1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Phương trình truyền nhiệt_08

24 478 2
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 24
Dung lượng 214,56 KB

Nội dung

Giáo Trình Toán Chuyên Đề Trang 133 Chơng 8 Phơng trình truyền nhiệt Đ1. Bài toán Cauchy thuần nhất Bài toán CP1a Cho các miền D = 3, H = D ì 3 + và hàm g C(D, 3). Tìm hàm u C(H, 3) thoả mn phơng trình truyền nhiệt t u = a 2 2 2 x u với (x, t) H 0 (8.1.1) và điều kiện ban đầu u(x, 0) = g(x) (8.1.2) Tìm nghiệm riêng bị chặn của bài toán CP1a dạng tách biến u(x, t) = X(x)T(t) Thế vào phơng trình (8.1.1) đa về hệ phơng trình vi phân T(t) + a 2 T(t) = 0 X(x) + X(x) = 0 Hệ phơng trình vi phân trên có họ nghiệm riêng bị chặn T(t) = t)a( 2 e và X(x) = A()cosx + B()sinx với 3 + Suy ra họ nghiệm riêng bị chặn của bài toán CP1a u (x, t) = t)a( 2 e (A()cosx + B()sinx), 3 + Tìm nghiệm tổng quát của bài toán CP1a dạng tích phân suy rộng u(x, t) = + 0 d)t,x(u = + + 0 t)a( d]xsin)(Bxcos)(A[e 2 (8.1.3) Thế vào điều kiện ban đầu (8.1.2) u(x, 0) = + + 0 d]xsin)(Bxcos)(A[ = g(x) Nếu hàm g có thể khai triển thành tích phân Fourier thì A() = + d)cos()(g 1 và B() = + d)sin()(g 1 Thay vào công thức (8.1.3) và biến đổi u(x, t) = + + ded)x(cos)(g 1 t)a( 0 2 Đổi thứ tự lấy tích phân Chơng 8. Phơng Trình Truyền Nhiệt Trang 134 Giáo Trình Toán Chuyên Đề u(x, t) = + + d)(gd)x(cose 1 0 t)a( 2 (8.1.4) Đổi biến = a t d = a t d s = ta2 x = x + 2a t s, d = 2a t ds Biến đổi tích phân bên trong của tích phân (8.1.4) + 0 t)a( d)x(cose 2 = + 0 ds2cose ta 1 2 = ta 1 I(s) Đạo hàm I(s), sau đó tích phân từng phần, nhận đợc phơng trình vi phân I(s) = + 0 2 des2sin = -2sI(s) và I(0) = 2 I(s) = 2 2 s e Thay vào tích phân (8.1.4) suy ra công thức sau đây. u(x, t) = + + dse)s ta2x(g 1 2 s = + de)(g ta2 1 ta4 )x( 2 2 (8.1.5) Định lý Cho hàm g C(D, 3) B(D, 3). Bài toán CP1a có nghiệm duy nhất và ổn định xác định theo công thức (8.1.5) Chứng minh Theo giả thiết hàm g liên tục và bị chặn (x, t) H, s 3, g(x + 2a t s) 2 s e M 2 s e Suy ra tích phân (8.1.5) bị chặn đều. Do đó có thể lấy giới hạn và đạo hàm qua dấu tích phân theo x hai lần, theo t một lần. Kiểm tra trực tiếp hàm u(x, t) là nghiệm của phơng trình (8.1.1) thoả mn điều kiện ban đầu (8.1.2) x u = + de ta4 x )(g ta4 )x( 2/33 2 2 2 2 x u = + + de ta8 )x( ta4 1 )(g ta4 )x( 2/55 2 2/33 2 2 t u = + + de ta8 )x( ta4 1 )(g ta4 )x( 2/53 2 2/3 2 2 = a 2 2 2 x u +0t lim u(x, t) = +0t lim + + dse)s ta2x(g 1 2 s = g(x) Nếu u i là hai nghiệm của bài toán t u = a 2 2 2 x u , u(x, 0) = g i thì u = u 1 - u 2 là nghiệm của bài toán t u = a 2 2 2 x u , u(x, 0) = g 1 - g 2 = g Chơng 