Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 200 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
200
Dung lượng
2,8 MB
Nội dung
ĐẠI HỌC QUỐC GIA HÀ NỘI TRƢỜNG ĐẠI HỌC GIÁO DỤC - LƢƠNG CAO VINH PHÁT TRIỂN TƢ DUY SÁNG TẠO CHO HỌC SINH THƠNG QUA DẠY HỌC CHỦ ĐỀ “THỂ TÍCH CỦA KHỐI ĐA DIỆN” TRONG CHƢƠNG TRÌNH HÌNH HỌC LỚP 12, BAN NÂNG CAO LUẬN VĂN THẠC SĨ SƢ PHẠM TOÁN HÀ NỘI – 2015 ĐẠI HỌC QUỐC GIA HÀ NỘI TRƢỜNG ĐẠI HỌC GIÁO DỤC - LƢƠNG CAO VINH PHÁT TRIỂN TƢ DUY SÁNG TẠO CHO HỌC SINH THÔNG QUA DẠY HỌC CHỦ ĐỀ “THỂ TÍCH CỦA KHỐI ĐA DIỆN” TRONG CHƢƠNG TRÌNH HÌNH HỌC LỚP 12, BAN NÂNG CAO LUẬN VĂN THẠC SĨ SƢ PHẠM TOÁN CHUYÊN NGÀNH: LÝ LUẬN VÀ PHƢƠNG PHÁP DẠY HỌC (BỘ MƠN TỐN) Mã số: 60 14 01 11 Ngƣời hƣớng dẫn khoa học: TS NGUYỄN THỊ HỒNG MINH HÀ NỘI – 2015 LỜI CẢM ƠN Lời đầu tiên, tác giả xin chân thành cảm ơn thầy cô giáo, hội đồng khoa học, Ban Giám hiệu tập thể cán bộ, giảng viên Trường Đại học Giáo dục – Đại học Quốc gia Hà Nội giảng dạy tạo điều kiện thuận lợi cho tác giả suốt trình học tập nghiên cứu đề tài Tác giả xin bày tỏ lịng kính trọng, lịng biết ơn chân thành, sâu sắc tới TS Nguyễn Thị Hồng Minh – người thầy giúp đỡ, hướng dẫn tận tình, chu đáo cho tác giả suốt trình làm hồn thiện luận văn Tác giả xin cảm ơn quan tâm tạo điều kiện thầy cô giáo Ban giám hiệu, thầy giáo tổ Tốn trường THPT Cộng Hiền, Hải Phòng tạo điều kiện thuận lợi cho tác giả suốt trình học tập thực đề tài Lời cảm ơn chân thành tác giả xin dành cho người thân gia đình bạn bè, đặc biệt bạn lớp Cao học Toán K9 trường Đại học Giáo dục, Đại học Quốc gia Hà Nội – người quan tâm, cổ vũ, động viên, giúp đỡ để tác giả hoàn thành luận văn cách tốt Tuy có nhiều cố gắng luận văn chắn khơng tránh khỏi thiếu sót Tác giả mong nhận ý kiến đóng góp thầy giáo, cô giáo bạn đồng nghiệp để luận văn hoàn thiện Xin trân trọng cảm ơn! Hải Phòng, tháng 11 năm 2015 Tác giả Lương Cao Vinh i DANH MỤC CÁC CHỮ VIẾT TẮT STT 10 ii DANH MỤC CÁC BẢNG Stt Bảng Bảng 1.1 Bảng 3.1 Bảng 3.2 iii MỤC LỤC Trang LỜI CẢM ƠN .i DANH MỤC CÁC CHỮ VIẾT TẮT .ii DANH MỤC CÁC BẢNG iii MỞ ĐẦU CHƢƠNG CƠ SỞ LÝ LUẬN VÀ THỰC TIỄN .5 1.1 Tư 1.1.1 Khái niệm tư 1.1.2 Quá trình tư .6 1.1.3 Các thao tác tư 1.1.4 Vai trò tư 1.2 Tư sáng tạo 1.2.1 Sáng tạo 1.2.2 Khái niệm tư sáng tạo 10 1.2.3 Một số yếu tố đặc trưng tư sáng tạo 11 1.3 Phát triển tư sáng tạo cho học sinh 18 1.3.1 Nhiệm vụ mục tiêu phát triển tư sáng tạo cho học sinh phổ thông 18 1.3.2 Vận dụng tư biện chứng để phát triển tư sáng tạo cho