1. Trang chủ
  2. » Luận Văn - Báo Cáo

Biến đổi fourier và Biến đổi laplace_05

22 1,7K 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 22
Dung lượng 212,71 KB

Nội dung

Giáo Trình Toán Chuyên Đề Trang 79 Chơng 5 Biến đổi fourier Biến đổi laplace Đ1. Tích phân suy rộng Trong chơng này chúng ta kí hiệu F(3, ) = { f : 3 } là đại số các hàm biến thực, trị phức || f || = Sup R | f(t) | || f || 1 = + dt|)t(f| là các chuẩn trên F(3, ) L = { f F(3, ) : || f || + } là đại số các hàm có module bị chặn C 0 = { f C(3, ) : t lim f(t) = 0 } là đại số các hàm liên tục, dần về không tại L 1 = { f F( 3 , ) : || f || 1 + } là đại số các hàm khả tích tuyệt đối trên 3 Chúng ta đ biết rằng hàm khả tích tuyệt đối là liên tục từng khúc, dần về không tại vô cùng bị chặn trên toàn 3 . Tức là L 1 CM 0 L Cho khoảng I 3 hàm F : I ì 3 , (x, t) F(x, t) khả tích trên 3 với mỗi x I cố định. Tích phân suy rộng f(f) = + dt)t,x(F với x I (5.1.1) gọi là bị chặn đều trên khoảng I nếu có hàm L 1 sao cho (x, t) I ì 3 , F(x, t) | (t) | Định lý Tích phân suy rộng bị chặn đều có các tính chất sau đây 1. Nếu hàm F(x, t) liên tục trên miền I ì 3 thì hàm f(x) liên tục trên khoảng I 2. Nếu các hàm F(x, t), x F liên tục trên miền I ì 3 tích phân + dt)t,x( x F cũng bị chặn đều trên khoảng I thì hàm f(x) có đạo hàm trên khoảng I x I, + dt)t,x(F dx d = + dt)t,x( x F 3. Nếu hàm F(x, t) liên tục trên I ì 3 thì hàm f(x) khả tích địa phơng trên khoảng I [a, b] I, b a dx)x(f = + dtdx)t,x(F b a Kí hiệu Chơng 5. Biến Đổi Fourier Biến Đổi Laplace Trang 80 Giáo Trình Toán Chuyên Đề (t) = < 0 t 0 0t 1 gọi là hàm nhảy đơn vị (t, h) = h 1 [ (t) - (t - h)] = > < ht ,0t 0 ht 0 h 1 gọi là hàm xung (t) = 0h lim (t, h) = =+ 0t 0 0 t gọi là hàm xung Dirac (5.1.2) Định lý Hàm xung Dirac có các tính chất sau đây. 1. + dt)t( = 1 2. Với mọi hàm f liên tục tại 0 + dt)t()t(f = f(0) 3. t 3, (t) = t d)( = + 0 d)t( (t) = (t) Chứng minh 1. + dt)t( = + dt)h,t(lim 0h = 0h lim h 0 dt)h,t( = 1 2. + dt)t()t(f = + dt)h,t(lim)t(f 0h = 0h lim h 0 dt)t(f h 1 = f(0) 3. Xét tích phân (t, h) = t d)h,( = << ht 1 ht0 h t 0t 0 Chuyển qua giới hạn (t) = 0h lim (t, h) Từ đó suy ra các hệ thức khác. Cho các hàm f, g F(3, ). Tích phân t 3, (fg)(t) = + d)t(g)(f (5.1.3) gọi là tích chập của hàm f hàm g. Định lý Tích chập có các tính chất sau đây. 1. f, g L 1 f g L 1 || f g || 1 || f || 1 || g || 1 2. f, g L 1 f g = g f 3. f L 1 C(3, ) f = f = f 4. f, g, h L 1 , (f + g) h = f h + g h Chứng minh Chơng 5. Biến Đổi Fourier Biến Đổi Laplace Giáo Trình Toán Chuyên Đề Trang 81 1. Do hàm g khả tích tuyệt đối nên bị chặn trên 3 (t, ) 3 2 , | f()g(t - ) | || g || | f() | Do f khả tích tuyệt đối nên tích phân suy rộng (fg)(t) hội tụ tuyệt đối bị chặn đều || f g || 1 = + + dtd)t(g)(f + + ddt|)t(g||)(f| = || f || 1 || g || 1 2. t 3, (fg)(t) = + d)t(g)(f = + d)(g)t(f = (gf)(t) 3. t 3, (f)(t) = + d)h,(lim)t(f 0h = h 0 0h d)t(f h 1 lim = f(t) 4. Suy ra từ tính tuyến tính của tích phân Đ2. Các bổ đề Fourier Bổ đề 1 Cho hàm f L 1 . Với mỗi f 3 cố định kí hiệu f x (t) = f(t - x) với mọi t 3 Khi đó ánh xạ : 3 L 1 , f f x là liên tục theo chuẩn. Chứng minh Ta chứng minh rằng > 0, > 0 : x, y 3, | x - y | < || (x) - (y) || 1 < Thật vậy Do hàm f khả tích tuyệt đối nên > 0, N > 0 : N|t| dt|)t(f| < 4 1 Trong khoảng [-N, N] hàm f có hữu hạn điểm gián đoạn loại một a 1 = - N < a 2 < . < a m = N với = Max{ | a k - a k-1 | : k = 1 .m} trên mỗi khoảng con [a k-1 , a k ] hàm có thể thác triển thành hàm liên tục đều > 0, > 0 : | x - y | < | f(x) - f(y) | < m2 Từ đó suy ra ớc lợng || (x) - (y) || 1 = + dt)yt(f)xt(f N|t| dt)yt(f)xt(f + = m 1k a a k 1k dt)yt(f)xt(f < Với mọi (, t, x) 3 * + ì 3 ì 3 kí hiệu Chơng 5. Biến Đổi Fourier Biến Đổi Laplace Trang 82 Giáo Trình Toán Chuyên Đề H(t) = e -|t| h (x) = + dte)t(H 2 1 ixt (5.2.1) Bổ đề 2 Các hàm H(t) h (x) có các tính chất sau đây 1. t 3, 0 < H(t) 1 0 lim H( t) = 1 + lim H( t) = 0 2. ( , x) 3 * + ì 3 h (x) = 22 x 1 + + dx)x(h = 1 3. f L 1 (f h )(x) = + + dte)t(Hdse)s(f 2 1 ixtist 4. g L liên tục tại x 3 0 lim (g h )(f) = g(x) 5. f L 1 0 lim || f h - f || 1 = 0 Chứng minh 1. Suy ra từ định nghĩa hàm H(t) 2. Tính trực tiếp tích phân (5.2.1) h (x) = + + + + 0 t)ix( 0 t)ix( dtedte 2 1 = + + ix 1 ix 1 2 1 = 22 x 1 + 3. Theo định nghĩa tích chập hàm h (f h )(x) = + dy)y(h)yx(f = + + dte)t(Hdye)yx(f 2 1 ixtt)yx(i Đổi biến s = x - y ở tích phân bên trong nhận đợc kết quả. 4. Theo định nghĩa tích chập hàm h (g h )(x) = + dy)y(h)yx(g = + ds)s(h)sx(g 1 với y = s Ước lợng trực tiếp (x, s) 3 2 , | g(x - s)h 1 (s) | || g || | h 1 (s) | Suy ra tích phân trên bị chặn đều. Do hàm g liên tục nên có thể chuyển giới hạn qua dấu tích phân. (g h )(x) 0 + ds)s(h)x(g 1 = g(x) 5. Kí hiệu y 3, g(y) = || f y - f || 1 = + dx|)x(f)yx(f| 2|| f || 1 Theo bổ đề 1. hàm g liên tục tại y = 0 với g(0) = 0 bị chặn trên toàn 3 Từ định nghĩa chuẩn, tích chập hàm h Chơng 5. Biến Đổi Fourier Biến Đổi Laplace Giáo Trình Toán Chuyên Đề Trang 83 || fh - f || 1 = + dx|)x(f)x)(hf(| = + + dxdy)y(h))x(f)yx(f( + + dy)y(hdx|)x(f)yx(f| = (gh )(0) 0 g(0) = 0 Suy ra từ tính chất 4. của bổ đề 2. Đ3. Biến đổi Fourier Cho các hàm f, F L 1 kí hiệu 3, f ) ( ) = + dte)t(f ti (5.3.1) t 3, F ( (t) = + de)(F 2 1 it (5.3.2) Ngoài ra hàm f hàm g gọi là bằng nhau hầu khắp nơi trên 3 nếu R dx|)x(g)x(f| = 0 Định lý Với các kí hiệu nh trên 1. f L 1 f ) C 0 L 1 || f ) || || f || 1 2. F L 1 F ( C 0 L 1 || F ( || || f || 1 3. Nếu f ) = F thì F ( n.k.h = f Chứng minh 1. Theo giả thiết hàm f khả tích tuyệt đối ta có (, t) 3 2 , | f(t)e -i t | = | f(t) | Suy ra tích phân (5.3.1) bị chặn đều. Do hàm f(t)e -i t liên tục nên hàm f ) () liên tục. Biến đổi tích phân f ) () = + + dte)t(f )t(i = - + dte)t(f ti Cộng hai vế với công thức (5.3.1) suy ra 2| f ) () | + dt|e||)t(f)t(f| ti = || f - f || 1 + 0 Do ánh xạ liên tục theo chuẩn theo bổ đề 1. Ngoài ra, ta có Chơng 5. Biến Đổi Fourier Biến Đổi Laplace Trang 84 Giáo Trình Toán Chuyên Đề || f ) || = sup R | f ) () | sup R + dt|e||)t(f| ti = || f || 1 2. Kí hiệu F - (t) = F(- t) với t 3. Biến đổi công thức (5.3.2) )t(F ( = + de)-(F 2 1 it = )t(F 2 1 - ) với = - Do hàm F L 1 nên hàm F - L 1 kết quả đợc suy ra từ tính chất 1. của định lý. 3. Theo tính chất 3. của bổ đề 2 tính chất của tích phân bị chặn đều (f h )(t) = + de)(H)(f 2 1 it ) = + de)(H)(F 2 1 it 0 )t(F ( Mặt khác theo tính chất 5. của theo bổ đề 2 || fh - f || 1 0 0 Do tính chất của sự hội tụ theo chuẩn t 3, (fh )(t) n.k.h 0 f(t) Do tính duy nhất của giới hạn suy ra F ( n.k.h = f Cặp ánh xạ F : L 1 C 0 , f f ) F -1 : L 1 C 0 , F F ( (5.3.3) xác định theo cặp công thức (5.3.1) (5.3.2) gọi là cặp biến đổi Fourier thuận nghịch. Do tính chất 3. của định lý sau này chúng ta lấy F = f ) đồng nhất f F ( . Hàm f gọi là hàm gốc , hàm F gọi là hàm ảnh kí hiệu là f F. Ví dụ 1. f(t) = e -at (t) f ) () = + + dte)t( t)ia( = + ia 1 với Re a > 0 f(t) = e - |t| ( > 0) f ) () = 0 t)i( dte + + + 0 t)i( dte = i 1 + + i 1 = 22 2 + 2. (t) u() = + dte)t( ti = 1 u(t) = + de)( it = 1 F() = 2() 3. f(t) = > T |t|0 T |t|1 f ) () = T T ti dte = 2 Tsin F() = 2 Tsin F ( (t) = + de Tsin 2 2 1 ti f(t) ngoại trừ các điểm t = T F() = > T ||0 T ||1 F ( (t) = T T it de 2 1 = t Ttsin 2 1 f ) (t) Chơng 5. Biến Đổi Fourier Biến Đổi Laplace Giáo Trình Toán Chuyên Đề Trang 85 Đ4. Tính chất của biến đổi Fourier Giả sử các hàm mà chúng ta nói đến sau đây khả tích tuyệt đối do đó luôn có ảnh nghịch ảnh Fourier. Kí hiệu f F với f(t) là hàm gốc F() là hàm ảnh tơng ứng. 1. Tuyến tính Nếu hàm f hàm g khả tích tuyệt đối thì với mọi số phức hàm f + g cũng khả tích tuyệt đối. , f(t) + g(t) F(z) + G(z) (5.4.1) Chứng minh ( ) + + dte)t(g)t(f ti = + dte)t(f ti + + dte)t(g ti 2. Dịch chuyển gốc Nếu hàm f khả tích tuyệt đối thì với mọi số thực hàm f(t - ) cũng khả tích tuyệt đối. 3, f(t - ) e -i F() (5.4.2) Chứng minh + dte)t(f