8. Phơng Trình Truyền Nhiệt Giáo Trình Toán Chuyên Đề Trang 135 Từ công thức (8.1.5) chúng ta có ớc lợng sau đây (x, t) H, | u(x, t) | + + dse|)tas2x(g| 1 2 s sup D g() Từ đó suy ra g = g 1 - g 2 = 0 u = u 1 - u 2 = 0 || g || = || g 1 - g 2 || < || u || = || u 1 - u 2 || < Vậy bài toán có nghiệm duy nhất và ổn định trên H. Ví dụ Giải bài toán t u = 4 2 2 x u và u(x, 0) = xe -x Hàm g(x) = xe -x thoả mn điều kiện của định lý. Theo công thức (8.1.5) u(x, t) = + + ++ dsee)]t2s(t4)t8x[( 1 xt4)t2s( 2 = + + + det4de)t8x(e 1 22 xt4 với = s + 2 t = (x - 8t)e 4t-x Đ2. Bài toán Cauchy không thuần nhất Bài toán CP1b Cho các miền D = 3, H = D ì 3 + và hàm f C(H, 3). Tìm hàm u C(H, 3) thoả mn phơng trình truyền nhiệt t u = a 2 2 2 x u + f(x, t) với (x, t) H 0 và điều kiện ban đầu u(x, 0) = 0 Định lý Cho hàm f C(H, 3) B(D, 3) và hàm v(x, , t) là nghiệm của bài toán CP1a thoả mn v(x, , 0) = f(x, ). Bài toán CP1b có nghiệm duy nhất và ổn định xác định theo công thức sau đây u(x, t) = t 0 d)t,,x(v = + t 0 )t(a4 )x( de t ),(f d a2 1 2 2 (8.2.1) Chứng minh Do hàm f C(H, 3) B(D, 3) nên hàm v C 2 (H ì 3 + , 3). Do đó có thể đạo hàm tích phân (8.2.1) theo x hai lần, theo t một lần. Kiểm tra trực tiếp Chơng 8. Phơng Trình Truyền Nhiệt Trang 136 Giáo Trình Toán Chuyên Đề t u = t 0 d)t,,x( t v + v(x, t, 0) = a 2 t 0 2 2 d)t,,x( x v + f(x, t) = a 2 2 2 x u + f(x, t) và u(x, 0) = 0 Tính duy nhất và ổn định suy ra từ bài toán CP1a. Bài toán CP1 Cho các miền D = 3 , H = D ì 3 + , các hàm f C(H, 3 ) và g C(D, 3 ). Tìm hàm u C(H, 3 ) thoả mn phơng trình truyền nhiệt t u = a 2 2 2 x u + f(x, t) với (x, t) H 0 và điều kiện ban đầu u(x, 0) = g(x) Tìm nghiệm của bài toán CP1 dới dạng u(x, t) = u a (x, t) + u b (x, t) trong đó u (x, t) là nghiệm của bài toán CP1 Kết hợp các công thức (8.1.5) và (8.2.1) suy ra công thức sau đây. u(x, t) = +++ + + t 0 ss dse)t,s a2x(fddse)s ta2x(g 1 22 = + + + t 0 a4 )x( ta4 )x( de )t,(f dde t )(g a2 1 2 2 2 2 (8.2.2) Định lý Cho các hàm f C(H, 3) B(D, 3) và g C(D, 3) B(D, 3). Bài toán CP1 có nghiệm duy nhất và ổn định xác định theo công thức (8.2.2). Ví dụ Giải bài toán t u = a 2 2 2 x u + 3t 2 và u(x, 0) = sinx Hàm f(x, t) = t 2 , g(x) = sinx thoả mn điều kiện của định lý. Theo công thức (8.2.2) u(x, t) = + + dse)sta2xsin( 1 2 s + + t 0 s2 ddse)t(3 1 2 Kí hiệu I(t) = + + dsee 1 2 s)sta2x(i Đạo hàm I(t), biến đổi và sau đó tích phân từng phần Chơng 8. Phơng Trình Truyền Nhiệt Giáo Trình Toán Chuyên Đề Trang 137 I(t) = + + )e(de t2 ia 2 s)sta2x(i = + + 2 s)sta2x(i ee t2 ia - + + dsee a 2 s)sta2x(i 2 = - a 2 I(t) với I(0) = e ix Giải phơng trình vi phân nhận