí, Địa lí, Sinh học, thực tế trong dạy học chủ đề Xác suất của biến cố thuộc chương trình Đại số và Giải tích 11 Ban cơ bản Khách thể nghiên cứu: học sinh lớp 11 trường Trung học phổ thơng Trần Hưng Đạo huyện Tam Dương Tỉnh Vĩnh Phúc 7.1.4. Phương pháp nghiên cứu: Để thực hiện đề tài này, tơi sử dụng phương pháp các phương pháp như: Nghiên cứu lí luận: Tìm hiểu, nghiên cứu các tài liệu tốn học; phương pháp dạy học mơn Tốn và các tài liệu khác liên quan đến đề tài Xác suất của biến cố. Ngồi ra tơi cịn tìm tịi kiến thức các mơn học khác Vật lí, Sinh học, Địa lí, thực tế, có thể tích hợp với chủ đề nêu trên Quan sát: Quan sát thực trạng dạy và học mơn Tốn nói chung và phân mơn Giải tích nói riêng ở trường phổ thơng Thực nghiệm sư phạm: Tổ chức thực nghiệm sư phạm để xem xét tính khả thi và hiệu quả của việc tích hợp các mơn học khác và mối liên hệ với thực tiễn trong dạy học Giải tích ở trường phổ thơng 7.1.5. Phạm vi nghiên cứu: Về nội dung: Nghiên cứu việc vận dụng tích hợp Vật lí, Địa lí, Sinh học, GDCD, Tin học thực tế trong dạy học chủ đề Xác suất của biến cố thuộc chương trình Đại số và Giải tích 11 Ban cơ bản Về khách thể nghiên cứu: trên 60 học sinh khối lớp 11 của trường THPT Trần Hưng Đạo Về thời gian nghiên cứu: Tháng 10, 11năm học 2019 – 2020 7.1.6. Điểm mới của đề tài Tìm hiểu, nghiên cứu, đưa ra các nội dung kiến thức Vật lí, Địa lí, Sinh học, GDCD, thực tế có thể thực hiện tích hợp trong q trình dạy học học chủ đề Xác suất của biến cố thuộc chương trình Đại số và Giải tích 11 Ban cơ bản Tìm hiểu, nghiên cứu và áp dụng các phương pháp thực hiện tích hợp kiến kiến thức Vật lí, Địa lí, Sinh học, GDCD thực tế trong q trình dạy học học chủ đề Xác suất của biến cố thuộc chương trình Đại số và Giải tích 11 Ban cơ bản, góp phần nâng cao hứng thú và năng lực tư duy sáng tạo của học sinh trong học tập bộ mơn, góp phần nâng cao chất lượng giáo dục. Ngồi ra cịn giúp học sinh có kĩ năng vận dụng Tốn học cụ thể là nội dung Xác suất của biến cố để giải quyết các tình huống trong thực tế cuộc sống 7.1.7. Cấu trúc của đề tài Ngoài phầ n M đầ u, ph ầ n K ết lu ận; Ph ần n ội dung c ủa sáng kiế n đượ c c ấ u t o thành 3 ch ươ ng : Chương 1. Cơ sở lí luận và thực tiễn của việc dạy học tích hợp Chương 2. Nội dung tích hợp liên mơn khi dạy chủ đề Xác suất của biến cố Chương 3. Kết luận CHƯƠNG I. CƠ SỞ LÍ LUẬN VÀ THỰC TIỄN CỦA VIỆC DẠY HỌC TÍCH HỢP 1. Cơ sở lí luận của việc dạy học tích hợp 1.1. Quan điểm tích hợp trong dạy học nói chung Tích hợp là một khái niệm rộng, khơng chỉ dùng trong lí luận dạy học. Tích hợp trong Tiếng Anh Integration có nguồn gốc từ tiếng Latin Integration có nghĩa là xác lập cái chung, cái tồn thể, cái thống nhất trên cơ sơ những bộ phận riêng lẻ Theo từ điển Tiếng Việt: “Tích hợp là sự kết hợp những hoạt động, chương trình hoặc những thành phần khác nhau thành một khối chức năng. Tích hợp có nghĩa là sự thống nhất, sự hồ hợp, sự kết hợp” Theo từ điển Giáo dục học: “Tích hợp là hành động liên kết các đối tượng nghiên cứu, giảng dạy, học tập của cùng một lĩnh vực hoặc vài lĩnh vực khác nhau trong cùng một kế hoạch dạy học Tích hợp là một khái niệm được sử dụng trong nhiều lĩnh vực. Trong lĩnh vực khoa học giáo dục, khái niệm tích hợp xuất hiện từ thời kì khai sáng, dùng để chỉ một quan niệm giáo dục tồn diện con người, chống lại hiện tượng làm cho con người phát triển thiếu hài hồ cân đối Như chúng ta đã biết, tích hợp là một trong những quan điểm giáo dục đã trở thành xu thế để xác định nội dung và chương trình dạy học nhiều nước trên thế giới. Thực tiễn đã cho thấy việc thực hiện quan điểm tích hợp trong dạy học đã giúp phát triển năng lực giải quyết những vấn đề phức tạp và làm cho việc học tập trở nên có ý nghĩa hơn đối với học sinh so với việc học những mơn hoc được thực riêng rẽ Như vậy tích hợp chính là một trong những quan điểm giáo dục nhằm nâng cao năng lực người học, giúp đào tạo những người có đủ phẩm chất và năng lực để giải quyết vấn đề của cuộc sống hiện đại Ở Việt Nam quan điểm dạy học tích hợp cũng đã xuất hiện từ những năm đầu thế kỉ XXI. Và đến hiện nay quan điểm dạy học này đã được áp dụng trong tất cả các cấp học và bước đầu đã cho thấy hiệu quả tích cực. Đã có nhiều nội dung được Bộ Giáo dục và đào tạo chỉ đạo đưa vào q trình giảng dạy các mơn học như: Giáo dục đạo đức, pháp luật, giáo dục chủ quyền quốc gia, tài ngun, mơi trường, biên giới, biển, đảo, giáo dục tư tưởng Hồ Chí Minh… Trong giai đoạn hiện nay, dạy học tích hợp cịn là sự lồng ghép những mơn học khác có nội dung liên quan vào mơn học nào đó người giáo viên có thể giúp học sinh thấy được mối liên hệ giữa các mơn học, từ đó có thể hiểu một cách sâu sắc nội dung bài học. Ví dụ như khi dạy mơn Tốn học, giáo viên có thể tích với kiến thức của các mơn: Vật lí, Địa lí, Sinh học, thực tế, Giáo dục cơng dân,… Như vậy trong dạy học bộ mơn, tích hợp được hiểu là sự kết hợp, tổ hợp các nội dung từ các mơn học, lĩnh vực học tập khác nhau thành một mơn học mới hoặc lồng ghép các nội dung cần thiết vào những nội dung vốn có của mơn học. 1.2. Quan điểm tích hợp trong dạy học Tốn học Như chúng ta đã biết ngày nay lí thuyết hiện đại về q trình học tập đã nhấn mạnh rằng hoạt động của học sinh trước hết là học cách học. Theo ý nghĩa đó, quan điểm dạy học tích hợp địi hỏi giáo viên phải có cách dạy chú trọng phát triển ở học sinh cách thức lĩnh hội kiến thức và năng lực, phải dạy cho học sinh cách thức hành động để hình thành kiến thức và kĩ năng cho chính mình, phải có cách dạy học buộc học sinh phải tự đọc, tự học để hình thành thói