học sinh 19 1.3.3 Tiềm chủ đề “Thể tích khối đa diện” việc bồi dưỡng phát triển tư sáng tạo cho học sinh 20 1.4 Thực tiễn vấn đề phát triển tư sáng tạo cho học sinh giảng dạy mơn Tốn trường trung học phổ thông 22 1.4.1 Nội dung chương “Khối đa diện thể tích chúng” chương trình hình học 12, Nâng cao…………………………………………………….22 1.4.2 Điều tra, quan sát thực trạng vấn đề phát triển tư sáng tạo cho học sinh dạy học chủ đề “Thể tích khối đa diện” chương trình hình học 12, nâng cao………………………………………………………… 23 CHƢƠNG MỘT SỐ BIỆN PHÁP PHÁT TRIỂN TƢ DUY SÁNG TẠO CHO HỌC SINH THÔNG QUA DẠY HỌC CHỦ ĐỀ “THỂ TÍCH CỦA KHỐI ĐA DIỆN” TRONG CHƢƠNG TRÌNH HÌNH HỌC LỚP 12, BAN NÂNG CAO 266 2.1 Biện pháp Rèn luyện kĩ tính thể tích khối đa diện cho học sinh 266 2.2 Biện pháp Khuyến khích học sinh tìm nhiều lời giải khác cho toán 411 2.3 Biện pháp Rèn luyện cho học sinh khả phát triển toán, xây dựng toán từ toán cho 49 2.4 Biện pháp Rèn luyện cho học sinh khả khai thác kết toán để giải toán khác 64 2.5 Biện pháp Rèn luyện cho học sinh khả vận dụng kiến thức Đại số Giải tích để giải tốn thể tích khối đa diện .80 CHƢƠNG THỰC NGHIỆM SƢ PHẠM 88 3.1 Mục đích nhiệm vụ thực nghiệm sư phạm 88 3.1.1 Mục đích thực nghiệm sư phạm 88 3.1.2 Nhiệm vụ thực nghiệm sư phạm 88 3.2 Phương pháp thực nghiệm sư phạm 88 3.3 Tổ chức nội dung thực nghiệm sư phạm .88 3.3.1 Tổ chức thực nghiệm sư phạm 88 3.3.2 Nội dung thực nghiệm sư phạm 89 3.4 Đánh giá kết thực nghiệm 92 3.4.1 Cơ sở để đánh giá kết thực nghiệm 92 3.4.2 Kết thực nghiệm sư phạm 93 KẾT LUẬN VÀ KHUYẾN NGHỊ 96 TÀI LIỆU THAM KHẢO 97 PHỤ LỤC 99 MỞ ĐẦU Lý chọn đề tài Hiến pháp nước ta khẳng định “Giáo dục quốc sánh hàng đầu” Điều thể vai trị quan trọng giáo dục Giáo dục đóng vai trò then chốt việc đào tạo người – chủ thể kiến tạo xã hội, giáo dục đóng vai trị then chốt phát triển xã hội Sự phát triển xã hội nghiệp cơng nghiệp hóa, đại hóa đất nước đòi hỏi cấp bách phải nâng cao chất lượng giáo dục để đáp ứng yêu cầu đào tạo nguồn nhân lực có chất lượng cao Đất nước khơng cần người lao động biết làm việc, biết làm tốt việc mà cần người sáng tạo, sáng tạo để đem lại nhiều lợi ích cho xã hội Nghị Trung ương Đảng lần thứ (khóa VII) xác định: “Phải khuyến khích tự học, phải áp dụng phương pháp giáo dục bồi dưỡng cho học sinh lực tư sáng tạo, lực giải vấn đề” Như vậy, giáo dục, bên cạnh thay đổi nội dung cần có đổi mạnh mẽ phương pháp dạy học Đổi phương pháp dạy học theo hướng phát triển tư sáng tạo cho học sinh hướng chủ đạo