đợc I(t) = ta 2 e e ix = ta 2 e (cosx + i sinx) (8.2.3) Tách phần thực, phần ảo suy ra các tích phân cần tìm. Cần ghi nhận kết quả và phơng pháp tính tích phân trên để sử dụng sau này. Tính trực tiếp tích phân J(t) = + t 0 s2 ddse)t(3 1 2 = t 3 Suy ra nghiệm của bài toán u(x, t) = Im I(t) + J(t) = ta 2 e sinx + t 3 Nhận xét Bằng cách kéo dài liên tục các hàm liên tục từng khúc, các công thức trên vẫn sử dụng đợc trong trờng hợp các hàm f và g có đạo hàm liên tục từng khúc. Đ3. Bài toán giả Cauchy Bài toán SP1a Cho các miền D = 3 + , H = D ì 3 + , các hàm f C(D, 3) và g C(D, 3) Tìm hàm u C(H, 3) thoả mn phơng trình truyền nhiệt t u = a 2 2 2 x u + f(x, t) với (x, t) H 0 và các điều kiện u(x, 0) = g(x), u(0, t) = 0 T tởng chung để giải bài toán SP là tìm cách chuyển về bài toán CP tơng đơng. Giả sử f 1 và g 1 tơng ứng là kéo dài của các hàm f và g lên toàn 3, còn hàm v(x, t) là nghiệm của bài toán Cauchy sau đây. t v = a 2 2 2 x v + f 1 (x, t) và u(x, 0) = g 1 (x) với (x, t) 3 ì 3 + Theo công thức (8.2.2) , ta có v(x, t) = + + + t 0 a4 )x( 1 ta4 )x( 1 de )t,(f dde t )(g a2 1 2 2 2 2 Thế vào điều kiện biên Chơng 8. Phơng Trình Truyền Nhiệt Trang 138 Giáo Trình Toán Chuyên Đề v(0, t) = + + + t 0 a4 1 ta4 1 de )t,(f dde t )(g a2 1 2 2 2 2 = 0 Suy ra các hàm f 1 và g 1 phải là các hàm lẻ. Tức là f 1 (x, t) = < 0 x t) f(-x,- 0 x t) f(x, và g 1 (x) = < 0 x )x-(g- 0 x )x(g Định lý Cho các hàm f C(H, 3) B(H, 3) và g C(D, 3) B(D, 3) thoả mn f(0, t) = 0 và g(0) = 0 Bài toán SP1a có nghiệm duy nhất và ổn định xác định theo công thức u(x, t) = + + 0 ta4 )x( ta4 )x( dee t )(g a2 1 2 2 2 2 + + + + t 0 0 a4 )x( a4 )x( dee )t,(f d 2 2 2 2 (8.3.1) Ví dụ Giải bài toán t u = a 2 2 2 x u + 2xt với (x, t) 3 + ì3 + u(x, 0) = sinx và u(0, t) = 0 Do các hàm f và g là hàm lẻ nên các hàm kéo dài lẻ f 1 = f và g 1 = g. Thay vào công thức (8.2.2) và sử dụng tích phân (8.2.3) , ta có u(x, t) = + + dse)sta2xsin( 1 2 s + + + t 0 s ddse)sa2x)(t(2 1 2 = ImI(t) + + + t 0 ss )e(dadsexd)t(2 1 22 = ta 2 e sinx + xt 2 Bài toán SP1b Cho các miền D = 3 + , H = D ì 3 + và hàm h C(3 + , 3) Tìm hàm u C(H, 3) thoả mn phơng trình truyền nhiệt t u = a 2 2 2 x u với (x, t) H 0 và các điều kiện u(x, 0) = 0, u(0, t) = h(t) Định lý Cho hàm h C(3 + , 3) B(3 + , 3). Bài toán SP1b có nghiệm duy nhất và ổn định Chơng 8. Phơng Trình Truyền Nhiệt Giáo Trình Toán Chuyên Đề Trang 139 xác định theo công thức u(x, t) = t 0 a4 x 2/3 de )t(h a2 x 2 2 (8.3.2) Chứng minh Do hàm h C( 3 + , 3 ) B( 3 + , 3 ) nên tích phân (8.3.2) hội tụ đều H. Do đó có thể đạo hàm theo x hai lần, theo t một lần. Kiểm tra trực tiếp x u = t 0 a4 x 2/3 de )t(h a2 1 2 2 - t 0 a4 x 2/5 3 2 de )t(h a4 x 2 2 2 2 x u = t 0 a4 x 2/5 3 de )t(h a4 x 2 2 + t 0 a4 x 2/7 5 3 de )t(h a8 x 2 2 t u = ta4 x 2/3 2 2 e t )0(h a2 x - t 0 a4 x 2/3 )t(dhe 1 a2 x 2 2 = + t 0 a4 x 2/72 2 2/5 de a4 x 2 3 )t(h a2 x 2 2 = a 2 xx u Theo công thức (8.3.2) ta có u(x, 0) = 0 Đổi biến tích phân (8.3.2) s = a2 x , u(x, t) = + ta2 x s 22 2 dse) sa4 x t(h 2 2 Suy ra u(0, t) = h(t) Tính duy nhất và ổn định suy ra từ công thức (8.3.2) và ớc lợng tích phân. Bài toán SP1 Cho các miền D = 3 + , H = D ì 3 + , các hàm f C(H, 3), g C(D, 3) và h C(3 + , 3) Tìm hàm u C(H, 3) thoả mn phơng trình truyền nhiệt t u = a 2 2 2 x u + f(x, t) với (x, t) H 0 và các điều kiện u(x, 0) = g(x), u(0, t) = h(t) Tìm nghiệm của bài toán SP1 dới dạng u(x, t) = u a (x, t) + u b (x, t) trong đó u (x, t) là nghiệm của bài toán SP1 Kết hợp các công thức (8.3.1) và (8.3.2), suy ra công thức sau đây. Chơng 8. Phơng Trình Truyền Nhiệt Trang 140 Giáo Trình Toán Chuyên Đề u(x, t) = + + 0 ta4 )x( ta4 )x( dee t )(g a2 1 2 2 2 2 + t 0 a4 x 2/3 de )t(h x 2 2 + + + t 0 0 a4 )x( a4 )x( dee )t,(f d 2 2 2 2 (8.3.3) Định lý Cho f C(H, 3) B(D, 3), g C(D, 3) B(D, 3), h C(3 + , 3) B(3 + , 3) thoả mn f(0, t) = 0 và g(0) = 0 Bài toán SP1 có nghiệm duy nhất và ổn định xác định theo công thức (8.3.3) Nhận xét Phơng pháp trên có thể sử dụng để giải các bài toán giả Cauchy khác. Đ4. Bài toán hỗn hợp thuần nhất Bài toán HP1a Cho các miền D = [0, l], H = D ì [0, T] và hàm g C(D, 3) Tìm hàm u C(H, 3) thoả mn phơng trình truyền nhiệt t u = a 2 2 2 x u với (x, t) H 0 (8.4.1) điều kiên ban đầu u(x, 0) = g(x) (8.4.2) và điều kiện biên u(0, t) = 0, u(l, t) = 0 (8.4.3) Tìm nghiệm của bài toán HP1a dạng tách biến u(x, t) = X(x)T(t) Thế vào phơng trình (8.4.1) và điều kiện biên (8.4.3) đa về hệ phơng trình vi phân X(x) + X(x) = 0 (8.4.4) T(t) + a 2 T(t) = 0 (8.4.5) X(0) = X(l) = 0 với 3 (8.4.6) Lập luận tơng tự nh bài toán HH1a, tìm nghiệm riêng không tầm thờng của hệ phơng trình (8.4.4) và (8.4.6), nhận đợc họ nghiệm riêng trực giao trên đoạn [0, l] X k (x) = A k sin x l k với A k 3 và k = 2 l k , k * Thay vào phơng trình (8.4.5) tìm đợc họ nghiệm riêng độc lập Chơng 8. Phơng Trình Truyền Nhiệt Giáo Trình Toán Chuyên Đề Trang 141 T k (t) = B k t l ak 2 e với B k 3 , k * Suy ra họ nghiệm riêng độc lập của bài toán HP1 u k (x, t) = X k (x)T k (t) = a k t l ak 2 e sin x l k với a k = A k B k , k * Tìm nghiệm tổng quát của bài toán HP1 dạng chuỗi hàm u(x, t) = + =1k k )t,x(u = + = 1k t l ak k x l k sinea 2 (8.4.7) Thay vào điều kiện ban đầu (8.4.2) u(x, 0) = + = 1k k x l k sina = g(x) Nếu