quen tự đọc, tự học để hình thành thói quen tự đọc, tự học suốt đời coi đó là một hoạt động đọc hiểu trong suốt q trình học tập ở nhà trường Khi thiết kế bài học Tốn học theo quan điểm tích hợp khơng chỉ chú trọng đến nội dung kiến thức tích hợp mà cần thiết phải xây dựng một hệ thống việc làm, thao tác tương ứng nhằm tổ chức, dẫn dắt học sinh từng bước thực hiện để chiếm lĩnh đối tượng học tập, nội dung học tập, đồng thời hình thành và phát triển năng lực, kĩ năng tích hợp, tránh áp đặt một cách làm duy nhất. Giờ học Tốn theo quan điểm tích hợp phải là một giờ học hoạt động phức hợp địi hỏi sự tích hợp các kĩ năng, năng lực liên mơn để giải quyết nội dung tích hợp, chứ khơng phải sự tác động các hoạt động, kĩ năng riêng rẽ lên một nội dung riêng rẽ thuộc nội bộ phân mơn Tóm lại, quan điểm tích hợp cần được hiểu tồn diện và phải được qn triệt trong mọi khâu của q trình dạy học, qn triệt trong mọi yếu tố của hoạt học tập, tích hợp trong chương trình, tích hợp trong sách giáo khoa, tích hợp trong phương pháp dạy học của giáo viên và tích hợp trong hoạt động học tập của học sinh. Quan điểm lấy học sinh làm trung tâm địi thực hiện việc tích cực hố hoạt động học tập của học sinh trong mọi mặt, trên lớp và ngồi giờ, đồng thời cần phải bồi dưỡng lịng tin để các em tự tin và tự học, khi đó hoạt động dạy học mới thật sự có ý nghĩa 2. Cơ sở thực tiễn 2.1. Nhận thức về dạy học tích hợp Có thể khẳng định rằng dạy học tích hợp là một xu thế dạy học hiện đại. Bởi vậy hầu hết giáo viên đang làm cơng tác giảng dạy ở nhà trường phổ thơng đều nhận thức được đây là một phương pháp, cách thức dạy học mang lại hiệu quả tích cực Hơn nữa Tốn học lại là mơn học có khả năng tích hợp được với nhiều nội, nhiều mơn học khác nhau. Vì vậy trong q trình giảng dạy, giáo viên đã có ý thức tìm hiểu và áp dụng Trong những năm gần đây, Sở Giáo dục và Đào tạo rất chú trọng đến dạy học tích hợp. Vì vậy, dưới sự qn triệt, chỉ đạo của Sở giáo viên ở các trường phổ thơng cũng đã được bồi dưỡng, tập huấn dạy học tích hợp với nhiều nội dung như tích hợp tư tưởng Hồ Chí Minh, Dân số, Mơi trường, Kỹ năng sống, Pháp luật cũng như tích hợp các kiến thức liên mơn trong một số mơn học trong đó có mơn Tốn 2.2. Thực trạng dạy học tích hợp trong mơn Tốn học trường THPT Trần Hưng Đạo Có thể khẳng định rằng giáo viên trường THPT Trần Hưng Đạo nhận thức rõ tầm quan trọng và ý nghĩa của dạy học tích hợp. Tuy nhiên trong thực tế giảng dạy hiện nay, vẫn cịn giáo viên chưa thực sự hiểu rõ về tích hợp. Chính vì chưa hiểu kĩ về khái niệm này nên trong q trình giảng dạy giáo viên mới chỉ dừng lại ở việc lồng ghép hoặc đưa ra một vài chỗ liên hệ trong bài học dẫn đến việc tích hợp trở nên khiên cưỡng. Cũng có khi trong q trình dạy học giáo viên lại q lạm dụng tích hợp dẫn đến một giờ học Tốn nhưng lại ơm đồm q nhiều nội dung hoặc kiến thức của những mơn học khác làm cho bài học trở nên cồng kềnh dẫn đến phá vỡ thời lượng của bài học. Ngồi ra cịn làm cho bài học khơng có trọng tâm, thiếu chiều sâu, thiếu tính hệ thống hoặc biến giờ học tốn thành giờ học của các mơn khác. 2.3. Một số kinh nghiệm dạy học tích hợp trong mơn Tốn học học 2.3.1. Trước hết phải hiểu thế nào là dạy học tích hợp trong mơn Tốn Tích hợp trong q trình dạy học là sự phối kết hợp các tri thức của một số mơn học có những nét chính, tương đồng xoay quanh một chủ đề nào đó. Nói cách khác, tích hợp là phương pháp phối hợp một cách riêng lẻ các mơn học khác nhau, các nội dung khác nhau theo những hình thức, cấp độ khác nhau nhằm đáp ứng mục tiêu, mục đích u cầu cụ thể nào đó của tiết học Tích hợp trong mơn Tốn học khơng chỉ là sự kết nối tri thức của hai phân mơn: Đại số, Giải tích và Hình học mà đó cịn là sự tích hợp những kiến thức liên mơn như Vật lí, Địa lí, Sinh học, Giáo dục cơng dân hay những nội dung riêng lẻ khác như kĩ năng sống, mơi trường, ….vào từng bài học, từng vấn đề cụ thể. Đây chính là phương pháp dạy học tiếp cận từ việc khái thác những tri thức của nhiều nội dung, nhiều mơn học khác có liên qua đến mơn Tốn học. Từ đó để tăng thêm tính thuyết phục, tính phong phú, hấp dẫn và mối liên hệ, liên quan lẫn nhau của những mơn học và khắc sâu nội dung mơn học hơn 2.3.2. Xác định mục tiêu, nội dung, phương pháp dạy học tích hợp Để vận dụng phương pháp dạy học tích hợp có hiệu quả, người dạy cần phải xác định chính xác, đúng đắn mục tiêu, ngun tắc, phương pháp, nội dung dạy tích hợp trong bài dạy. Theo kinh nghiệm của tơi, cụ thể như sau: * Mục tiêu: (Trả lời câu hỏi: Sử dụng dạy học tích hợp trong bài dạy để làm gì?) Để khắc sâu kiến thức thức bài học Để thấy được mối liên quan, liên hệ giữa kiến thức của mơn Tốn học với các nội dung và các mơn học khác Rèn kỹ năng vận dụng Tốn học để giải quyết các tình huống thực tế * Nội dung: (Trả lời câu hỏi: Trong bài dạy, nội dung nào cần phải dạy theo hướng tích hợp?) Các nội dung kiến thức có những điểm liên quan với các nội dung, những mơn học khác Các nội dung kiến thức cần đến những kiến thức liên mơn của các mơn học khác để làm phương tiện, cơng cụ khai thác * Ngun tắc: (Trả lời câu hỏi: sử dụng phương pháp dạy học tích hợp xuất phát từ những cơ sở nào?) Căn cứ vào mục tiêu cần đạt của bài học Căn cứ vào những nội dung cần kiến thức của các mơn học khác để làm sáng tỏ * Phương pháp: (Trả lời câu hỏi: Cách thức sử dụng phương pháp dạy học tích hợp như thế nào?) Có nhiều cách thức để áp dụng phương pháp dạy học tích hợp trong q trình dạy học nói chung và mơn Tốn học nói riêng. Tuỳ vào từng nội dung kiến thức của bài học mà người dạy sử dụng những cách