đổi phương pháp dạy học Đã có nhiều nghiên cứu tư sáng tạo, chẳng hạn: sách tiếng Sáng tạo toán học, Giải toán nào, Tốn học suy luận có lí G.Pơlia Trong nước ta, có nhiều cơng trình nghiên cứu vấn đề lý luận thực tiễn việc phát triển tư sáng tạo cho học sinh, cơng trình [3], [7], [10], [12], [18], [20], … Điều cho thấy tầm quan trọng việc dạy học theo hướng bồi dưỡng phát triển tư sáng tạo cho học sinh Trong trường phổ thông, mơn Tốn cơng cụ để rèn luyện tư duy, phát triển lực cho học sinh Mơn Tốn giúp học sinh học tập nghiên cứu môn học khác Vì mà mơn Tốn đóng vai trị quan trọng việc bồi dưỡng phát triển tư cho học sinh có tư sáng tạo Qua thực tiễn giảng dạy, tác giả thấy mơn hình học khơng gian nói chung, chủ đề thể tích khối đa diện nói riêng có tác dụng tích cực việc phát triển tư sáng tạo cho học sinh Để tìm hiểu sâu vấn đề tác giả chọn đề tài nghiên cứu luận văn là: “Phát triển tư sáng tạo cho học sinh thông qua dạy học chủ đề “Thể tích khối đa diện” chương trình hình học lớp 12, ban nâng cao” Mục đích nghiên cứu Nghiên cứu khả phát triển tư sáng tạo đề xuất số biện pháp phát triển tư sáng tạo cho học sinh thông qua dạy học chủ đề “Thể tích khối đa diện” chương trình hình học lớp 12, ban nâng cao Khách thể nghiên cứu Thực tiễn việc bồi dưỡng phát triển tư sáng tạo cho học sinh lớp 12 trường THPT Cộng Hiền, Hải Phòng Đối tƣợng nghiên cứu Quá trình phát triển tư sáng tạo cho học sinh thông qua dạy học chủ đề “Thể tích khối đa diện” chương trình hình học lớp 12, ban nâng cao Giả thuyết nghiên cứu Trên sở chương trình sách giáo khoa hình học 12 hành, xây dựng biện pháp theo hướng phát huy tính độc lập sáng tạo học sinh có biện pháp dạy học thích hợp góp phần phát triển tư sáng tạo cho học sinh thông qua dạy học chủ đề “Thể tích khối đa diện” chương trình hình học lớp 12, ban nâng cao - Phạm vi nghiên cứu Nghiên cứu ứng dụng chủ đề “Thể tích khối đa diện” theo chương trình sách giáo khoa, sách tập hình học 12, ban nâng cao (Nxb giáo dục năm 2008) tài liệu tham khảo - Thời gian: Học kì năm học 2015 – 2016 Nhiệm vụ nội dung nghiên cứu 7.1 Nhiệm vụ nghiên cứu - Hệ thống hóa vấn đề liên quan đến tư sáng tạo: khái niệm, cấu trúc, yếu tố đặc trưng tư sáng tạo, biện pháp bồi dưỡng phát triển tư sáng tạo cho học sinh Tìm hiểu thực trạng dạy học chủ đề “Thể tích khối đa diện” chương trình hình học lớp 12 trường THPT Cộng Hiền, Hải Phòng - Đề xuất số biện pháp dạy học nhằm bồi dưỡng, phát triển tư sáng tạo cho học sinh lớp 12 7.2 Nội