hàm g có thể khai triển thành chuỗi Fourier thì a k = l 0 xdx l k sin)x(g l 2 (8.4.8) Định lý Cho hàm g C 1 (D, 3) thoả mn g(0) = g(l) = 0. Chuỗi hàm (8.4.7) với các hệ số a k tính theo công thức (8.4.8) là nghiệm duy nhất và ổn định của bài toán HP1a. Chứng minh Hàm g theo giả thiết thoả mn điều kiện Diriclet và do đó khai triển đợc thành chuỗi Fourier hội tụ đều trên đoạn [0, l]. Do đó chuỗi hàm (8.4.7) với các hệ số a k tính theo công thức (8.4.8) là hội tụ đều và có thể đạo hàm từng từ theo x hai lần, theo t một lần trên miền H. Kiểm tra trực tiếp thấy rằng chuỗi hàm (8.4.7) và các chuỗi đạo hàm riêng của nó thoả mn phơng trình (8.4.1) và các điều kiện (8.4.2), (8.4.3) Lập luận tơng tự nh bài toán CP1 suy ra tính ổn định và duy nhất nghiệm. Ví dụ Giải bài toán t u = 2 2 x u với (x, t) [0, 1] ì [0, T] u(x, 0) = x(1 - x) và u(0, t) = u(1, t) = 0 Theo công thức (8.4.8) ta có a k = 2 l 0 xdxksin)x1(x = 4 33 k k )1-(1 = += + = 12n k 1)(2n 8 2n k 0 33 Thế vào công thức (8.4.7) suy ra nghiệm của bài toán u(x, t) = + = + + + 0n t)1n2( 33 x)1n2sin(e )1n2( 18 22 Chơng 8. Phơng Trình Truyền Nhiệt Trang 142 Giáo Trình Toán Chuyên Đề Đ5. Bài toán hỗn hợp không thuần nhất Bài toán HP1b Cho các miền D = [0, l], H = D ì [0, T], các hàm f C(H, 3) và g C(D, 3) Tìm hàm u C(H, 3) thoả mn phơng trình truyền nhiệt t u = a 2 2 2 x u + f(x, t) với (x, t) H 0 điều kiện ban đầu u(x, 0) = 0 và các điều kiện biên u(0, t) = 0, u(l, t) = 0 Tìm nghiệm bài toán HP1b dạng chuỗi hàm u(x, t) = + = 1k k x l k sin)t(T (8.5.1) Khai triển Fourier hàm f(x, t) đoạn [0, l], thế vào bài toán HP1b + = + 1k k 2 k x l k sin)t(T l ak )t(T = + = 1k k x l k sin)t(f với f k (t) = l 0 dx l xk sin)t,x(f l 2 và + = 1k k x l k sin)0(T = 0 Đa về họ phơng trình vi phân hệ số hằng )t(T k + 2 l ak T k (t) = f k (t), T k (0) = 0 (8.5.2) Giải họ phơng trình vi phân tuyến tính hệ số hằng (8.5.2) tìm các hàm T k (t) thế vào công thức (8.5.1) suy ra nghiệm của bài toán. Định lý Cho hàm f C(H, 3) C 1 (D, 3). Chuỗi hàm (8.5.1) với các hàm T k (t) xác định bởi hệ phơng trình (8.5.2) là nghiệm duy nhất và ổn định của bài toán HP1b. Bài toán HP1 Cho các miền D = [0, l], H = D ì [0, T], các hàm f C(H, 3), g C(D, 3) và các hàm p, q C([0, T], 3). Tìm hàm u C(H, 3) thoả mn phơng trình truyền nhiệt t u = a 2 2 2 x u + f(x, t) với (x, t) H 0 điều kiện ban đầu u(x, 0) = g(x) và các điều kiện biên u(0, t) = p(t), u(l, t) = q(t) [...]