thức tích hợp khác nhau. Tuy nhiên trong q trình giảng dạy, tơi thường sử dụng hai cách thức tích hợp sau: Tích hợp ngang: Là hình thức tích hợp liên mơn, phân mơn của mơn Tốn học như Đại số, Hình học, Giải tích để giải mã, làm rõ những kiến thức của Tốn học và ngược lại Tích hợp dọc: Là kiểu tích hợp trên cơ sở liên kết hai hoặc nhiều mơn học thuộc cùng một lĩnh vực hoặc một số lĩnh vực gần nhau CHƯƠNG II. NỘI DUNG TÍCH HỢP LIÊN MƠN KHI DẠY HỌC CHỦ ĐỀ XÁC SUẤT CỦA BIẾN CỐ Để giải quyết các vấn đề đặt ra trong chủ đề trên, học sinh cần học tập và vận dụng các kiến thức liên mơn sau: Mơn học Bài liên quan đến chủ đề tích hợp Ghi chú Hình học 8 Bài 1: Đa giác – Đa giác đều Bài 1: Mendden và di truyền học Sinh học lớp 9 Bài 12: Cơ chế xác định giới tính Bài 10: Tương tác gen và tác động đa hiệu của gen Sinh học lớp 12 Bài 12: Di truyền liên kết với giới tính và di truyền ngồi nhân Tin học 11 Bài 12: Kiểu xâu Giáo dục công dân Bài 2: Thực hiện pháp luật 12 Vật lý 11 Bài 10: Ghép các bộ nguồn thành bộ Bài 4: Đoạn mạch mắc nối tiếp Vật lý 9 Bài 5: Đoạn mạch mắc song song Như vậy, học sinh được rèn luyện năng lực vận dụng những kiến thức liên môn ở trên để giải quyết các vấn đề thực tiễn của dự án: Xác suất của biến cố, các trị chơi trong thực tế cuộc sống I. MỤC TIÊU DẠY HỌC 1. Về kiến thức 1.1. Mơn Đại số. Nắm được định nghĩa cổ điển của xác suất Nắm được cơng thức tính xác suất Các tính chất và hệ quả của xác suất Nắm được các biến cố độc lập và cơng thức nhân xác suất 1.2. Mơn Hình học Nắm được khái niệm về lục giác đều, khái niệm về cạnh, đường chéo của lục giác 1.3 Mơn Sinh học Giúp học sinh nắm được định nghĩa cổ điển của xác suất để giải các bài tốn về di truyền. Tính xác suất sinh con trai, con gái trong 3 lần sinh 1.4. Mơn Lịch sử Nắm được lịch sử phát triển mơn học xác suất trên thế giới, cuốn sách Tiếng Việt về xác suất – thống kê xuất bản lần đầu tiên ở nước ta Giúp học sinh hiểu sự hình thành và lịch sử phát triển của tốn học chính là sự bắt nguồn từ việc xây dựng các trị chơi dân gian, từ thực tế các câu chun may r ̣ ủi của những nhà tài phiệt 1.5. Mơn giáo dục cơng dân Nắm được một số luật quy định của nhà nước về các vấn đề chơi cờ bạc, luật về lựa chọn giới tính thai nhi,…. gắn liền với cuộc sống của chúng ta được học trong mơn giáo dục cơng dân Giúp học sinh hiểu các bài tốn, các trị chơi dân gian, qua các bài tốn, các trị chơi dân gian đó giúp học sinh phát triển lối sống kỹ năng khác, giáo dục lối sống lành mạnh. Khả năng hiểu biết và tư duy xã hội theo hướng tích cực khơng xa đọa 1.6. Mơn Tin học Nắm được cách tìm kiếm, tra thơng tin trên mạng Internet Biết cách làm một bài thuyết trình PowerPoint 1.7. Mơn Vật Lý Nắm được thế nào là dạng mạch mắc nối tiếp, dạng mạch mắc song song Vẽ được dạng mạch mắc nối tiếp và mắc song song 1.8. Kiến thức về thực tế, xã hội Các trị chơi trên truyền hình: Chiếc nón Kỳ diệu, chọn bóng, tung súc sắc,… Quy luật của trị chơi thực tế.l 1.9. Kiến thức về Y học Khả năng sinh con trai hay con gái,… 1.10. Mơn Thể dục – Thể thao, Giáo dục – An ninh quốc phịng Giúp học sinh hiểu cơng thức tính xác suất và tính tốn làm sao để đảm bảo an tồn trong thể thao, khả năng may rủi có thể có trong thể thao. Ảnh hưởng của xác suất trong thành tích đạt được như thế nào 2. Kỹ năng 2.1. Mơn Đại số Biết vân dụng cơng thức tính xác suất để giải tốn Giải được bài tốn thực tế về xác suất Vận dụng các tính chất và hệ quả của xác suất vào các bài tốn Biết vận dụng quy tắc cộng và quy tắc nhân xác suất vào giải tốn 2.2. Mơn Hình học Vận dụng tính chất lục giác đều vào giải tốn xác suất 2.3. Mơn Sinh học Vận dụng lý thuyết xác suất và tổ hợp để giải các bài tốn về di truyền học Tính tần số xuất hiện tổ hợp gen Xác suất có được một cây có chiều cao ở mức độ nào đó 2.4. Mơn Lịch sử Hiểu được lịch sử phát triển mơn học xác suất trên thế giới, cuốn sách Tiếng Việt về xác suất – thống kê xuất bản lần đầu tiên ở nước ta 2.5. Mơn Giáo dục cơng dân Vận dụng được các kiến thức pháp luật được học ở mơn giáo dục cơng dân vào cuộc sống Nắm được Luật pháp quy định, sống và làm việc khơng vi phạm pháp luật 2.6. Mơn Tin học Biết cách tìm kiếm thơng tin trên mạng Internet Thực hành làm một bài thuyết trình PowerPoint 2.7. Mơn Vật Lý Vận dụng kiến thức về mạch mắc nối tiếp và song song trong bài tốn tính xác suất 2.8. Kiến thức về thực tế, xã hội Vận dụng được cơng thức tính xác suất, các quy tắc tính xác suất để giải quyết các bài tốn thực tế, gắn liền với cuộc sống Vận dụng lý thuyết xác suất để biết lợi hại của các trị chơi 2.9. Kiến thức về Y học Nắm được khả năng sinh con trai hay con gái,…Từ đó tun truyền vận động mọi người có cách hiểu đúng về giới tính thai nhi. Từ đó khơng lạm dụng kĩ thuật Y học để lựa chọn giới tính thai nhi 2.10. Mơn Thể dục – Thể thao, Giáo dục – An ninh quốc phịng Học sinh biết sử dụng cơng thức tính xác suất, và tính tốn làm sao để đảm bảo an tồn trong thể thao, khả năng may rủi có thể có trong thể thao Biết được cách xác định và tư duy để đạt được thành tích cao nhất trong thi đấu 3. Tư duy Thái độ Cẩn thận, trung thực, hợp tác trong các hoạt động Thấy mối liên hệ giữa Tốn học với các mơn học khác và thực tế cuộc sống Biết vận dụng các kiến thức được học để ứng dụng vào thực tế cuộc sống sao cho đạt hiệu quả cao nhất Hứng thú với phương pháp học tập mới, từ đó bồi dưỡng niềm say mê học tập với mơn tốn học. Bồi dưỡng khả năng tự học và học tập suốt đời cho học sinh Học sinh khi trình bày sản phẩm học tập của mình phát triển dược năng lực sáng tạo, thể hiện ở các giải pháp khi trình