dung nghiên cứu - Tư duy, tư sáng tạo, số yếu tố đặc trưng tư sáng tạo - Vấn đề phát triển tư sáng tạo cho học sinh lớp 12 thơng qua dạy học chủ đề “Thể tích khối đa diện” Thực trạng việc dạy học chủ đề “Thể tích khối đa diện” chương trình hình học lớp 12 trường THPT Cộng Hiền, Hải Phòng - Các biện pháp nhằm bồi dưỡng, phát triển tư sáng tạo cho học sinh lớp 12 Phƣơng pháp nghiên cứu 8.1 Nghiên cứu lý luận - Nghiên cứu tài liệu giáo dục học mơn Tốn, tâm lý học, lý luận phương pháp dạy học môn Tốn - Các sách, báo, tạp chí, viết liên quan đến đề tài - Các cơng trình nghiên cứu có vấn đề liên quan đến đề tài 8.2 Điều tra quan sát Dự giờ, quan sát việc dạy giáo viên việc học học sinh lớp 12 trường THPT Cộng Hiền, Hải Phòng chủ đề “Thể tích khối đa diện” trình phát triển tư sáng tạo học sinh - Điều tra việc học tập mơn Tốn học sinh lớp 12 trường THPT Cộng Hiền, Hải Phòng năm học 2015 – 2016 8.3 Thực nghiệm sƣ phạm 110 Lời giải: S ABC ' AB.AC ' b AA' Hoặc Thay giả thiết “Đường thẳng BC ' tạo với mp AA'C 'C góc 300 ” giả Hãy giải tốn ( coi BTVN) GV: Qua ví dụ này, nhấn mạnh cho học sinh, sau giải xong tốn ta khơng dừng lại đó, tiếp tục khai thác cách thay đổi giả thiết tốn, xem tốn cịn có cách phát biểu khác hay không,… Hoạt động Bài tập 22/ trang 28 SGK Hoạt động GV, HS GV: Gọi học sinh lên bảng trình bày thiết 111 A C Cách 1: B Gọi độ dài cạnh đáy khối lăng trụ a , độ dài cạnh bên M giác A' C' CH B' HS: Lên bảng trình bày GV: Nhận xét, chữa Ta có GV: Hỏi học sinh cịn cách V C.MABB ' giải khác không? A C VABC A ' B ' C ' S ABC AA ' a 2b B Suy V M C MABB ' V 2V C MABB ' B ' MA ' C 'C hay tỉ số cần tính A' C' B' Cách 2: GV: Nhấn mạnh qua Gọi thể tích khối lăng trụ ABC.A' B 'C ' V em ý, khơng nên Ta có V V C ABB ' B ' ABC lòng với cách giải toán, tiếp S ABB ' tục suy nghĩ để ta tìm thêm 2S từ ta có cách Do giải hay nhất, cách giải ngắn gọn cho toán AMB ' cách giải khác nữa, V 1 V C.AMB 'B V C.ABB ' V C.AMB ' 2V V C.AMB ' C.ABB' Vậy tỉ số cần tính Hoạt động Bài tập 23/ trang 29 SGK V C.AMB ' 1 V V V 1 V Hoạt động giáo viên, học sinh 112 GV: hướng dẫn học sinh vẽ hình S A' H' C' B' H A C B GV: hướng dẫn học sinh toán tương tự tốn hình học phẳng tỉ số diện tích hai tam giác B' B HS: từ gợi ý tốn hình học phẳng đó, suy nghĩ làm GV: hướng dẫn học sinh vẽ hình, xác định đường cao hai khối chóp, tính tỉ số hai đường cao, suy đpcm GV: Hướng dẫn học sinh khai thác toán Sử dụng tốn ta tính thể tích khối chóp S.A' B 'C ' thơng qua thể tích khối