... m u C(D, 3) thoả m n phơng trình Laplace u(r, ) = 0 với (r, ) D0 v điều kiện biên u(R, ) = g() Trang 144 Giáo Trình Toán Chuyên Đề (8.6.1) (8.6.2) Chơng 8 Phơng Trình Truyền Nhiệt Tìm nghiệm của b i toán DE1a dạng tách biến u(r, ) = V(r)() Thế v o phơng trình (8.6.1) nhận đợc hệ phơng trình vi phân () + () = 0 (8.6.3) 2 r V(r) + rV(r) - V(r) = 0, với 3 (8.6.4) Phơng trình (8.6.3) có họ nghiệm riêng... h m h C([0, 2], 3) Tìm h m u C(D, 3) thoả m n phơng trình Laplace u = 1 u 1 2 u = 0 với (r, ) D0 r + r r r r 2 2 v điều kiện biên u (R, ) = h() r Tìm nghiệm của b i toán NE1 dạng tách biến u(r, ) = V(r)() Trang 150 Giáo Trình Toán Chuyên Đề (8.8.1) (8.8.2) Chơng 8 Phơng Trình Truyền Nhiệt Thay v o phơng trình (8.8.1) nhận đợc hệ phơng trình vi phân () + () = 0 r2V(r) + rV(r) - V(r) = 0, ... Giáo Trình Toán Chuyên Đề Chơng 8 Phơng Trình Truyền Nhiệt 2 a0 + b0ln = 1 g()d 2 0 2 a0 + b0lnR = 2 akk + bk-k = 1 g() cos kd 0 ckk + dk-k = 1 g() sin kd 0 1 h()d 2 0 2 akRk + bkR-k = 1 h() cos kd 0 ckRk + dkR-k = 1 h() sin kd 0 2 2 (8.6.12) Định lý Cho các h m g, h C1([0, 2], 3) thoả m n g(0) = g(2), h(0) = h(2) Chuỗi h m (8.6.11) với các hệ số ak , bk , ck v dk xác định từ hệ phơng trình. .. thoả m n phơng trình Laplace u = 0 với (x, y) D0 v điều kiện biên u(x, d) = gc(x), u(0, x) = u(x, 0) = u(l, y) = 0 Định lý Cho h m gc C1([0, l], 3) thoả m n gc(0) = gc(l) = 0 B i toán DE2c có nghiệm duy nhất v ổn định xác định theo công thức + u(x, y) = c k sh k =1 Trang 148 2 k k k y sin x với ck = gc (x) sin l xdx kd 0 l l lsh l Giáo Trình Toán Chuyên Đề l (8.7.7) Chơng 8 Phơng Trình Truyền Nhiệt... d) = g2(d) = g3(l) = A + Bl + Cd + Dld u(0, d) = g3(0) = g4(d) = A + Cd Giải hệ phơng trình trên suy ra g (d ) g 4 (0) g (l) g1 (0) A = g4(0) = g1(0), B = 1 ,C= 4 l d g (l) g3 (0) g1 (l) + g1 (0) g (d ) g 2 (0) g 4 (d ) + g 4 (0) D= 3 = 2 (8.7.10) ld ld Giáo Trình Toán Chuyên Đề Trang 149 Chơng 8 Phơng Trình Truyền Nhiệt Thế v o điều kiện biên suy ra x (g1(l) - g1(0)) l x gc(x) = uc(x, d) = g3(x)... xe-t B i toán HP1a có nghiệm v(x, t) = 0 Giải b i toán HP1b 1 fk(t) = 2 e t x sin kxdx = 0 2(-1) k +1 t e với k * k Giải họ phơng trình vi phân hệ số hằng Tk (t) + (2k)2Tk(t) = 2(-1) k +1 t e , Tk(0) = 0 k Giáo Trình Toán Chuyên Đề Trang 143 Chơng 8 Phơng Trình Truyền Nhiệt Tìm đợc các h m ( 2 2(-1) k e ( 2 k ) t e t 2 2 k(4 k 1) Suy ra nghiệm của b i toán Tk(t) = u(x, t) = xe-t + + k =1... thoả m n phơng trình Laplace u = 2u 2 u + = 0 với (x, y) D0 x2 y2 v các điều kiện biên u(x, d) = u(0, y) = u(x, 0) = 0, u (l, y) = hb(y) x Định lý Cho h m hb C1([0, d], 3) B i toán NE2b có nghiệm duy nhất v ổn định xác định theo công thức k k u(x, y) = b k sh x sin y với bk = d d k =1 + 2 kch d h kl 0 b (y) sin k ydy (8.8.6) d d Giáo Trình Toán Chuyên Đề Trang 151 Chơng 8 Phơng Trình