bày sản phẩm 4. Định hướng năng lực hình thành Năng lực hợp tác 10 Hoạt động của giáo viên và học sinh GV: Cho HS tham gia một trị chơi khởi động như sau: HS cả lớp: Suy nghĩ xem có nên đổi khơng? Đổi hay khơng đổi thì khả năng nào nhận được q hơn? GV: Gọi 1 vài HS nêu lên suy nghĩ của mình sau khi HS trên quyết định HS: Trình bày suy nghĩ của mình sau khi HS trên đã quyết định GV tổng kết: Nếu khơng đổi thì khả năng nhận được q của HS là 1/3 Sau khi GV mở 1 trong 2 hộp và khơng có q. Nếu HS trên mà đổi thì khả năng nhận được q là Vậy HS nên đổi thì khả năng nhận được q cao hơn Trên đây là một phép thử, đổi hộp hay khơng đổi là những biến cố. Con số 1/3 hay 2/3 đánh giá khả năng xảy ra của mỗi biến cố. Ta gọi đó là xác suất của biến cố Để hiểu hơn về vấn đề này ta đi tìm hiểu chủ đề xác suất của biến cố, để xem Tốn học có ứng dụng trong thực tế và trong ác mơn học khác như thế nào? Nội dung cơ bản Trị chơi khởi động: Có 3 chiếc hộp để trên bàn, chỉ 1 trong 3 hộp có q, cịn 2 hộp khơng có gì. HS chọn 1 trong 3 chiếc hộp và GV u cầu HS khơng được mở hộp ngay. Sau đó GV mở 1 hộp khơng có q trong 2 hộp cịn lại. GV hỏi HS có đổi hộp q đang cầm trên tay để lấy hộp q cịn lại khơng? Hoạt động 2: Hình thành định nghĩa xác suất Hoạt động của giáo viên và học sinh Nội dung cơ bản Ví dụ 1: Gieo ngẫu nhiên một con súc sắc cân đối và đồng chất a) Hãy mơ tả khơng gian mẫu? Xác định số phần tử của khơng gian mẫu? b) Khả năng xuất hiện của mỗi mặt là bao nhiêu? GV: Chia lớp thành 3 nhóm, u cầu các c) Khả năng xảy ra của biến cố: A: “ Con súc sắc xuất hiện mặt lẻ chấm” là nhóm thực hiện u cầu của Ví dụ 1: bao nhiêu? HS: Thực hiện theo nhóm Giải: GV: Gọi 1 nhóm lên trình bày. Các nhóm khác đóng góp ý kiến bổ sung a)Khơng gian mẫu là Ω = { 1, 2, 3, 4, 5, 6} b) Khả năng xuất hiện của mỗi mặt là như nhau và bằng c) Biến cố A = {1, 3, 5} 12 Khả năng xuất hiện biến cố A là : GV: Con số mà các em tìm được ở phần c) là xác suất của biến cố A. So sánh số với tỉ số giữa số phần tử của A với số Định nghĩa: Giả sử phép thử T có khơng phần tử của khơng gian mẫu gian mẫu là một tập hữu hạn và các kết HS: Số bằng với tỉ số giữa số phần tử của T là đồng khả năng. Nếu A là một biến cố liên quan với phép thử T thì của A với số phần tử của khơng gian ta gọi tỉ số là xác suất của A là một số, mẫu GV: Sử dụng kĩ thuật khăn trải bàn kí hiệu là P(A) hoặc để học sinh xây dựng định nghĩa xác Chú ý: n(A) hặc || là số phần tử của A suất của biến cố theo cách hiểu của hay cũng là tập hợp các kết quả thuận lợi cho biến cố A HS: Thực hiện nhiệm vụ n() hặc || là số các kết quả có thể xảy ra GV: Nêu định nghĩa chính xác GV: u cầu HS từ định nghĩa rút ra các của phép thử bước tính xác suất của biến cố Tích hợp kiến thức về lịch sử ra đời mơn Xác suất Lý thuyết xác suất là bộ mơn Tốn học nghiên cứu các hiện tượng ngẫu nhiên. Sự ra đời của lý thuyết xác suất bắt đầu từ thư trao đổi giữa hai nhà Tốn học vĩ đại người Pháp là Paxcan (16231662) và Phécma (16011665) xung quanh các giải đáp một số vấn đề rắc rối nảy sinh trong các trị chơi cờ bạc mà một nhà q tộc Pháp đặt ra cho Paxcan. Năm 1812, nhà tốn học Pháp Laplaxơ đã dự báo rằng : Mơn khoa học bắt đầu từ việc xem xét các trị chơi may rủi này sẽ hứa hẹn trành một đối tượn quan trọng nhất của tri thức lồi người. Vào năm 1948 cuốn sách tiếng Việt đầu tiên về xác suất thống kê mang tên: Thống kê thường thức được xuất bản tại chiến khu Việt Bắc. Tác giả của cuốn sách là cố giáo sư Tạ Quang Bửu, lúc đó ơng đang giữ trọng trách Bộ trưởng bộ quốc phịng Hoạt động 3: Ví dụ áp dụng Hoạt động của giáo viên và học sinh Nội dung cơ bản Tích hợp bài tốn về mơn Sinh học Ví dụ 2: Chiều cao cây do 3 cặp gen phân ly độc lập, tác động cộng gộp quy định. GV: u cầu HS hoạt động theo cặp Sự có mặt mỗi alen trội trong tổ hợp gen đơi 13 làm tăng chiều cao cây lên 5cm. Cây thấp nhất có chiều cao =150cm. Cho cây có 3 cặp gen dị hợp tự thụ phấn. Xác định: Tần số xuất hiện tổ hợp gen có 1 alen trội, 4 alen trội Xác suất có được một cây có chiều cao 165cm Giải: * Tần số xuất hiện: Tổ hợp gen có 1 alen trội Tổ hợp gen có 4 alen trội Cây có chiều cao 165cm hơn cây thấp nhất = 165cm – 150cm = 15cm → có 3 alen trội ( 3x5cm = 15cm ) * Vậy xác suất có được một cây có chiều cao 165cm là Ví dụ 3: Lơ đề là một trị chơi cờ bạc rất nổi tiếng. Người chơi đăng kí một số từ 00 đến 99. Người chơi thắng khi con số họ chọn trùng với giải bảy của sổ số kiến thiết hàng ngày. Nếu thắng thì người chơi được số tiền gấp 70 lần số tiền họ bỏ ra. Vậy người chơi hay chủ đề là có lợi trong vụ chơi cờ bạc này Tích hợp bài tốn thực tế về Lơ đề GV:Muốn biết ai thiệt, ai có lợi trong trị Giải: Người chơi chọn hai chữ số tự nhiên bất chơi này em tính xác suất người chơi kỳ trong tập số từ 0 đến 9 thắng trong trị chơi này là bao nhiêu? GV hướng dẫn:: Vận dụng kiến thức Gọi số ghi đề có dạng Có 10 cách chọn mỗi chữ số a, b. về xác suất đã học tính xác suất thắng Theo quy tắc nhân có 10.10=100 cách chọn của người chơi. Từ đó suy ra xác suất số đề thua HS: Dùng kĩ thuật kích não (thinking Vậy xác suất để người chơi thắng là , tức brain), làm bài trong thời gian 3 phút và là xác suất thua là đưa ra lời giải GV: Nhận xét và đưa ra kết luận GV phân tích thêm: Giả sử bạn đặt số tiền T(đồng) cho chủ đề Nếu trúng, bạn sẽ được T*70(đồng) Vậy lãi sẽ là : T*70 – T = 69*T(đồng) Nếu trượt, bạn hoa sẽ được : –T(đồng) Vậy trung bình bạn sẽ được lãi là : T*69*0.01– T*0.99 = – 0.3*T(đồng) Vậy: Mỗi lần chơi chủ đề thu về: 0.3*T(đồng) HS (hoạt động theo cặp đơi): Dùng kiến thức phần di truyền