chóp S.ABC , người ta gọi phương pháp tính gián tiếp Chẳng Bài 23/28 Cho khối chóp tam giác S.ABC có Cho khối chóp tam giác S.ABC Trên ba đáy tam giác cạnh a , đường thẳng SA, SB, SC lấy ba cạnh bên tạo với đáy góc 600 Gọi điểm A’, B’, C’ khác với S Chứng minh V S.A'B'C ' VS.ABC SA' SB'SC' SA SB SC Lời giải: Gọi H H ' hình chiếu vng góc A A' mp SBC Gọi S1 S2 theo thứ tự diện tích tam giác SBC SB 'C ' Khi ta có: A'H ' AH S2 S1 Do V S.A'B'C ' V S ABC (đpcm) Bài toán 113 pháp giải cho lớp toán Các em cần rèn luyện thường xuyên cách S.MNPkhai thác SP Hướng dẫn: S M N quen thuộc em tự giải) Theo công thức tỉ số thể tích, ta có V hạn xét toán minh họa sau: GV: Lưu ý cách áp dụng cơng thức tỉ số thể tích trường hợp có hai cặp điểm trùng ( minh họa hình vẽ) cơng thức tỉ số thể tích áp dụng cho hình chóp tam giác, hình tứ diện, khơng áp dụng cách tương tự cho hình chóp tứ giác (minh họa hình vẽ - bảng phụ) Chỉ rõ cho học sinh hiểu lưu ý qua hình vẽ minh họa GV: Nhấn mạnh, việc khai thác kết tốn đưa đến cho phương 114 S.MNP thứ tự trung điểm cạnh Điểm P thuộc cạnh SC 2PC Hãy tính thể tích khối a33 V SM S ABC SA SN (bài 12 SB SC SP C H I Nội dung Bảng phụ S E c D A a B a VS ABC 72 P tốn Củng cố Nhắc lại việc ln ln khơng dừng lại sau giải xong toán, mà cần tiếp tục suy nghĩ tìm cách giải khác từ tìm cách giải hay nhất, cách giải ngắn gọn nhất; đồng thời suy nghĩ để khai thác, phát triển tốn để ta có tốn mới, có kết học tập Bài tập nhà Làm tập cịn lại SGK, tìm thêm lời giải khác cho - Xem trước làm tập ôn tập chương I V Rút kinh nghiệm dạy …………………………………………………………………………………… Bài 22/28 Học sinh cịn có cách giải khác sau: Cách 3: ( Học sinh Hùng lớp 12A1 đề xuất ) Mặt phẳng MCB ' chia khối lăng trụ ABC.A' B 'C ' thành hai khối chóp C.MABB ' B '.MA'C 'C Hai khối chóp có chiều cao (cùng chiều cao tam giác ABC ), có đáy hai hình thang vng Suy hai khối chóp tích Vậy tỉ số cần tính C A B M C' A' B' Cách 4: ( Học sinh Nguyễn Thu lớp 12A1- đề xuất) VM ABC VM A ' B ' C ' ( hai khối chóp có hai đáy ABC , A ' B ' C ' có hai đường cao MA, MA' ) (1) 115 V VM CC ' B ' ( hai khối chóp có hai đường cao kh M BCB ' có mp BCB ' C ') (2) Từ (1) (2) suy VM ABC VM BCB ' VM A ' B ' C ' VM CC ' B ' hay VC MABB ' VB ' MA ' C 'C Suy tỉ số cần tính Phụ lục Bài Phần b) Cách giải khác đáp án Em Phương, em Lộc số em khác Ta có V V C MBD VC.SBD M BCD V ; C MBD CM CB CD . . ( doMlà trung điểm củaSC) CS CB CD VC MBD 2 VC SBD VS BCD 24 a3 Phần c) Cách giải khác đáp án em Bùi