Truyền Nhiệt... miền D = [0, l] ì [0, d] v h m ga C([0, l], 3) Tìm h m u C(D, 3) thoả m n phơng trình Laplace u = 2u 2 u + = 0 với (x, y) D0 x2 y2 (8.7.1) v điều kiện biên u(x, 0) = ga(x), u(x, d) = u(0, y) = u(l, y) = 0 (8.7.2) Tìm nghiệm của b i toán DE2a dạng tách biến u(x, y) = X(x)Y(y) Thay v o phơng trình (8.7.1) đa về hệ phơng trình vi phân X(x) + X(x) = 0 Y(y) - Y(y) = 0 X(0) = X(l) = Y(d) = 0 với 3 B... họ nghiệm riêng độc lập của b i toán DE2a k k uk(x, y) = ak sh (d y) sin x với ak = AkBk 3, k * l l Xk(x) = Aksin Tìm nghiệm tổng quát của b i toán DE2a dạng chuỗi h m Giáo Trình Toán Chuyên Đề Trang 147 Chơng 8 Phơng Trình Truyền Nhiệt + u(x, y) = u k =1 + k (x, y ) = a k =1 k sh k k (d y) sin x l l (8.7.4) Thế v o điều kiện biên (8.7.2) + kd k u(x, 0) = a k sh sin x = ga(x) l l k =1 Nếu h m ga... = rei D0 Theo kết quả ở Đ8, chơng 3 suy ra b i toán DE1a có nghiệm theo công thức sau đây 1 + z g( ) 1 u(z) = Re (8.6.7) R z d = Re 2i || RF()d = ReI(z) 2 i ||= = Giáo Trình Toán Chuyên Đề Trang 145 Chơng 8 Phơng Trình Truyền Nhiệt Giả sử trong hình tròn B(0, R) h m g có các cực điểm khác không ak với k = 1 n Theo công thức tính tích phân Cauchy (4.7.6) ta có n I(z) = ResF(z) + ResF(0) + Re . V(r) ( ) Chơng 8. Phơng Trình Truyền Nhiệt Giáo Trình Toán Chuyên Đề Trang 151 Thay vào phơng trình (8.8.1) nhận đợc hệ phơng trình vi phân () + () = 0. họ phơng trình vi phân hệ số hằng )t(T k + (2k) 2 T k (t) = t 1k e k -1)(2 + , T k (0) = 0 Chơng 8. Phơng Trình Truyền Nhiệt Trang 144 Giáo Trình Toán

Ngày đăng: 19/10/2013, 00:20

HÌNH ẢNH LIÊN QUAN

Đ6. Bài toán Dirichlet trong hình tròn - Phương trình truyền nhiệt_08
6. Bài toán Dirichlet trong hình tròn (Trang 12)
Đ6. Bài toán Dirichlet trong hình tròn - Phương trình truyền nhiệt_08
6. Bài toán Dirichlet trong hình tròn (Trang 12)
Giả sử trong hình tròn B(0, R) hàm g có các cực điểm khác không ak với k= 1..n Theo công thức tính tích phân Cauchy (4.7.6) ta có  - Phương trình truyền nhiệt_08
i ả sử trong hình tròn B(0, R) hàm g có các cực điểm khác không ak với k= 1..n Theo công thức tính tích phân Cauchy (4.7.6) ta có (Trang 14)
Đ7. Bài toán Dirichlet trong hình chữ nhật - Phương trình truyền nhiệt_08
7. Bài toán Dirichlet trong hình chữ nhật (Trang 15)
• Giải bài toán Dirichlet trong hình tròn - Phương trình truyền nhiệt_08
i ải bài toán Dirichlet trong hình tròn (Trang 22)
• Giải bài toán Dirichlet trong hình chữ nhật 23.    ∆u = 0  với  (x, y) ∈ [0, a] ì [0, b]  - Phương trình truyền nhiệt_08
i ải bài toán Dirichlet trong hình chữ nhật 23. ∆u = 0 với (x, y) ∈ [0, a] ì [0, b] (Trang 23)

TỪ KHÓA LIÊN QUAN

w