học xác định tần số alen và tính xác suất để có chiều cao 165cm, sau đó học sinh trình bày và gọi học sinh khác nhận xét GV: Gọi học sinh trình bày và chính xác lời giải 14 GV: u cầu HS Tổ 1 trình bày quy định của pháp luật khi tham gia đánh ghi đề (HS đã được giao nhiệm vụ tìm hiểu từ tuần trước) HS: Lên trình bày nội dung đã chuẩn bị Tích hợp giáo dục kỹ năng sống GDCD GV tổng kết: Theo quy định của pháp luật thì hành vi đánh đề bị coi là hành vi đánh bạc và tuỳ mức độ có thể bị: 1. Xử phạt vi phạm hành chính 2. Truy cứu trách nhiệm hành sự Vì vậy các em khơng nên tham gia vào các trị chơi liên quan đến cờ bạc. Nếu có tiền chúng ta có thể mua sổ số kiến thiết. Nếu trúng thì có lợi cho bản thân, nếu khơng thì tiền đó kiến thiết đất nước. Mỗi người hãy sống có ích khơng tham gia vào các trị lừa bịp trong xã hội, vừa mất tiền bản thân làm giàu bất chính cho kẻ khác lại vi phạm pháp luật. Ngồi ra phải tun truyền cho bạn bè, người thân và gia đình biết và phịng tránh Tích hợp tình huống trong học tập GV: Muốn biết học sinh làm bài hiệu quả hay khơng ta phải làm gì trong bài tốn này? HS: Tính xác suất học sinh đạt điểm tối đa và xác suất học sinh đạt điểm trung bình GV: u cầu các em làm bài GV: Em có nhận xét gì về kết quả trên? HS: Đưa ra nhận xét của mình Tích hợp giáo dục kỹ năng sống và học tập GV: Tổng kết: Qua kết quả trên cho thấy với hình thức kiểm tra bằng TNKQ thì một HS nếu học khơng học bài thì làm bài chắc chắn khơng hiệu quả và sẽ đạt điểm thấp. Hiện nay hình thức thi bằng TNKQ rất phổ biến, mỗi em một mã đề khác nhau, khơng thể trao đổi hay nhìn bài nhau được. Vì vậy các em phải Ví dụ 4: Trong bài thi TNKQ có 30 câu hỏi, mỗi câu có 4 phương án trả lời, trong đó chỉ có 1 phương án trả lời đúng. Một học sinh khơng học bài nên làm bài bằng cách với mỗi câu chọn 1 phương án bất kỳ. Nếu làm bài theo cách đó có hiệu quả khơng? Giải: Xác suất để HS đạt 10 điểm tức là xác suất để HS trả lời đúng cả 30 câu là: Xác suất để HS đạt điểm trung bình tức là xác suất để HS trả lời đúng 15 câu là: Ví dụ 5: Trong hội chợ thường xuất hiện trị chơi chọn bóng như sau: Người chủ trị tay cầm túi vải, trong túi có 6 quả bóng đen và 6 quả bóng trắng. Điều kiện chơi như sau: Nếu bạn bỏ ra 20.000 đ thì được chọn 6 quả bóng a) Nếu 6 quả bạn chọn tồn màu trắng hoặc tồn màu đen thì bạn được 50.000 đ b) Nếu bạn chọn được 5 quả đen và 1 quả trắng hoặc 5 trắng 1 đen thì bạn được 20.000 đ c) Nếu bạn chọn được 4 quả trắng, 2 quả đen hoặc 2 trắng 4 đen thì bạn được 2000 đ d) Nếu bạn chọ được 3 quả đen, 3 quả 15 tích cực học tập mới dạt được hiệu quả trắng thì bạn khơng được gì và mất ln cao trong các kì thi 20.000 đ ở trên Và thực tế là người chơi ln thua. Tại Tích hợp bài tốn trong thực tế sao? Giải: Ta thấy rằng lấy được 6 quả bóng màu đen hoặc lấy 6 quả bóng màu trắng là chỉ có 1 khả năng Nếu bạn chọn được 5 quả đen và 1 quả trắng hoặc 5 trắng 1 đen thì có khả năng Nếu bạn chọ được 4 quả trắng, 2 quả đen hoặc 2 trắng 4 đen thì có khả năng Nếu bạn chọn được 3 quả đen, 3 quả trắng thì có khả năng GV: u cầu HS bằng kiến thức về xác Vậy các khả năng có thể xảy ra là suất hãy giải quyết bài tốn trên GV: Hướng dẫn: Từ luật chơi cần a)Xác suất chọn được 6 quả cùng màu là phải tính được sau q trình chơi thì người chơi có khả năng thu được bao b)Xác suất chọn chọn được 5 quả đen và nhiêu tiền? 1 quả trắng hoặc 5 trắng 1 đen là GV: Chia lớp thành 4 nhóm, Sử dụng kỹ thuật cơng đoạn trong bài tốn này. c) Xác suất chọn chọn được 4 quả đen và Nhóm 1 làm ý a; nhóm 2 làm ý b, nhóm 3 2 quả trắng hoặc 4 trắng 2 đen là d) Xác suất chọn chọn được 5 quả đen và làm ý c, nhóm 4 làm ý d. Sau khi làm 1 quả trắng hoặc 4 trắng 2 đen là xong các nhóm trình bày vào giấy Ao, Do vậy nếu bỏ ra 20.000 đ thì khả năng nhóm 1 chuyển cho nhóm 2, nhóm 2 chuyển cho nhóm 3, nhóm 3 chuyển cho người chơi thu được số tiền là Vậy người chủ trị thu được số tiền là nhóm 4, nhóm 4 chuyển cho nhóm 1 HS: thảo luận theo nhóm và ghi kết quả 20.000 4534=15466 đ Vậy rõ ràng người chơi ln ln thua của nhóm vào giấy A0 Cử đại diện của nhóm nộp kết quả cho GV HS trao đối nhận xét kết quả của nhóm khác GV: Nhận xét và cho điểm và khen thưởng nhóm làm tốt GV: u cầu HS tính số tiền mà người chơi có khả năng thu được và rút ra nhận xét có nên chơi khơng? HS: Trong các trị chơi may rủi hiện nay thì phần thiệt ln thuộc về phía người chơi. Vì vậy đế chơi cho vui thì có thể chơi, cịn nếu chơi với mục đích kiếm tiền thì khơng nên Hoạt động 4: Tìm hiểu tính chất của xác suất 16 Hoạt động của giáo viên và học sinh GV: u cầu HS nhắc lại biến cố khơng thể, biến cố chắc chắn, biến cố đối và biến cơ xung khắc? GV: Hướng dẫn HS xây dựng và chứng minh các cơng thức trên HS: Chứng minh cơng thức Nội dung cơ bản Định lí: với mọi biến cố A Nếu A và B là hai biến cố xung khắc thì xác suất để A hoặc B xảy ra là: P(A B) = P(A) + P(B) (Quy tắc cộng xác suất) Chú ý: Cho k biến cố A1, A2, …,Ak. đơi một xung khắc. Khi đó P(A1A2… Ak) = P (A1 ) + P( A2)+ … + P(Ak) Tích hợp bài tốn trong Sinh học Y học Hệ quả: Cho biến cố A. Xác suất của biến cố đối là: Ví dụ 6: Một cặp vợ chồng dự kiến sinh 3 người con. Tìm xác suất để trong 3 lần sinh họ có được cả con trai và con gái GV hướng dẫn: Mỗi lần sinh là một sự kiện hồn tồn độc lập, và có 2 khả năng có thể xảy ra: trai gái với xác suất bằng nhau và bằng . Xác suất sing con trai hay gái trong n lần sinh là kết quả của sự tổ hợp ngẫu nhiên: (♂+♀) (♂+♀)…(♂+♀)= (♂+♀)n n lần → Số khả năng xảy ra trong n lần sinh là 2n GV: u cầu HS tìm các phương án để Giải: giải bài tốn trên Cách 