ti = e -i + )t(de)t(f )t(i Đổi biến = t - 3. Đồng dạng Nếu hàm f khả tích tuyệt đối thì với mọi số thực khác không hàm f(t) cũng khả tích tuyệt đối. 3 * , f(t) )(F || 1 f(-t) F(-) (5.4.3) Chứng minh + dte)t(f ti = + )t(de)t(f )sgn( )t(i Đổi biến = t Ví dụ Cho f(t) = > 1 |t| 0 1 |t| 1 F() = 2 sin Ta có g(t) = f(3t + 3) - 2 1 f(t + 3) G() = 2e i3 )3/sin( - e ỉ3 sin 4. Đạo hàm gốc Giả sử hàm f các đạo hàm của nó khả tích tuyệt đối. f(t) iF() n , f (n) (t) (i) n F() (5.4.4) Chứng minh f(t) + dte)t(f ti = + ti e)t(f + (i) + dte)t(f ti = (i) + dte)t(f ti Qui nạp suy ra công thức thứ hai. Chơng 5. Biến Đổi Fourier Biến Đổi Laplace Trang 86 Giáo Trình Toán Chuyên Đề 5. Tích phân gốc Giả sử hàm f tích phân của nó khả tích tuyệt đối. t d)(f i 1 F() + F(0)() (5.4.5) Chứng minh Kí hiệu g(t) = t d)(f G(), g(t) = f(t) Theo tính chất 4 3, (i)G() = F() Suy ra G() = i 1 F() với 0 G(0) = F(0)() 6. ảnh của tích chập Nếu hàm f hàm g khả tích tuyệt đối thì tích chập của chúng cũng khả tích tuyệt đối. (fg)(t) F()G() (5.4.6) Chứng minh (fg)(t) + + dted)(g)t(f ti = + + de)(gdte)t(f i)t(i = F()G() 7. Hệ thức Parseval Giả sử hàm f hàm ảnh F của nó khả tích tuyệt đối. + dt|)t(f| 2 = 2 1 + d)(F 2 (5.4.7) Chứng minh + dt|)t(f| 2 = + dt)t(f)t(f * = + + dtde)(F 2 1 )t(f it* = + + d)(Fdte)t(f 2 1 *it = 2 1 + d)(F 2 Ví dụ 1. (t) 1 (t) = t d)( i 1 + () (t) = dt d i( i 1 + ()) 1 2. g(t) = t d)(f = (f)(t) F()( i 1 + ()) = i 1 F() + F(0)() 3. f(t) = [e - t (t)][e - à t (t)] ( à) F() = +à+ i 1 i 1 = ) i 1 i 1 ( 1 +à +à F ) (t) = à 1 (e - t - e - à t )(t) f(t) Chơng 5. Biến Đổi Fourier Biến Đổi Laplace Giáo Trình Toán Chuyên Đề Trang 87 Công thức đối ngẫu So sánh cặp công thức Fourier (5.3.1) (5.3.2) f(t) F() F(t) 2 + de)(f 2 1 )(i = 2 F ( (-) 2f(-) F() f(t) f() + de)(f 2 1 )t(i = 2 1 f (-t) 2 1 f(-t) (5.4.8) Từ đó suy ra tính đối ngẫu của cặp biến đổi Fourier. Nếu biến đổi Fourier thuận có tính chất thì biến đối Fourier nghịch cũng có tính chất đó chỉ sai khác một hằng số 2 biến số có dấu ngợc lại. Chúng ta có các công thức sau đây. 2. Dịch chuyển ảnh 3 e i t f(t) F( - ) (5.4.2) 3. Đồng dạng 3 * ) t (f || 1 F( ) (5.4.3) 4. Đạo hàm ảnh - itf(t) F( ) n , (-it) n f(t) F (n) ( ) (5.4.4) 5. Tích phân ảnh - it 1 f(t) + f(0) (t) d)(F (5.4.5) 6. ảnh của tích f(t)g(t) + d)(G)(F 2 1 = 2 1 (F G)( ) (5.5.6) Ví dụ 1. f(t) = e - |t| ( > 0) F( ) = 22 2 + g(t) = 22 t 2 + G() = 2e - | | 2. F() = + ia 1 (Rea > 0) f(t) = e -at (t) G() = e -a () g(t) = 2 1 ita 1 3. u(t) =1 2() 3, e i t 2( - ) f(t) = sint = i2 1 e i t - i2 1 e -i t F() = i ( - ) - i ( + ) G() = sin g(t) = 2 1 ( i (-t - ) + i (-t + )) Đ5. Tìm ảnh, gốc của biến đổi Fourier Từ cặp công thức đối ngẫu (5.4.8) suy ra rằng nếu chúng ta có đợc một công thức cho hàm ảnh thì sẽ có công thức tơng tự cho hàm gốc ngợc lại. Vì vậy trong mục này chúng ta chỉ đa ra công thức tìm ảnh hoặc công thức tìm gốc. Chơng 5. Biến Đổi Fourier Biến Đổi Laplace Trang 88 Giáo Trình Toán Chuyên Đề ảnh của hàm tuần hoàn Do hàm mũ g() = e -i t tuần hoàn với chu kỳ T = 2 nên hàm ảnh F() luôn là hàm tuần hoàn với chu kỳ T = 2. Ngợc lại, ta có 3, F 1 () = 2( - ) f 1 (t) = 2 1 + dte)(2 ti = e i t Nếu hàm f(t) là hàm tuần hoàn chu kỳ T, khai triển Fourier f(t) = + - tik k ea với a k = T 0 tik dte)t(f T 1 , k 9 = T 2 Do tính tuyến tính f(t) F( ) = + - k )k(2a (5.5.1) Ví dụ 1. Hàm f(t) = + )nTt( tuần hoàn chu kỳ là T k 9, a k = T 1 suy ra f(t) = + )nTt( F() = + ) T 2 k( T 2 2. Ta có f(t) = cost = 2 1 e -i t + 2 1 e i t F() = ( + ) + ( - ) suy ra f(t)g(t) + d)(G)(F 2 1 = 2 1 G( + ) + 2 1 G( - ) với g(t) G() ảnh của hàm trị thực Kí hiệu f * (t) là liên hợp phức của hàm f(t). Khi đó nếu hàm f khả tích tuyệt đối thì hàm f * cũng khả tích tuyệt đối ta có + dte)t(f ti* = * t)(i dte)t(f + = F * (- ) Từ đó suy ra công thức f * (t) F * (-) (5.5.2) Giả sử 3, F() = R() + iI() = |F()| e ( ) Nếu f(t) là hàm trị thực f * (t) = f(t) F * (-) = R(-) - iI(-) F() = R() + iI() Từ đó suy ra R(-) = R(), I(-) = - I() |F(-)| = |F()|, (-) = - () (5.5.3) Nếu f(t) là hàm trị thực chẵn f * (t) = f(t) f(-t) = f(t) F * (-) = F(-) = F() là hàm trị thực chẵn Nếu f(t) là hàm trị thực lẻ [...]... phép biến đổi Laplace H m f(t) gọi l h m gốc, h m F(z) gọi l h m ảnh của biến đổi Laplace v kí hiệu l f(t) F(z) Ví dụ 1 (t) = + 0 2 (t) = 0 1 t = 0 u(z) = t0 t < 0 F(z) = t0 + + (t )e dt 1 0 + (t )e 0 3 f(t) = eat(t) F(z) = e ( a z ) t dt = 0 zt zt dt = 1 với Rez > 0 z 1 với Rez > Rea za Giáo Trình Toán Chuyên Đề Trang 91 Chơng 5 Biến Đổi Fourier V Biến Đổi Laplace Chú ý 1 Biến đổi Laplace... 1 f(t) v (z + 2 ) n 1 Biến đổi 2 z g(t) (z + 2 ) n 1 2 z 1 1 1 = 2 (z + 2 ) n 1 2(n 1) tf(t) = (t) 2 2 n 2(n 1) (z + ) Trang 96 Giáo Trình Toán Chuyên Đề (5.9.3) Chơng 5 Biến Đổi Fourier V Biến Đổi Laplace 1 2n 3 1 1 = + 2 2 n 2 2 2 n 1 (z + ) 2(n 1) (z + ) 2(n 1) 2 z 2 (z + 2 ) n 1 2n 3 1 f(t) tg(t) = (t) 2 2(n 1) 2(n 1) 2 (5.9.4) Biến đổi M( z + p ) N Mp Mz +... có t = ()d 0 1 v (t) = (t) 1 z 1 n! qui nạp suy ra tn n +1 với Rez > 0 2 z z Công thức đổi ngẫu Bằng cách so sánh các công thức ảnh v nghịch ảnh của biến đổi Laplace chúng ta suy ra các công thức đối ngẫu của các công thức (5.8.2) - (5.8.7) Giáo Trình Toán Chuyên Đề Trang 95 Chơng 5 Biến Đổi Fourier V Biến