Thị Phương Thảo S A K D I O H Ta có B d C, SBD AO d C,SBD d A,SBD d A, SBD Mạt khác, d C CO A, SBD d K , SBD AB d A,SBD 2d K ,SBD KB Từ hai điều suy ra, d C,SBD 2d K,SBD Gọi H trung điểm OB KH / / AO KH OB; KH AO 116 a Kẻ KI SH , I SH ; chứng minh xong KI SBD d K ,SBD KI , a Tính KI 11 C ,SBD d 11 a Bài Cách giải khác đáp án em Bùi Thảo A C B M A' C' B' Khối lăng trụ chia thành hai khối chóp A.A’B’C’ A.BCC’B’ V A.A' B 'C ' 1 V 1 V ABC.A'B 'C ' V A.BCC ' B ' Ta có V A.BCC ' B ' M.BCC'B' V Mà AA '/ / BCC ' B ' d A, BCC ' B ' d M , BCC ' B ' Từ (1), (2) , (3) suy V 117 Phụ lục Trích đăng viết nhóm III, lớp 12A1 (Em Hùng làm nhóm trưởng) “Khai thác kết tốn thuộc chủ đề thể tích khối đa diện” Bài tốn gốc: Cho tứ diện vng OABC vng đỉnh O Gọi điểm H hình chiếu vng góc điểm O mp(ABC) Chứng minh a) VOABC OA.OB.OC b) OH1 OA1 OB1 OC1 2 2 ( toán quen thuộc biết cách giải ) A H C O B Áp dụng toán để giải toán sau: Bài 1: Cho hình chóp S.ABC với SA BC a; SB AC b; SC AB c Tính thể tích hình chóp Lời giải: S a c b A N Trong mặt phẳng ABC dựng MNK cho A, B, C trung điểm cạnh MN, NK, KM 118 Trong tam giác MNK, ta có BC đường trung bình, A trung điểm MN suy AM AN BC a , AM AN AS , suy tam giác SMN vuông SSM SN Ta chứng minh tương tự SM SK ; SN SK Vậy tứ diện SMNK tứ diện vng đỉnh S Do đó, V Ta có, S ABC Xét ∆KMN, ta có Xét ∆SAK vng S, ta có SK AK SA2 SK Tương tự, SN Từ (1), (3), (4) VS.MNK Thay vào (2) VS ABC Bài Cho hình chóp tứ giác S.ABCD, AB a; SA a Gọi E trung điểm SA Tính khoảng cách hai đường thẳng AD CE Lời giải: S a E I D C O A a B Gọi O tâm hình vng ABCD, I giao điểm CE SO Ta có SO đường cao hình chóp 119 Do AD//BC d AD , CE d AD , CI d AD ,CIB d D , CIB d O ,CIB Trong SAC , có I trọng tâm IO Tứ diện OIBC vuông đỉnh O, gọi d khoảng cách từ O đến mp(CIB) Áp dụng kết toán gốc trên, suy d OI OC Vậy d AD, CE a OB 190 19 da 120 190 38 ... nhằm phát triển tư sáng tạo cho học sinh 25 CHƢƠNG MỘT SỐ BIỆN PHÁP PHÁT TRIỂN TƢ DUY SÁNG TẠO CHO HỌC SINH THÔNG QUA DẠY HỌC CHỦ ĐỀ “THỂ TÍCH CỦA KHỐI ĐA DIỆN” TRONG CHƢƠNG TRÌNH HÌNH HỌC LỚP 12,. .. tư sáng tạo cho học sinh thông qua dạy học chủ đề ? ?Thể tích khối đa diện? ?? chương trình hình học lớp 12, ban nâng cao Các biện pháp nhằm bồi dưỡng, phát triển tư sáng tạo cho học sinh lớp 12 9.2... trình hình học lớp 12, ban nâng cao? ?? Mục đích nghiên cứu Nghiên cứu khả phát triển tư sáng tạo đề xuất số biện pháp phát triển tư sáng tạo cho học sinh thông qua dạy học chủ đề ? ?Thể tích khối đa diện? ??