1: ( Nhóm 1) Sử dụng quy tắc HS: Có 2 cách làm: cộng xác suất) Cách 1: Có thể tính tổng XS để có (2trai Xét phép thử T: “ Sinh ba người con” + 1 gái) và (1 trai + 2 gái) (Quy tắc cộng xác suất) Gọi A: “ 3 Ba người con có cả trai và Cách 1: Có thể lấy 1 trừ 2 trường hợp gái” XS (3 trai) và (3 gái) ( Xác suất của biến A1: “ Sinh được 2 con trai và 1 con gái” cố đối) A2: “Sinh được 1 con trai và 2 con gái” GV: Chia lớp thành 2 nhóm, mỗi nhóm thực hiện giải theo 1 cách. Sử dụng kỹ thuật 3 lần 3 trong ví dụ này. Nhóm 1 17 cho ý kiến phản hồi của nhóm về bài làm của nhóm 2 và ngược lại. Mỗi nhóm cần viết ra : 3 điều tốt, 3 điều chưa tốt, 3 đề nghị cải tiến. Sau khi thu thập ý kiến GV xử lý và tổ chức thảo luận về các ý kiến phản hồi HS: Suy nghĩ và hoạt động theo nhóm theo u cầu của giáo viên GV u cầu tổ 2 lên trình bày hiểu biết nhóm tỉ lệ nam, nữ giai đoạn hiện nay và những hệ luỵ của việc chọn giới tính thai nhi?(HS chuẩn bị nội dung trước 1 tuần) Tích hợp Giáo dục kỹ sống giáo dục pháp luật GV: Về mặt di truyền học sinh con trai hay con gái đều có khả năng như nhau Tuy nhiên trong giai đoạn hiện nay do việc sàng lọc giới tính diễn ra phổ biến dẫn đến mất cân bằng giới tính và ảnh hưởng lớn đến đạo đức, kinh tế, xã hội Việc lựa chọn giới tính thai nhi là hành vi vi phạm pháp luật của cả khách hàng và người cung cấp dịch vụ. Tại Điều 40, Khoản 7, Mục b Luật Bình đẳng Giới quy định: “Lựa chọn giới tính thai nhi hình thức xúi dục, ép buộc người khác phá thai vì giới tính của thai nhi là hành vi vi phạm pháp luật trong lĩnh vực Y tế” Tổ chức trị chơi thực tế: Trị chơi gieo súc sắc Vậy xác suất cần tìm bằng Cách 2: ( Nhóm 2) Sử dụng xác suất của biến cố đối) Gọi A: “ 3 người con có cả trai và gái” Thì : “ 3 người con đều có cùng giới tính” Xác suất sinh 3 trai là: Xác suất sinh 3 gái là: Áp dụng hệ quả P(A) = 1 P(Ā) = Vậy xác suất cần tìm bằng Ví dụ 7: Khi chơi trị gieo súc sắc có 2 cách chơi như sau: Cách 1: Gieo một con súc sắc 4 lần nếu 1 lần xuất hiện mặt 6 chấm là thắng Cách 2: Gieo 24 lần 1 cặp súc sắc nếu HS chuẩn bị: 4 con súc sắc xuất hiện một cặp (6;6) thì thắng GV: Cơng bố luật chơi và phần q cho Nếu là bạn sẽ chọn chơi theo cách đội thắng cuộc nào? GV: Cho HS chọn, HS nào chọn cách 1 vào đội 1, HS nào chọn cách 2 vào đội 2 Giải: HS: Bàn bạc và cử đại diện nhóm lên Đối với cách 1 Gọi A : “Có ít nhất 1 lần xuất hiện mặt chơi GV: Sau khi các đội chơi xong, Đội nào 6 chấm trong khi gieo 1 con súc sắc 4 lần” thắng được q. u cầu HS từng đội giải thích tại sao lại chọn đội 1, hoặc Đối với cách 2: Khi gieo 1 cặp súc sắc sẽ có 36 kết quả đội 2. 18 đối xứng nhau Khi gieo 24 lần số phần tử khơng gian mẫu là 3624 Gọi A : “Có ít nhất 1 lần xuất hiện cặp mặt (6;6) chấm trong khi gieo 1 cặp súc sắc 24 lần” Vậy chọn cách 1 khả năng thắng cao Hoạt động 5: Biến cố độc lập Cơng thức nhân xác suất Hoạt động của giáo viên và học sinh Nội dung cơ bản GV: Giới thiệu khái niệm hai biến cố Định nghĩa: Hai biến cố A và B được độc lập, lấy ví dụ minh họa gọi là độc lập nếu việc xảy ra hay khơng xảy ra của biến cố này khơng làm ảnh GV: u cầu HS nhắc lại biến cố giao HS: Tập gọi là giao của hai biến cố. Kí hưởng tới xác suất xảy ra của biến cố hiệu Ví dụ: Xét phép thử gieo một xu liên tiếp hai lần. A là biến cố lần gieo thứ nhất đồng xu xuất hiện mặt sấp; B là biến cố lần gieo thứ 2 đồng xu xuất hiênh mặt ngửa. Khi đó A, B là hai biến cố độc lập GV: Chia lớp thành 2 nhóm , nhóm 1 làm Ví dụ 8: Bạn thứ nhất có một đồng tiền, ví dụ 8, nhóm 2 làm ví dụ 9. Sau đó sử bạn thứ 2 có một con súc sắc. Xét phép dụng kỹ thuật cơng đoạn trong hoạt thử: Bạn thứ nhất gieo đồng tiền, bạn động này thứ hai gieo súc sắc HS: Làm bài theo nhóm và trình bày vào a) Mơ tả khơng gian mẫu giấy A0 b)Tính xác suất của các biến cố: A: Đồng tiền xuất hiện mặt ngửa B: Con súc sắc xuất hiện mặt 5 chấm c) A, B có là hai biến cố độc lập khơng? Chứng minh rằng Ví dụ 9: Bạn thứ nhất có một đồng tiền, bạn thứ 2 có một con súc sắc. Xét phép thử: Bạn thứ nhất gieo đồng tiền, bạn thứ hai gieo súc sắc a) Mơ tả khơng gian mẫu b)Tính xác suất của các biến cố: A: Đồng tiền xuất hiện mặt sấp B: Con súc sắc xuất hiện mặt 6 chấm c) A, B có là hai biến cố độc lập khơng? Chứng minh rằng Cơng thức nhân xác suất: Nếu A và B là hai biến cố độc lập với GV: Từ lời giải của hai ví dụ trên u nhau thì cầu HS nêu cơng thức nhân xác suất Ví dụ 10: Xác suất trúng hồng tâm của 1 HS: Phát biểu cơng thức nhân xác suất người bắn cung là 0,2. Tính xác suất để HS: Giải bài tốn trên theo đội đã chọn và trình bày vào giấy A3. Sau đó cử đại diện lên trình bày cách gíải của của đội GV: Kết luận: Từ cách giải của hai đội thì chọn cách 1 phần thắng sẽ cao hơn 19 Tích hợp bài tốn về thể dục thể thao trong 3 lần bắn độc lập người đó bắn trúng hồng tâm ít nhất 1 lần. Lời giải: Gọi biến cố A: “ Trong ba lần bắn, người bắn cung bắn trúng hồng tâm đúng 1 lần” A1: “ Người bắn cung bắn trúng hồng tâm ở lần thứ nhất” A2: “ Người bắn cung bắn trúng hồng tâm ở lần thứ hai” A3: “ Người bắn cung bắn trúng hồng tâm ở lần thứ ba” Giáo viên hướng dẫn học sinh Xét phép thử: “ Trong 3 lần bắn, người Gọi biến cố B: “ Trong 3 lần bắn, người đó bắn trúng hồng tâm ít nhất một lần”. đó bắn trúng hồng tâm ít nhất một lần”. Khi biến cố : “Trong lần bắn, 1 lần trúng, 2 lần trượt người đó khơng bắn trúng hồng tâm lần Xảy ra: 2 lần trúng, 1 lần trượt nào” 3 lần trúng Mệnh đề phủ định của mệnh đề trên: “ Nhận xét: = Suy ra P() = P() =(0,8)3 = 0,512 Cả 3 lần khơng trúng” Từ đó khẳng định: Bài này có thể làm Vậy P(B) = 1 – P() = 1 – 0,512 = 0,488 bằng cách chuyển qua biến cố đối HS: (Hoạt động theo cặp đơi): Làm bài theo u cầu. Sau đó lên trình bày Giáo dục liên mơn : Qua ví dụ giúp học sinh biết tư duy toán học tốt có ảnh hưởng rất lớn đến thể dục thể thao, giáo dục an ninh quốc phịng. Từ việc tính tốn chính xác giá trị xác suất học sinh có niềm tin vào sự tư duy cũng như sự tính tốn làm sao để đảm bảo an tồn Ví dụ 10: Có linh kiện điện tử, xác thể thao tư để đạt được suất hỏng tại một thời điểm là 0,01; 0,02; thành tích cao nhất trong thi đấu 0,02; 0,01 0,04 tương ứng Tìm xác Tích hợp bài tốn có nội dung Vật Lý: suất để có dịng điện chạy qua theo dạng GV: Dùng kiến thức về đoạn mạch mắc mạch sau: nối tiếp và song song trong chương trình a) Mạch mắc nối tiếp Vật Lý 11 cùng với kiến thức xác suất b) Mạch mắc song song giải bài tốn trên Giải: HS: Ơn lại kiến thức thế nào là mắc nối a) Gọi Ai là biến cố linh kiện thứ i chạy tiếp, mắc song song tốt ( i =1, 2, 3, 4, 5) Gọi A biến cố dòng điện chạy qua đoạn mắc nối tiếp thì Vì Ai là các biến cố độc lập nên Vậy xác suất để có dịng điện chạy qua 20 đoạn mắc nối tiếp là khoảng b) Gọi B là biến cố dòng điện chạy qua đoạn mắc song song thì là biến cố cả 5 linh kiện đều bị hỏng và Tacó Vậy xác suất để có dịng điện chạy qua đoạn mắc nối tiếp là khoảng 4. Củng cố: (Sử dụng kĩ thuật bản đồ tư duy) a) Lý thuyết: Cho HS trình bày các nội dung đã được học theo bản đồ tư duy GV giới thiệu cách làm việc bằng bản đồ tư duy như sau: Viết tên chủ đề hoặc ý tưởng chính vào trung tâm Từ chủ đề chính ở trung tâm vẽ các nhánh chính, trên mỗi nhánh viết 1 nội dung lớn có liên quan đến ý tưởng ở trung tâm nói trên Từ các nhánh chính vẽ tiếp các nhánh phụ để viết tiếp các nội dung thuộc nhánh chính đó Tiếp tục như vậy ở các tầng phụ tiếp theo b) Bài tập củng cố Trong mỗi câu đều có 1 phương án trả lời đúng. Em hãy tìm phương án đó Câu 1: (Bài tốn về súc sắc) Gieo một con súc sắc cân đối đồng chất hai lần. Tính xác suất để tổng số chấm xuất hiện trong 2 lần gieo bằng 8 A. B. C. D Câu 2: (Tích hợp kiến thức mơn Hình học) Cho một lục giác đều ABCDEF. Viết các chữ cái A, B, C, D, E, F vao 6 thẻ. Lấy ngẫu nhiên hai thẻ. Tìm xác suất sao cho đoạn thẳng mà các đầu mút là các điểm được ghi trên 2 thẻ đó là: Đường chéo của lục giác đó A. B. C. D Câu 3:(Tích hợp trị chơi trên truyền hình). Chiếc kim của bánh xe trong trị chơi: “Chiếc nón kỳ diệu” có thể dừng lại ở 1 trong 7 vị trí với khả năng như nhau. Tính xác suất để trong 3 lần quay, chiếc kim của bánh xe đó lần lượt dừng lại ở 3 vị trí khác nhau. 21 A. B. C. D Câu 4: (Tích hợp tình huống trong học tập). Một đề thi có 5 câu được chọn ra từ 100 câu có sẵn. Một học sinh học thuộc 80 câu Tính xác suất để học sinh đó rút ngẫu nhiên ra một đề thi có 4 câu đã học thuộc A. B. C. D 5. Hướng dẫn học bài ở nhà Làm bài tập trong SGK Ơn lại tồn bộ phần lý thuyết đã học Làm thêm một số bài tập sau Chuẩn bị tiết sau kiểm tra về các nội dung đã được tích hợp trong bài trên TÀI LIỆU THAM KHẢO Đại số và giải tích 11 (Ban cơ bản). Nxb Giáo dục Đại số và giải tích 11 (Ban nâng cao). Nxb Giáo dục Tài liệu tập huấn: Dạy học tích hợp ở trường THCS, THPT – Bộ Giáo dục và Đào to NguyễnVănBảo(2005),Gópphầnrènluyệnchohọcsinhnănglựcvậndụngkiến thứcToánhọcđểgiảiquyếtmộtsốbàitoáncónộidungthựctiễn,LuậnvănThạcsĩ giáodụchọc,trờngĐạihọcVinh NguyễnBáKim(2004),PhơngphápdạyhọcmônToán,NxbĐạihọcSphạm. NguyễnBáKim(Chủbiên),ChơngĐinhNho,NguyễnMạnhCảng,VũDơngThụy, NguyễnVănThờng(1994),PhơngphápdạyhọcmônToán(Phần2:Dạyhọcnhữngnội dungcơbản),NxbGiáodục CHNGIII.KTLUN 22 Vicxõydnggiỏoỏnchdyhctheohngtớchhpgiỳpchohcsinh ctipthukinthcmtcỏchchng,tớchcc.Hcsinhtrthnhtrungtõmca hotnghctpvóphỏthuytiatớnhtch,sỏngtocangihc.Rốnk nngphihp,phõncụng,lmvictheonhúm,khnngquansỏt,ỏnhgiỏ,phõntớch, tổng hợp tư liệu, giải quyết vấn đề từ đó phát huy tính tích cực học tập của học sinh Tuy nhiên, khơng có phương pháp giáo dục nào là tồn năng. Khi tiến hành dạy học tích hợp theo chủ đề, mỗi giáo viên cần nghiên cứu, vận dụng phù hợp với đặc điểm mơn học, người học và điều kiện của địa phương, kết hợp với các phương pháp đã có để phát huy tối đa hiệu quả và mục tiêu dạy học đề ra Thơng qua chun đề này tơi mong muốn cùng với đồng chí, đồng nghiệp từng bước tiếp cận, làm quen với những phương pháp, mơ hình dạy học mới, đáp ứng u cầu đổi mới căn bản và tồn diện giáo dục, chuẩn bị cho việc tổ dạy học theo mơ hình trường học mới Dạy học tích hợp theo chủ đề Xác suất của biến cố được xây dựng trên sự hiểu biết, kinh nghiệm và sự giúp đỡ của các đồng chí giáo viên bộ mơn Tốn chắc chắn cịn có nhiều thiếu sót. Rất mong nhận được sự đóng góp ý kiến xây dựng của đồng chí, đồng nghiệp! Trân trọng cảm ơn! 7. 2. Khả năng áp dụng của sáng kiến Sau khi thực hiện bài học các em cảm thấy rất hứng thú vì thơng qua bài dạy ngồi việc nắm được kiến thức cơ bản mơn Tốn, các em cịn được học được nhiều kĩ năng mới, phát triển được năng lực của bản thân và học được cách tự giải quyết một vấn đề khoa học Trong thực tế giảng dạy, để kiểm tra tính khả thi và hiệu quả của việc vận dụng ngun tắc dạy học liên mơn, tơi đã tiến hành thực nghiệm ở 2 lớp tại trường THPT Trần Hưng Đạo +) Lớp thực nghiệm : 11A6 +) Lớp đối chứng : 11A1 Cách tiến hành như sau: Lớp 11A1 dạy theo giáo án thường, lớp 11A6 dạy theo giáo án tích hợp. Đây là 2 lớp học sinh có nhận thức tương đối đồng đều, đa số học sinh ngoan và có ý thức học. Sau khi dạy xong ở 2 lớp thực nghiệm và đối chứng, để tạo tính khách quan nhằm kiểm tra nhận thức, tơi đã nhờ giáo viên trong tổ ra một đề kiểm tra với thời gian là 15 