Đổi Laplace 2 Dịch chuyển ảnh 5 Đạo h m ảnh a , eatf(t) F(z - a) tf(t) - F(z) v n ,... s0, f(t) = g(t)e = F( + i)e d = 2i iF(z)e dz 2 t Theo định lý về biến đổi Fourier ngợc h m g C0 suy ra h m f CM Ngo i ra do giả thiết 1., 2 v công thức tính tích phân suy rộng (4.9.6) + i 1 z t = - < 0, f(t) = iF(-z)e dz = 2i Trang 92 Giáo Trình Toán Chuyên Đề Re s[F(-z)e Re a k > s 0 z ,ak ] = 0 Chơng 5 Biến Đổi Fourier V Biến Đổi Laplace Ước lợng tích phân > s0, | f(t) | = | g(t) | et W 0 T < | t | T/2 1 f(t + T) = f(t) Giáo Trình Toán Chuyên Đề -i[( - ) - ( + )] 1 , Rea > 0 (a + i) n + 2 sin kT1 ( k) k Chơng 5 Biến Đổi Fourier V Biến Đổi Laplace Đ6 Biến đổi Laplace H m f F(3, ) gọi l h m gốc nếu có các tính chất sau đây 1 f(t) liên tục từng khúc trên 3 2 t < 0, f(t) = 0 M > 0, s > 0 sao cho t > 0, | f(t) | < Mest 3 Số s0 bé... > 0 (z + ) 2 + 2 3 (t - ) e-z, z 7 e-tsint , Rez > 0 (z + ) 2 + 2 4 n(t) = (n)(t) zn, z 8 n(t) = (t) (t) 1 , Rez > 0 zn Trang 98 Giáo Trình Toán Chuyên Đề Chơng 5 Biến Đổi Fourier V Biến Đổi Laplace B i tập chơng 5 1 Tìm ảnh Fourier của các h m gốc sau đây a e-2(t-1)(t) b e-2|t-1| c (t +1) + (t -1) d sin(2t + e e-tcost(t), > 0 f e-3|t|sin2t g te-2tsin4t(t) h sintsin2t t | t | 1 k 1 1 < | t... phải l song ánh v nửa mặt phẳng P+(s0) thay đổi theo từng + h m gốc f(t) Tức l f(t) G(s0) v F(z) = f (t )e zt dt l h m giải tích trên P+(s0) 0 2 H m gốc định nghĩa nh trên gọi l gốc phải Tơng tự có thể định nghĩa h m gốc trái, h m gốc hai bên Do vậy có thể nói đến phép biến đổi Laplace trái, phải v hai bên Trong giáo trình n y chúng ta chỉ xét đến biến đổi Laplace phải 3 Nếu f(t) l h m trị phức...Chơng 5 Biến Đổi Fourier V Biến Đổi Laplace f*(t) = f(t) v f(-t) = - f(t) F*(-) = - F(-) = F() l h m thuần ảo v lẻ Nếu f(t) l h m trị thực bất kì, phân tích 1 1 f(t) = [(f(t) + f(-t)] + [f(t) - f(-t)] = Ef(t) + Of(t) 2 2 . > Rea Chơng 5. Biến Đổi Fourier Và Biến Đổi Laplace Trang 92 Giáo Trình Toán Chuyên Đề Chú ý 1. Biến đổi Laplace không phải là song ánh và nửa mặt phẳng. của cặp biến đổi Fourier. Nếu biến đổi Fourier thuận có tính chất thì biến đối Fourier nghịch cũng có tính chất đó chỉ sai khác một hằng số 2 và biến số

Ngày đăng: 19/10/2013, 00:20

HÌNH ẢNH LIÊN QUAN

Bảng gốc ảnh Fourier - Biến đổi fourier và Biến đổi laplace_05
Bảng g ốc ảnh Fourier (Trang 12)
Bảng gốc ảnh Laplace - Biến đổi fourier và Biến đổi laplace_05
Bảng g ốc ảnh Laplace (Trang 20)
3. Cho ↔F với f(t) có đồ thị nh− hình bên. - Biến đổi fourier và Biến đổi laplace_05
3. Cho ↔F với f(t) có đồ thị nh− hình bên (Trang 21)

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w