phút. Kết quả thu được như sau: Lớp Loại giỏi Số học (910 sinh điểm ) Thực nghiệm 35 (11A6) 15 HS (42%) Loại Khá (78 điểm) Loại TB (5 – 6 điểm) 12 HS (34,2%) 8 HS (22,8 %) Loại yếu ( 3 4 điểm) 0 HS 0% 23 Đối chứng 34 (11A1) 10 HS (29,4%) 8 HS (23,4%) 15Hs (44,1%) 1 HS (3,1%) Qua kết quả thực nghiệm và quan sát trong giờ học tơi nhận thấy : +Lớp học áp dụng dạy học tích hợp các em thấy sơi nổi, hứng thú hơn nhiểu so với lớp đối chứng. Việc phân chia cho các em cơng việc thơng qua nhiệm vụ nhà cũng giúp các em chủ động, sáng tạo rất nhiều trong cơng việc. Khi giải quyết vấn đề làm các em va chạm rất nhiều với kiến thức liên mơn, bắt buộc các em phải tìm hiểu, đào sâu suy nghĩ nên càng khắc sâu kiến thức +Lớp đối chứng là lớp 11A1, trình độ học sinh tương đương với lớp dạy thử nghiệm, nhưng khơng áp dụng phương pháp mới, các em cơ bản vẫn nắm vững kiến thứca. Tuy nhiên, trong giờ học các em khơng thực sự hứng thú, vì đa phần cách dạy học vẫn theo kiểu cũ, khơng liên hệ với thực tế, học sinh chưa thực sự làm việc nên kết quả khơng cao 8. Những thơng tin cần được bảo mật: khơng 9. Các điều kiện cần thiết để áp dụng sáng kiến: Giáo viên cần đưa ra các phương pháp dạy học phù hợp với năng lực và trình độ nhận thức của học sinh Việc thực hiện tích hợp kiến thức cần đảm bảo tính vừa sức, khoa học nhằm phát huy tính chủ động, tích cực và sáng tạo của học sinh trong học tập; tránh việc tích hợp lan man; khiên cưỡng; tích hợp q nhiều nội dung trong một bài học Việc thực hiện tích hợp cần hướng học sinh tới việc giúp học sinh vận dụng kiến thức các mơn học để giải quyết các tình huống thực tiễn cuộc sống Việc kiểm tra đánh giá trong dạy học tích hợp cần hướng tới việc đánh giá theo định hướng phát triển năng lực học sinh 10. Đánh giá lợi ích thu được do áp dụng sáng kiến 10.1. Đánh giá lợi ích thu được do áp dụng sáng kiến theo ý kiến của tác giả: Qua qua trinh th ́ ̀ ực nghiêm thiêt kê giao an: ̣ ́ ́ ́ ́ Tích hợp kiến thức Vật lí, Địa lí, Sinh học và thực tế, . . . trong dạy học chủ đề Xác suất của biến cố trong Đại số giải tích 11, tơi nhân thây ̣ ́ việc dạy học theo hướng tích hợp góp phần giúp giáo viên linh hoạt, sáng tạo trong dạy học, giúp học lĩnh hội kiến thức Tốn học một cách khoa học, có hệ thống và sâu sắc hơn. Các em cũng hình thành cho mình năng lực tư duy sáng tạo, năng lực giải quyết vấn đề nhất là những vấn đề nảy sinh trong thực tiễn hoạt động học tập Việc thực hiện dự án dạy học này có ý nghĩa quan trọng, vì thơng qua bài học, một lần nữa các em được ơn tập, ghi nhớ, khắc sâu những kiến thức liên mơn đã được học ở mơn học khác. Cũng thơng qua dự án dạy học này, các em biết xâu chuỗi kiến thức với nhau để giải quyết một vấn đề 10.2. Đánh giá lợi ích thu được do áp dụng sáng kiến theo ý kiến của tổ chức: 24 Đề tài nghiên cứu có tính khả thi, và ứng dụng vào thực tiễn, mang lại hiệu quả cao trong giờ học Tốn học ở trường phổ thơng Việc áp dụng dự án sẽ làm tăng hứng thú học tập mơn Tốn học cho các em học sinh. Trong dự án, học sinh được giao nhiệm vụ về nhà, thảo luận làm việc theo nhóm, nhằm làm tăng khả năng làm việc tự lập,tăng khả năng tìm tịi thơng tin, tăng kĩ năng phối hợp với nhau khi làm việc phù hợp với mục tiêu chung về giáo dục trong tương lai Việc thực hiện dự án dạy học tích hợp này phần nào đã giải quyết được u cầu đó. Thơng qua dự án, ngồi kiến thức Tốn cần đạt được các em có thể khắc sâu thêm các phần kiến thức đã học bộ mơn khác: vật lí, sinh học, hình học, các tình huống thường gặp trong thực tế. Khơng những thế, thơng qua cơng việc được giao, các em chủ động lĩnh hội kiến thức, tăng kĩ năng làm việc theo nhóm hiệu quả. Qua bài học này, các em cũng có hiểu biết sâu sắc về lịch sử hình thành bộ mơn xác suất, ảnh hưởng của xác suất với đời sống và các mơn học khác, tăng ý thức bảo vệ mình trước những trị chơi cờ bac, trị chơi may rủi trong thực tế. Thơng qua kiến thức học được, các em những người chủ nhân tương lai của đất nước sẽ biết quy định của pháp luật về chơi đề, về lưạ chọn giới tính thai nhi , đồng thời có thể mang kiến thức của mình học được phổ biến cho nguời khác, hoặc ứng dụng kiến thức để xử lý các tình huống gặp phải 11. Danh sách những cá nhân đã tham gia áp dụng sáng kiến lần đầu: Số Tên tổ TT chức/cá nhân Địa chỉ Phạm vi/Lĩnh vực áp dụng sáng kiến Nguyễn Thị Thanh Hòa Trường THPT Trần Hưng Học sinh lớp Đạo – Tam Dương – Vĩnh 11A6 và 11A1 Phúc Bài: xác suất của biến cố Tam Dương, ngày tháng năm 2020 Tam Dương, ngày tháng năm 2020 Tam Dương, ngày tháng năm 202 Thủ trưởng đơn vị/ (Ký tên, đóng dấu) CHỦ TỊCH HỘI ĐỒNG SÁNG KIẾN CẤP CƠ SỞ (Ký tên, đóng dấu) Tác giả sáng kiến (Ký, ghi rõ họ tên) Nguyễn Thị Thanh Hịa 25 26 ... CHƯƠNG II. NỘI DUNG TÍCH HỢP LIÊN MƠN KHI DẠY HỌC CHỦ ĐỀ XÁC SUẤT CỦA BIẾN CỐ Để giải quyết các vấn? ?đề? ?đặt ra? ?trong? ?chủ? ?đề? ?trên,? ?học? ?sinh cần? ?học? ?tập và vận dụng các kiến thức? ?liên? ?mơn sau: Mơn? ?học Bài? ?liên? ?quan đến? ?chủ? ?đề? ?tích? ?hợp. .. Chương 1. Cơ sở lí luận và thực tiễn? ?của? ?việc? ?dạy? ?học? ?tích? ?hợp Chương 2. Nội dung? ?tích? ?hợp? ?liên? ?mơn khi? ?dạy? ?chủ? ?đề? ?Xác? ?suất? ?của? ?biến? ?cố Chương 3. Kết luận CHƯƠNG I. CƠ SỞ LÍ LUẬN VÀ THỰC TIỄN CỦA VIỆC DẠY HỌC TÍCH HỢP 1. Cơ sở lí luận? ?của? ?việc? ?dạy? ?học? ?tích? ?hợp. .. tính hệ thống hoặc? ?biến? ?giờ? ?học? ?tốn thành giờ? ?học? ?của? ?các mơn khác. 2.3. Một số kinh nghiệm? ?dạy? ?học? ?tích? ?hợp? ?trong? ?mơn Tốn? ?học học 2.3.1. Trước hết phải hiểu thế nào là? ?dạy? ?học? ?tích? ?hợp? ?trong? ?mơn Tốn Tích? ?hợp? ?trong? ?q trình? ?dạy? ?học? ?là sự