❇❐ ●■⑩❖ ❉Ư❈ ❱⑨ ✣⑨❖ ❚❸❖ ✣❸■ ❍➴❈ ❍❯➌ ❚❘×❮◆● ✣❸■ ❍➴❈ ❙× P❍❸▼ ❇Ị■ ❚❍➚ ❚❍Õ❨ ✣➚◆❍ ▲×Đ◆● ✣❐ ✣❆◆ ❘➮■ ❱⑨ ❱■➍◆ ❚❷■ ▲×Đ◆● ❚Û ❱❰■ ❚❘❸◆● ❚❍⑩■ ❍❆■ ▼❖❉❊ ❑➌❚ ❍ÑP ❙❯✭✶✱✶✮ ❚❍➊▼ ❍❆■ ❱⑨ ❇❰❚ ▼❐❚ P❍❖❚❖◆ ❈❍➂◆ ▲❯❾◆ ❱❿◆ ❚❍❸❈ ❙➒ ❱❾❚ ▲Þ ❚❍❊❖ ✣➚◆❍ ❍×❰◆● ◆●❍■➊◆ ❈Ù❯ ❍❯➌✱ ◆❿▼ ✷✵✶✾ ❇❐ ●■⑩❖ ❉Ư❈ ❱⑨ ✣⑨❖ ❚❸❖ ✣❸■ ❍➴❈ ❍❯➌ ❚❘×❮◆● ✣❸■ ❍➴❈ ❙× P❍❸▼ ❇Ị■ ❚❍➚ ❚❍Õ❨ ✣➚◆❍ ▲×Đ◆● ✣❐ ✣❆◆ ❘➮■ ❱⑨ ❱■➍◆ ❚❷■ ▲×Đ◆● ❚Û ❱❰■ ❚❘❸◆● ❚❍⑩■ ❍❆■ ▼❖❉❊ ❑➌❚ ❍ĐP ❙❯✭✶✱✶✮ ❚❍➊▼ ❍❆■ ❱⑨ ❇❰❚ ▼❐❚ P❍❖❚❖◆ ❈❍➂◆ ❈❤✉②➯♥ ♥❣➔♥❤✿ số t ỵ ỵ tt t ỵ t ✿ ✽✹ ✹✵ ✶✵✸ ▲❯❾◆ ❱❿◆ ❚❍❸❈ ❙➒ ❱❾❚ ▲Þ ❚❍❊❖ ✣➚◆❍ ❍×❰◆● ◆●❍■➊◆ ❈Ù❯ ◆●×❮■ ❍×❰◆● ❉❼◆ ❑❍❖❆ ❍➴❈ P●❙✳❚❙ ❚❘×❒◆● ▼■◆❍ ✣Ù❈ ❍❯➌✱ ◆❿▼ ✷✵✶✾ ✐ ▲❮■ ❈❆▼ ✣❖❆◆ ❚æ✐ ①✐♥ ❝❛♠ ✤♦❛♥ ✤➙② ❧➔ ❝æ♥❣ tr➻♥❤ ♥❣❤✐➯♥ ❝ù✉ ❝õ❛ r✐➯♥❣ tæ✐✱ ❝→❝ sè ❧✐➺✉ ✈➔ ❦➳t q✉↔ ♥❣❤✐➯♥ ❝ù✉ ♥➯✉ tr♦♥❣ ❧✉➟♥ ✈➠♥ ❧➔ ❤♦➔♥ t♦➔♥ tr✉♥❣ tỹ ữủ ỗ t sỷ ✈➔ ❝❤÷❛ tø♥❣ ✤÷đ❝ ❝ỉ♥❣ ❜è tr♦♥❣ ❜➜t ❦ý ♠ët ❝æ♥❣ tr➻♥❤ ♥❣❤✐➯♥ ❝ù✉ ♥➔♦ ❦❤→❝✳ ❍✉➳✱ t❤→♥❣ ✵✾ ♥➠♠ ✷✵✶✾ ❚→❝ ❣✐↔ ❧✉➟♥ ✈➠♥ ❇ò✐ ❚❤à ❚❤õ② ✐✐ ▲❮■ ❈❷▼ ❒◆ ❚ỉ✐ ①✐♥ ❝❤➙♥ t❤➔♥❤ ❝↔♠ ì♥ ✤➳♥ t❤➛② P●❙✳❚❙ ❚r÷ì♥❣ ▼✐♥❤ ✣ù❝ ✤➣ ❧✉ỉ♥ q✉❛♥ t➙♠ ❣✐ó♣ ✤ï tổ tr q tr t ự ữợ ❤♦➔♥ t❤➔♥❤ ❧✉➟♥ ✈➠♥ ♥➔②✳ ◗✉❛ ✤➙②✱ tæ✐ ①✐♥ ❝❤➙♥ t ỡ qỵ ổ t ỵ ✈➔ ♣❤á♥❣ ✣➔♦ t↕♦ s❛✉ ✣↕✐ ❤å❝✱ ❚r÷í♥❣ ✣↕✐ ❤å❝ ❙÷ ♣❤↕♠ ✲ ✣↕✐ ❤å❝ ❍✉➳❀ ❝→❝ ❜↕♥ ❤å❝ ✈✐➯♥ ❈❛♦ ❤å❝ ❦❤â❛ ✷✻ ❝ị♥❣ ❣✐❛ ✤➻♥❤✱ ♥❣÷í✐ t❤➙♥ ✈➔ õ ỵ ú ù t ✤✐➲✉ ❦✐➺♥ ❝❤♦ tæ✐ tr♦♥❣ s✉èt q✉→ tr➻♥❤ ❤å❝ t➟♣ ✈➔ t❤ü❝ ❤✐➺♥ ❧✉➟♥ ✈➠♥✳ ❍✉➳✱ t❤→♥❣ ✵✾ ♥➠♠ ✷✵✶✾ ❚→❝ ❣✐↔ ❧✉➟♥ ✈➠♥ ❇ị✐ ❚❤à ❚❤õ② ✐✐✐ ▼Ư❈ ▲Ư❈ ❚r❛♥❣ ❚r❛♥❣ ♣❤ö ❜➻❛ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✐ ▲í✐ ❝❛♠ ✤♦❛♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✐✐ ▲í✐ ❝↔♠ ì♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✐✐✐ ▼ö❝ ❧ö❝ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ❉❆◆❍ ▼Ö❈ ❈⑩❈ ✣➬ ❚❍➚ ▼Ð ✣❺❯ ✶ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹ ◆❐■ ❉❯◆● ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ữỡ é ị ❚❍❯❨➌❚ ✾ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✾ ✶✳✶✳ ❚r↕♥❣ t❤→✐ ❦➳t ❤ñ♣ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✾ ✶✳✶✳✶✳ ❑❤→✐ ♥✐➺♠ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✾ ✶✳✶✳✷✳ ❈→❝ t➼♥❤ ❝❤➜t ❝õ❛ tr↕♥❣ t❤→✐ ❦➳t ❤ñ♣ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✷ ✶✳✶✳✸✳ ❚r↕♥❣ t❤→✐ ❦➳t ❤ñ♣ ❝❤➤♥ ✈➔ ❧➫ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✻ ✶✳✷✳ ❚➼♥❤ ❝❤➜t ❝õ❛ t♦→♥ tû ❞à❝❤ ❝❤✉②➸♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✾ ✶✳✸✳ ❈→❝ t✐➯✉ ❝❤✉➞♥ ✤❛♥ rè✐ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✷ ✶✳✸✳✶✳ ❚✐➯✉ ❝❤✉➞♥ ✤❛♥ rè✐ ❍✐❧❧❡r②✕❩✉❜❛✐r② ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✷ ✶✳✸✳✷✳ ❚✐➯✉ ❝❤✉➞♥ ❊♥tr♦♣② t✉②➳♥ t➼♥❤ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✸ ✶✳✹✳ ▼æ ❤➻♥❤ t ữủ tỷ ợ ỗ rố ✳ ✳ ✳ ✷✻ ✶✳✺✳ ❚r↕♥❣ t❤→✐ ❇❡❧❧ ✈ỵ✐ q✉→ tr➻♥❤ ✈✐➵♥ t↔✐ ❧÷đ♥❣ tû ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✽ ❈❤÷ì♥❣ ✷✳ ❑❍❷❖ ❙⑩❚ ❚➑◆❍ ❈❍❻❚ ✣❆◆ ❘➮■ ❱⑨ ✣➚◆❍ ▲×Đ◆● ✣❐ ❘➮■ ❈Õ❆ ❚❘❸◆● ❚❍⑩■ ❍❆■ ▼❖❉❊ ❑➌❚ ❍ÑP ❙❯✭✶✱✶✮ ❚❍➊▼ ❍❆■ ❱⑨ ❇❰❚ ▼❐❚ P❍❖❚❖◆ ❈❍➂◆ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶ ✸✷ ✷✳✶✳ ❚r↕♥❣ t❤→✐ ❤❛✐ ♠♦❞❡ ❦➳t ❤ñ♣ ❙❯✭✶✱✶✮ t❤➯♠ ❤❛✐ ✈➔ ❜ỵt ♠ët ♣❤♦t♦♥ ❝❤➤♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✷ ✷✳✶✳✶✳ ❚r↕♥❣ t❤→✐ ❤❛✐ ♠♦❞❡ ❦➳t ❤ñ♣ ❙❯✭✶✱✶✮ ✸✷ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✳✶✳✷✳ ❚r↕♥❣ t❤→✐ ❤❛✐ ♠♦❞❡ ❦➳t ❤ñ♣ ❙❯✭✶✱✶✮ t❤➯♠ ❤❛✐ ✈➔ ❜ỵt ♠ët ♣❤♦t♦♥ ❝❤➤♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✼ ✷✳✷✳ ❑❤↔♦ s→t t➼♥❤ ❝❤➜t ✤❛♥ rè✐ t❤❡♦ t✐➯✉ ❝❤✉➞♥ ❍✐❧❧❡r②✲❩✉❜❛✐r② ✹✵ ✷✳✸✳ ✣à♥❤ ❧÷đ♥❣ ✤ë rè✐ t❤❡♦ t✐➯✉ ❝❤✉➞♥ ❊♥tr♦♣② t✉②➳♥ t➼♥❤ ✳ ✳ ữỡ ìẹ ❱❰■ ❚❘❸◆● ❚❍⑩■ ❍❆■ ▼❖❉❊ ❑➌❚ ❍ÑP ❙❯✭✶✱✶✮ ❚❍➊▼ ❍❆■ ❱⑨ ❇❰❚ ▼❐❚ P❍❖❚❖◆ ❈❍➂◆ ✳ ✳ ✳ ✺✵ ✸✳✶✳ tr t ữủ tỷ ợ ỗ rố tr↕♥❣ t❤→✐ ❤❛✐ ♠♦❞❡ ❦➳t ❤ñ♣ ❙❯✭✶✱✶✮ t❤➯♠ ❤❛✐ ✈➔ ❜ỵt ♠ët ♣❤♦t♦♥ ❝❤➤♥ ✳ ✺✵ ✸✳✷✳ ✣ë tr✉♥❣ t❤ü❝ tr✉♥❣ ❜➻♥❤ ❝õ❛ q✉→ tr➻♥❤ ✈✐➵♥ t↔✐ ❧÷đ♥❣ tû ✳ ✺✹ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✻✶ ❚⑨■ ▲■➏❯ ❚❍❆▼ ❑❍❷❖ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✻✸ ❑➌❚ ▲❯❾◆ P❍Ö ▲Ö❈ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷ P✳✶ ❉❆◆❍ ▼Ö❈ ỗ t ỹ tở r ợ ọ q=2 ỗ t ✷✳✷ ✭✤÷í♥❣ ♠➔✉ ①❛♥❤ ❞÷ì♥❣✮✱ ✭✤÷í♥❣ ♠➔✉ q=4 ✭✤÷í♥❣ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ q = ①❛♥❤ ❞÷ì♥❣✮✱ ✭✤÷í♥❣ ♠➔✉ ✤ä✮✱ q=7 q = ✭✤÷í♥❣ ♠➔✉ ✭✤÷í♥❣ ♠➔✉ ①❛♥❤ ❧→✮✳ ✳ ✳ ✳ ✳ ✳ ❙ü ♣❤ö t❤✉ë❝ ❝õ❛ ✤ë tr✉♥❣ t❤ü❝ tr✉♥❣ ❜➻♥❤ ❜✐➯♥ ✤ë ❦➳t ❤ñ♣ r ù♥❣ ợ tr = 1.55 Fav ữớ ✤ä✮✱ ✷ ✭✤÷í♥❣ ♠➔✉ ①❛♥❤ ❧→✮✱ ❙ü ♣❤ư t❤✉ë❝ ❝õ❛ ✤ë tr✉♥❣ t❤ü❝ tr✉♥❣ ❜➻♥❤ ❜✐➯♥ ✤ë ❦➳t ❤ñ♣ r ự ợ tr ữớ ọ = 2.45 γ = 1.85 q=0 ✈➔ q=0 q = Fav ✺✾ ✈➔♦ γ = 1.55 ✭✤÷í♥❣ ♠➔✉ ①❛♥❤ ❧→✮❀ ✭✤÷í♥❣ ♠➔✉ ①❛♥❤ ❞÷ì♥❣✮✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸ ✹✽ ✈➔♦ ✭✤÷í♥❣ ♠➔✉ ①❛♥❤ ❞÷ì♥❣✮✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ỗ t ỹ tở ❝õ❛ ❡♥tr♦♣② t✉②➳♥ t➼♥❤ ▼ ✈➔♦ r ✈ỵ✐ ❣✐→ trà ỗ t q = é ỵ t ổ t q trồ ữớ ũ ợ sỹ ♣❤→t tr✐➸♥ ❝õ❛ ❦❤♦❛ ❤å❝ ✲ ❦➽ t❤✉➟t✱ ❧➽♥❤ ✈ü❝ t❤ỉ♥❣ t✐♥ ❧✐➯♥ ❧↕❝ ❝ơ♥❣ ❦❤ỉ♥❣ ♥❣ø♥❣ ♣❤→t tr✐➸♥✳ ❈♦♥ ♥❣÷í✐ ❦❤ỉ♥❣ ♥❣ø♥❣ ❝↔✐ t✐➳♥ ❝→❝ ❝→❝❤ t❤ù❝ ❧✐➯♥ ❧↕❝ ❝ì ❜↔♥ tr♦♥❣ ❝✉ë❝ sè♥❣ ♠➔ ❝á♥ ♠✉è♥ ♠ð rë♥❣ ❧✐➯♥ ❧↕❝ r❛ ♥❣♦➔✐ ✈ơ trư rë♥❣ ❧ỵ♥✳ ❙ü r❛ ✤í✐ ❝õ❛ ♠ët ♥❣➔♥❤ ❦❤♦❛ ❤å❝ ♠ỵ✐ ✲ t❤ỉ♥❣ t✐♥ ữủ tỷ ữợ t õ t ♠↕♥❣✧ ♠ð r❛ ♠ët ❦➾ ♥❣✉②➯♥ ❝ỉ♥❣ ♥❣❤➺ ♠ỵ✐✳ ◆❤➟♥ ♠ët ❝✉ë❝ ❣å✐ tø s❛♦ ❍ä❛ s➩ ❦❤æ♥❣ ❝á♥ ①❛ ✈í✐ ❦❤✐ ♠➔ ❣✐í ✤➙②✱ t❤ỉ♥❣ t✐♥ ❧÷đ♥❣ tû ❝❤♦ ♣❤➨♣ t❤ỉ♥❣ t✐♥ tr✉②➲♥ ✤✐ ✈ỵ✐ tè❝ ✤ë ❝ü❝ ♥❤❛♥❤✱ ✤↔♠ ❜↔♦ ✤÷đ❝ t➼♥❤ ❝❤➜t ✈➔ ❝â t➼♥❤ ❜↔♦ ♠➟t t✉②➺t ✤è✐ s♦ ✈ỵ✐ ❝→❝❤ t❤ù❝ tr✉②➲♥ t✐♥ ❝ê ✤✐➸♥ ợ tố tr t t t t ữ ❝❛♦ ♠➔ ❝❤ó♥❣ t❛ sû ❞ư♥❣ ❤✐➺♥ ♥❛②✳ ◆❣♦➔✐ r❛✱ ♥➳✉ →♣ ❞ư♥❣ ❧➼ t❤✉②➳t t❤ỉ♥❣ t✐♥ ❧÷đ♥❣ tû tr♦♥❣ t➼♥❤ t♦→♥ t❤➻ s➩ ❝❤♦ r❛ ✤í✐ ♠ët t❤➳ ❤➺ t ữủ tỷ ợ t t ❤ì♥ ❝→❝ s✐➯✉ ♠→② t➼♥❤ ✈➔ ✤➙② ✤❛♥❣ ❧➔ t➙♠ ✤✐➸♠ ♥❣❤✐➯♥ ❝ù✉ ❝õ❛ ❝→❝ ❝✉ë❝ t❤✐ q✉è❝ t➳ ✈➲ ♥❣❤✐➯♥ ❝ù✉ ♠→② t➼♥❤ ❧÷đ♥❣ tû✳ ▼ư❝ ✤➼❝❤ q✉❛♥ trå♥❣ ♥❤➜t ❝õ❛ ❧➼ t❤✉②➳t t❤ỉ♥❣ t✐♥ ❧÷đ♥❣ tû ❧➔ ❧➔♠ t t r ữợ sỷ rè✐ ❧÷đ♥❣ tû✳ ❱✐➺❝ ①û ❧➼ t❤ỉ♥❣ t✐♥ ❧÷đ♥❣ tû ❧➔ ♠ët ✈➜♥ ✤➲ ♠ỵ✐✱ rë♥❣ ❧ỵ♥ ✈➔ ❝â t➼♥❤ ❦❤→✐ q✉→t✳ ❱✐➺❝ tr✉②➲♥ t↔✐ t❤æ♥❣ t✐♥ t❤æ♥❣ q✉❛ ✈✐➺❝ sû ❞ư♥❣ t➼♥❤ ❝❤➜t ✤❛♥ rè✐ ✤÷đ❝ ❣å✐ ❧➔ ✈✐➵♥ t↔✐ ❧÷đ♥❣ tû✳ ✣â ❧➔ ♠ët q✉→ tr➻♥❤ ❞à❝❤ ❝❤✉②➸♥ t❤ỉ♥❣ t✐♥ ❝ơ♥❣ ♥❤÷ ✈➟t ❝❤➜t tù❝ t❤í✐✱ ♠➔ ❦❤ỉ♥❣ ♣❤↔✐ ❞à❝❤ ❝❤✉②➸♥ q✉❛ ❦❤ỉ♥❣ ❣✐❛♥✱ ✤÷đ❝ t❤ü❝ ❤✐➺♥ ❜➡♥❣ ởt t tớ rỗ ❣û✐ t❤ỉ♥❣ t✐♥ ♣❤➙♥ tû tỵ✐ ✤✐➸♠ ❦❤→❝✱ ♥ì✐ ✈➟t s➩ ✤÷đ❝ t→✐ t↕♦ ❧↕✐ ❝➜✉ tró❝ ❜❛♥ ✤➛✉✳ ❱✐➵♥ t↔✐ ✹ ❧÷đ♥❣ tû ❝â t❤➸ ✤÷đ❝ ❦❤❛✐ t❤→❝ ✤➸ t ữủ tỷ ữợ tổ trð ♥➯♥ ♥❤❛♥❤ ✈➔ ♠↕♥❤ ❤ì♥✳ ✣➸ ♥❣❤✐➯♥ ❝ù✉ ✈✐➵♥ t↔✐ ❧÷đ♥❣ tû✱ ❝→❝ ♥❤➔ ❦❤♦❛ ❤å❝ ✤❛♥❣ t➟♣ tr✉♥❣ ❦❤→✐ t❤→❝ rè✐ ❧÷đ♥❣ tû✱ ✈✐➺❝ ♥❣❤✐➯♥ ❝ù✉ t➼♥❤ ✤❛♥ rè✐ ✤â♥❣ ✈❛✐ trá q✉❛♥ trå♥❣ tr♦♥❣ q✉→ tr➼♥❤ t↕♦ r ỗ t rố tứ õ t r ỗ rè✐ ❝â ✤ë tr✉♥❣ t❤ü❝ tr✉♥❣ ❜➻♥❤ ❝❛♦ ♥❤➜t✳ ✣➙② ởt tr ỳ ữợ ự ợ t ỵ ỵ tt tổ t ❧÷đ♥❣ tû✱ ♠→② t➼♥❤ ❧÷đ♥❣ tû ❦❤ỉ♥❣ ❝❤➾ ✤÷đ❝ ❝→❝ ♥❤➔ ❦❤♦❛ ❤å❝ q✉❛♥ t➙♠ tr➯♥ t❤➳ ❣✐ỵ✐ ♠➔ ✤➙② ụ ởt t rt ữủ ú ỵ ❱✐➺t ◆❛♠✳ ❚ø ♥➠♠ ✷✵✶✶✱ ❤å❝ ✈✐➯♥ ▲➯ ❚❤à ❚❤✉ ✤➣ ❦❤↔♦ s→t t➼♥❤ ✤❛♥ rè✐ ✈➔ ❝❤✉②➸♥ ✈à ❧÷đ♥❣ tû ✈ỵ✐ tr↕♥❣ t❤→✐ ❦➳t ❤đ♣ ❤❛✐ ♠♦❞❡ t❤➯♠ ♣❤♦t♦♥ ❬✶✶❪❀ ♥➠♠ ✷✵✶✸✱ ❤å❝ ✈✐➯♥ ▲➯ ❚❤à ❚❤õ② ✤➣ ❦❤↔♦ st t rố t ữủ tỷ ợ tr↕♥❣ t❤→✐ ❤❛✐ ♠♦❞❡ ❙❯✭✶✱✶✮ ❬✶✷❪❀ ♥➠♠ ✷✵✶✹✱ ❤å❝ ✈✐➯♥ ◆❣✉②➵♥ ❚❤à ❑✐♠ ❚❤❛♥❤ ✤➣ ❦❤↔♦ s→t t➼♥❤ ✤❛♥ rè✐ t ữủ tỷ ợ tr t ❦➳t ❤ñ♣ ✤è✐ ①ù♥❣ t❤➯♠ ❤❛✐ ♣❤♦t♦♥ t➼❝❤ ❬✶✵❪❀ ♥➠♠ ✷✵✶✺✱ ❤å❝ ✈✐➯♥ ❚r➛♥ ❚❤à ❚❤❛♥❤ ❚➙♠ ✤➣ ❦❤↔♦ s→t t rố t ữủ tỷ ợ tr t❤→✐ ❤❛✐ ♠♦❞❡ ❦➳t ❤ñ♣ t❤➯♠ ❤❛✐ ♣❤♦t♦♥ ❝❤➤♥ ❬✾❪❀ ♥➠♠ ✷✵✶✻✱ ❤å❝ ✈✐➯♥ ▲➯ ❚❤à ▼❛✐ P❤÷ì♥❣ ✤➣ ♥❣❤✐➯♥ ự t rố t ữủ tỷ ợ tr↕♥❣ t❤→✐ ❤❛✐ ♠♦❞❡ ❦➳t ❤ñ♣ ❙❯✭✷✮ ❝❤➤♥ ❬✽❪❀ ♥➠♠ ✷✵✶✼✱ ❤å❝ ✈✐➯♥ ❈❛♦ ❚❤à ❚❤❛♥❤ ❍➔ ✤➣ ♥❣❤✐➯♥ ❝ù✉ ữủ rố t ữủ tỷ ợ tr↕♥❣ t❤→✐ ❤❛✐ ♠♦❞❡ ❦➳t ❤ñ♣ t❤➯♠ ❤❛✐ ♣❤♦t♦♥ t➼❝❤ ❙❯✭✷✮ ❧➫ ❬✸❪❀ ♥➠♠ ✷✵✶✼ ❝â ♥❣❤✐➯♥ ❝ù✉ s✐♥❤ ✣➦♥❣ ❍ú✉ ✣à♥❤ ✈ỵ✐ ❦❤↔♦ s→t ❝→❝ t➼♥❤ ❝❤➜t ♣❤✐ ❝ê ✤✐➸♥ ✈➔ ✈➟♥ ❞ö♥❣ ❝→❝ tr↕♥❣ t❤→✐ ♣❤✐ ❝ê ✤✐➸♥ ✈➔♦ t❤ỉ♥❣ t✐♥ ❧÷đ♥❣ tû tr♦♥❣ ❧✉➟♥ →♥ t✐➳♥ s➽ t ỵ t st tr t❤→✐ ✤❛♥ rè✐ ✈➔ ✈✐➵♥ t↔✐ ❧÷đ♥❣ tû ❧➔ ♠ët ✈➜♥ ✤➲ t❤ó ✈à✱ ✈ỵ✐ ♥❤ú♥❣ ù♥❣ ❞ư♥❣ t♦ ❧ỵ♥ ✤➣ ✤÷đ❝ ♥❤✐➲✉ t→❝ ❣✐↔ ✺ ♥❣❤✐➯♥ ❝ù✉ ♥❤÷♥❣ ✈➝♥ ❝❤÷❛ ❝â ✤➲ t➔✐ ♥➔♦ ♥❣❤✐➯♥ ❝ù✉ ✈➲ ✤à♥❤ ❧÷đ♥❣ rố t ữủ tỷ ợ tr t ❤❛✐ ♠♦❞❡ ❦➳t ❤đ♣ ❙❯✭✶✱✶✮ t❤➯♠ ❤❛✐ ✈➔ ❜ỵt ♠ët t ữủ sỹ ữợ P rữỡ ✣ù❝✱ tỉ✐ q✉②➳t ✤à♥❤ ❝❤å♥ ✤➲ t➔✐✿ ✏✣à♥❤ ❧÷đ♥❣ ✤ë rố t ữủ tỷ ợ tr t ♠♦❞❡ ❦➳t ❤đ♣ ❙❯✭✶✱✶✮ t❤➯♠ ❤❛✐ ✈➔ ❜ỵt ♠ët ♣❤♦t♦♥ ❝❤➤♥✑ ❧➔♠ ✤➲ t➔✐ ❧✉➟♥ ✈➠♥ ❝❤♦ ♠➻♥❤✳ ✷✳ ▼ö❝ t✐➯✉ ❝õ❛ ✤➲ t➔✐ ▼ö❝ t✐➯✉ ♥❣❤✐➯♥ ❝ù✉ ❝õ❛ ✤➲ t➔✐ ♥➔② ❧➔ ❦❤↔♦ s→t t➼♥❤ ❝❤➜t ✤❛♥ rè✐ ❝õ❛ tr↕♥❣ t❤→✐ ❤❛✐ ♠♦❞❡ ❦➳t ❤đ♣ t❤➯♠ ❤❛✐ ✈➔ ❜ỵt ♠ët ♣❤♦t♦♥ ❙❯✭✶✱✶✮ ❝❤➤♥ ❜➡♥❣ t✐➯✉ ❝❤✉➞♥ ✤❛♥ rè✐ ❍✐❧❧❡r②✲❩✉❜❛✐r②✳ ❙❛✉ ✤â✱ ❝❤ó♥❣ tỉ✐ sû ❞ư♥❣ tr↕♥❣ t❤→✐ ♥➔② ❧➔♠ ỗ rố tỹ q tr t ữủ tû ♠ët tr↕♥❣ t❤→✐ ❦➳t ❤ñ♣ ✈➔ ✤→♥❤ ❣✐→ ♠ù❝ ✤ë t❤➔♥❤ ❝æ♥❣ ❝õ❛ q✉→ tr➻♥❤ ✈✐➵♥ t↔✐ t❤æ♥❣ q✉❛ ✤ë tr✉♥❣ t❤ü❝ tr✉♥❣ ❜➻♥❤✳ ✸✳ P❤↕♠ ✈✐ ♥❣❤✐➯♥ ❝ù✉ ❚r♦♥❣ ❦❤✉ỉ♥ ❦❤ê ❧✉➟♥ ✈➠♥ ♥➔②✱ tỉ✐ s➩ sû ❞ư♥❣ t✐➯✉ ❝❤✉➞♥ ❊♥tr♦♣② t✉②➳♥ t➼♥❤ ✤➸ ✤à♥❤ ❧÷đ♥❣ ✤ë rè✐✱ ❞ò♥❣ t✐➯✉ ❝❤✉➞♥ ✤❛♥ rè✐ ❍✐❧❧❡rr②✲ ❩✉❜❛✐r② ✤➸ ♥❣❤✐➯♥ ❝ù✉ t➼♥❤ ✤❛♥ rè✐ ✈➔ ✈✐➵♥ t↔✐ ❧÷đ♥❣ tû ♠ët tr↕♥❣ t❤→✐ ❦➳t ❤đ♣ ❬✶✼❪✱ ❬✶✽❪✱ ❬✷✷❪✳ ❙❛✉ ✤â✱ sû ❞ư♥❣ ♠ỉ ❤➻♥❤ ✈✐➵♥ t↔✐ ❜✐➳♥ ❧✐➯♥ tư❝ ✤➸ t❤ü❝ ❤✐➺♥ q tr t ợ ỗ rố tr t ❤❛✐ ♠♦❞❡ ❦➳t ❤đ♣ ❙❯✭✶✱✶✮ t❤➯♠ ❤❛✐ ✈➔ ❜ỵt ♠ët ♣❤♦t♦♥ ❝❤➤♥✳ ✻ 1+q ∞ = |N | − |ξ| ∞ × n=0 (n+q)! n!q! (m+q)! m!q! m=0 2 [1 + (−1)m ] (ξ ∗ )m [1 + (−1)n ] (ξ)n √ ×ba m, m + q a ˆ2 n (n + q) (n + q − 1) n + q, n − 1+q ∞ = |N |2 − |ξ|2 ∞ × n=0 (n+q)! n!q! (m+q)! m!q! m=0 2 ab [1 + (−1)m ] (ξ ∗ )m [1 + (−1)n ] (ξ)n √ ×ba m, m + q n (n + q) (n + q − 1) (n + q) (n + q − 1) |n + q − 2, n − 1+q ∞ = |N |2 − |ξ|2 ∞ × n=0 (n+q)! n!q! (m+q)! m!q! m=0 ab [1 + (−1)m ] (ξ ∗ )m [1 + (−1)n ] (ξ)n √ × n (n + q) (n + q − 1) (n + q) (n + q − 1)δm+q,n+q−2 δm,n−1 =0 2 C = |N | − |ξ| ∞ × n=0 (n+q)! n!q! 1+q ∞ m=0 (m+q)! m!q! [1 + (−1)n ] (ξ)n ×ba m, m + q ˆb† a ˆ†2 a ˆ2 a ˆ†2 n + q, n = |N |2 − |ξ|2 ∞ × n=0 (n+q)! n!q! 1+q ∞ m=0 = |N |2 − |ξ|2 × n=0 (n+q)! n!q! (m+q)! m!q! ab [1 + (−1)m ] (ξ ∗ )m [1 + (−1)n ] (ξ)n ×ba m, m + q ˆb† a ˆ†2 a ˆ2 ∞ [1 + (−1)m ] (ξ ∗ )m 1+q ∞ m=0 (n + q + 1) (m+q)! m!q! (n + q + 2) n + q + 2, n [1 + (−1)m ] (ξ ∗ )m [1 + (−1)n ] (ξ)n ×ba m, m + q ˆb† a ˆ†2 (n + q + 1) (n + q + 2) n + q, n P✳✸ ab ab 2 = |N | − |ξ| ∞ × n=0 (n+q)! n!q! 1+q ∞ m=0 (m+q)! m!q! [1 + (−1)m ] (ξ ∗ )m [1 + (−1)n ] (ξ)n ×ba m, m + q ˆb† (n + q + 1) (n + q + 2) (n + q + 1) (n + q + 2) |n + q + 2, n = |N |2 − |ξ|2 ∞ × n=0 (n+q)! n!q! 1+q ∞ m=0 (m+q)! m!q! ab [1 + (−1)m ] (ξ ∗ )m [1 + (−1)n ] (ξ)n ×ba m, m + q (n + q + 1) (n + q + 2) √ n (n + q + 1) (n + q + 2) |n + q + 2, n + = |N |2 − |ξ|2 ∞ × n=0 (n+q)! n!q! 1+q ∞ m=0 (m+q)! m!q! ab [1 + (−1)m ] (ξ ∗ )m [1 + (−1)n ] (ξ)n × (n + q + 1) (n + q + 2) √ n (n + q + 1) (n + q + 2)δm+q,n+q+2 δm,n+1 =0 D = |N | − |ξ| ∞ × n=0 (n+q)! n!q! 2 1+q ∞ m=0 = |N |2 − |ξ|2 × n=0 (n+q)! n!q! [1 + (−1)m ] (ξ ∗ )m [1 + (−1)n ] (ξ)n ×ba m, m + q ˆb† a ˆ†2 a ˆ2ˆb n + q, n ∞ (m+q)! m!q! 1+q ∞ m=0 (m+q)! m!q! ab [1 + (−1)m ] (ξ ∗ )m [1 + (−1)n ] (ξ)n √ ×ba m, m + q ˆb† a ˆ†2 a ˆ2 n n + q, n − = |N |2 − |ξ|2 ∞ × n=0 (n+q)! n!q! 1+q ∞ m=0 (m+q)! m!q! ab [1 + (−1)m ] (ξ ∗ )m [1 + (−1)n ] (ξ)n √ ×ba m, m + q ˆb† a ˆ†2 n (n + q) (n + q − 1) n + q − 2, n − P✳✹ ab 2 = |N | − |ξ| ∞ (n+q)! n!q! × n=0 1+q ∞ m=0 (m+q)! m!q! [1 + (−1)m ] (ξ ∗ )m [1 + (−1)n ] (ξ)n √ ×ba m, m + q ˆb† n (n + q) (n + q − 1) n + q, n − = |N |2 − |ξ|2 ∞ (n+q)! n!q! × n=0 1+q ∞ m=0 (m+q)! m!q! [1 + (−1)m ] (ξ ∗ )m [1 + (−1)n ] (ξ)n ×ba m, m + q |n (n + q) (n + q − 1)| n + q, n = |N |2 − |ξ|2 ∞ (n+q)! n!q! × n=0 ab 1+q ∞ m=0 (m+q)! m!q! ab [1 + (−1)m ] (ξ ∗ )m [1 + (−1)n ] (ξ)n ×n (n + q) (n + q − 1) δm+q,n+q δm,n 2 = |N | − |ξ| 1+q ∞ × n=0 (n+q)! n!q! [1 + (−1)n ] |ξ|2n ×n (n + q) (n + q − 1) P❤ö ❧ö❝ ✸ ❚➼♥❤ ❊✰❋✰●✰❍ 2 E = |N | − |ξ| ∞ × n=0 (n+q)! n!q! 1+q ∞ m=0 (m+q)! m!q! [1 + (−1)n ] (ξ)n ×ba m, m + q a ˆ2ˆb†2ˆb2 a ˆ†2 n + q, n = |N |2 − |ξ|2 ∞ × n=0 (n+q)! n!q! [1 + (−1)m ] (ξ ∗ )m 1+q ∞ m=0 (m+q)! m!q! ab [1 + (−1)m ] (ξ ∗ )m [1 + (−1)n ] (ξ)n ×ba m, m + q a ˆ2ˆb†2ˆb2 (n + q + 1) P✳✺ (n + q + 2) n + q + 2, n ab 1+q ∞ = |N | − |ξ| ∞ × n=0 (n+q)! n!q! (m+q)! m!q! m=0 2 [1 + (−1)m ] (ξ ∗ )m [1 + (−1)n ] (ξ)n ˆ2ˆb†2 ×ba m, m + q a √ (n + q + 2) n (n + q + 1) (n − 1) |n + q + 2, n − 1+q ∞ = |N |2 − |ξ|2 ∞ × n=0 (n+q)! n!q! m=0 n=0 (n+q)! n!q! [1 + (−1)m ] (ξ ∗ )m (m+q)! m!q! m=0 (n + q + 2)n (n − 1) n + q + 2, n (n + q + 1) 1+q ∞ = |N |2 − |ξ|2 × ab [1 + (−1)n ] (ξ)n ˆ2 ×ba m, m + q a ∞ (m+q)! m!q! 2 [1 + (−1)m ] (ξ ∗ )m [1 + (−1)n ] (ξ)n ×ba m, m + q |n (n − 1) (n + q + 1) (n + q + 2)| n + q, n 1+q ∞ = |N |2 − |ξ|2 ∞ × n=0 (n+q)! n!q! ab (m+q)! m!q! m=0 2 ab [1 + (−1)m ] (ξ ∗ )m [1 + (−1)n ] (ξ)n ×n (n − 1) (n + q + 1) (n + q + 2) δm+q,n+q δm,n 1+q = |N |2 − |ξ|2 ∞ × n=0 (n+q)! n!q! [1 + (−1)n ] |ξ|2n ×n (n − 1) (n + q + 1) (n + q + 2) 2 F = |N | − |ξ| ∞ (n+q)! n!q! × n=0 2 m=0 × n=0 (n+q)! n!q! (m+q)! m!q! [1 + (−1)m ] (ξ ∗ )m [1 + (−1)n ] (ξ)n ×ba m, m + q a ˆ2 a ˆ2ˆb2ˆb n + q, n = |N | − |ξ| ∞ 1+q ∞ 1+q ∞ m=0 (m+q)! m!q! ab [1 + (−1)m ] (ξ ∗ )m √ [1 + (−1)n ] (ξ)n ×ba m, m + q a ˆ2 a ˆ2ˆb2 n n + q, n − P✳✻ ab 1+q ∞ = |N | − |ξ| ∞ × n=0 (n+q)! n!q! (m+q)! m!q! m=0 [1 + (−1)m ] (ξ ∗ )m [1 + (−1)n ] (ξ)n √ ˆ2 a ˆ2 n (n − 1) (n − 2) n + q, n − ×ba m, m + q a 1+q ∞ = |N |2 − |ξ|2 ∞ × n=0 (n+q)! n!q! (m+q)! m!q! m=0 ab [1 + (−1)m ] (ξ ∗ )m [1 + (−1)n ] (ξ)n √ ˆ2 n (n − 1) (n − 2) (n + q) ×ba m, m + q a (n + q − 1) |n + q − 2, n − 1+q ∞ = |N |2 − |ξ|2 ∞ × n=0 (n+q)! n!q! (m+q)! m!q! m=0 ab [1 + (−1)m ] (ξ ∗ )m [1 + (−1)n ] (ξ)n √ ×ba m, m + q n (n − 1) (n − 2) (n + q) (n + q − 1) (n + q − 2) (n + q − 3) |n + q − 4, n − = |N |2 − |ξ|2 ∞ × n=0 (n+q)! n!q! √ × n 1+q ∞ (m+q)! m!q! m=0 ab [1 + (−1)m ] (ξ ∗ )m [1 + (−1)n ] (ξ)n (n − 1) (n − 2) (n + q) (n + q − 1) (n + q − 2) (n + q − 3) ×δm+q,n+q−4 δm,n−3 =0 2 G = |N | − |ξ| ∞ × n=0 (n+q)! n!q! m=0 × n=0 (n+q)! n!q! 2 (m+q)! m!q! [1 + (−1)m ] (ξ ∗ )m [1 + (−1)n ] (ξ)n ×ba m, m + q ˆb†ˆb†2ˆb2 a ˆ†2 n + q, n = |N |2 − |ξ|2 ∞ 1+q ∞ 1+q ∞ m=0 (m+q)! m!q! [1 + (−1)m ] (ξ ∗ )m [1 + (−1)n ] (ξ)n ×ba m, m + q ˆb†ˆb†2ˆb2 (n + q + 1) P✳✼ (n + q + 2) n + q + 2, n ab ab 2 = |N | − |ξ| ∞ (n+q)! n!q! × n=0 1+q ∞ m=0 = |N |2 − |ξ|2 (n+q)! n!q! × n=0 1+q ∞ m=0 × n=0 √ √ (n + q + 2) n n − n + q + 2, n − (m+q)! m!q! [1 + (−1)m ] (ξ ∗ )m [1 + (−1)n ] (ξ)n = |N |2 − |ξ|2 (n+q)! n!q! [1 + (−1)m ] (ξ ∗ )m (n + q + 1) ×ba m, m + q ˆb† n (n − 1) ∞ [1 + (−1)n ] (ξ)n ×ba m, m + q ˆb†ˆb†2 ∞ (m+q)! m!q! 1+q ∞ m=0 (n + q + 1) (m+q)! m!q! (n + q + 2) n + q + 2, n ab [1 + (−1)m ] (ξ ∗ )m [1 + (−1)n ] (ξ)n ×ba m, m + q n (n − 1) (n + 1) (n + q + 1) (n + q + 2) |n + q + 2, n + = |N |2 − |ξ|2 ∞ (n+q)! n!q! × n=0 ×n (n − 1) 1+q ∞ m=0 (m+q)! m!q! ab [1 + (−1)m ] (ξ ∗ )m [1 + (−1)n ] (ξ)n (n + 1) (n + q + 1) (n + q + 2)δm+q,n+q+2 δm,n+1 =0 H = |N | − |ξ| ∞ (n+q)! n!q! × n=0 2 × n=0 (n+q)! n!q! × n=0 (n+q)! n!q! 1+q ∞ m=0 [1 + (−1)m ] (ξ ∗ )m (m+q)! m!q! ab [1 + (−1)m ] (ξ ∗ )m √ [1 + (−1)n ] (ξ)n ×ba m, m + q ˆb†ˆb†2ˆb2 n n + q, n − = |N |2 − |ξ|2 ∞ (m+q)! m!q! [1 + (−1)n ] (ξ)n ×ba m, m + q ˆb†ˆb†2ˆb2ˆb n + q, n 2 1+q ∞ m=0 = |N | − |ξ| ∞ 1+q ∞ m=0 (m+q)! m!q! [1 + (−1)m ] (ξ ∗ )m [1 + (−1)n ] (ξ)n √ ×ba m, m + q ˆb†ˆb†2 n (n − 1) (n − 2) n + q, n − P✳✽ ab ab ab 2 = |N | − |ξ| ∞ (n+q)! n!q! × n=0 2 m=0 × n=0 (n+q)! n!q! × n=0 (n+q)! n!q! 1+q ∞ m=0 [1 + (−1)m ] (ξ ∗ )m (m+q)! m!q! [1 + (−1)m ] (ξ ∗ )m [1 + (−1)n ] (ξ)n ×ba m, m + q |n (n − 1) (n − 2)| n + q, n = |N |2 − |ξ|2 ∞ (m+q)! m!q! √ [1 + (−1)n ] (ξ)n ba m, m + q ˆb† n (n − 1) (n − 2) n + q, n − = |N | − |ξ| ∞ 1+q ∞ 1+q ∞ m=0 (m+q)! m!q! [1 + (−1)m ] (ξ ∗ )m [1 + (−1)n ] (ξ)n n (n − 1) (n − 2) δm+q,n+q δm,n = |N |2 − |ξ|2 ∞ 1+q × n=0 (n+q)! n!q! [1 + (−1)n ] |ξ|2n n (n − 1) (n − 2) P❤ö ❧ö❝ ✹ ❚➼♥❤ I +K +L+M 2 I = |N | − |ξ| ∞ × n=0 (n+q)! n!q! 1+q ∞ m=0 (m+q)! m!q! = |N |2 − |ξ|2 × n=0 (n+q)! n!q! 1+q ∞ m=0 = |N |2 − |ξ|2 × n=0 (n+q)! n!q! (m+q)! m!q! ab [1 + (−1)m ] (ξ ∗ )m [1 + (−1)n ] (ξ)n ×ba m, m + q a ˆ2 a ˆ2ˆb2 ∞ [1 + (−1)m ] (ξ ∗ )m [1 + (−1)n ] (ξ)n ×ba m, m + q a ˆ2 a ˆ2ˆb2 a ˆ†2 n + q, n ∞ (n + q + 1) 1+q ∞ m=0 (m+q)! m!q! (n + q + 2) n + q + 2, n [1 + (−1)m ] (ξ ∗ )m [1 + (−1)n ] (ξ)n ×ba m, m + q a ˆ2 a ˆ2 (n + q + 1) (n + q + 2) √ n (n − 1) |n + q + 2, n − P✳✾ ab ab ab ab 1+q ∞ = |N | − |ξ| ∞ (n+q)! n!q! × n=0 m=0 (m+q)! m!q! [1 + (−1)m ] (ξ ∗ )m [1 + (−1)n ] (ξ)n ˆ2 (n + q + 1) (n + q + 2) ×ba m, m + q a 1+q ∞ = |N |2 − |ξ|2 ∞ (n+q)! n!q! × n=0 m=0 (m+q)! m!q! √ (n − 1) n + q, n − n [1 + (−1)m ] (ξ ∗ )m [1 + (−1)n ] (ξ)n √ ×ba m, m + q n (n − 1) (n + q + 1) (n + q + 2) (n + q) (n + q − 1) |n + q − 2, n − 2 = |N | − |ξ| ∞ (n+q)! n!q! × n=0 √ × n ab 1+q ∞ m=0 (m+q)! m!q! ab [1 + (−1)m ] (ξ ∗ )m [1 + (−1)n ] (ξ)n (n − 1) (n + q) (n + q − 1) (n + q + 1) (n + q + 2) δm+q−2,n+q δm,n−2 2 = |N | − |ξ| 1+q ∞ n=0 √ × n (n+q)! n!q! × [1 + (−1)n ] |ξ|2n ξ −2 (n − 1) (n + q) (n + q − 1) (n + q + 1) (n + q + 2) 2 = |N | − |ξ| 1+q ∞ (n+q)! n!q! × n=0 √ √ n√n−1 √ n+q n+q−1 [1 + (−1)n ] |ξ|2n ξ −2 ×n(n − 1)(n + q + 1)(n + q + 2) 2 K = |N | − |ξ| ∞ (n+q)! n!q! × n=0 2 m=0 × n=0 (n+q)! n!q! (m+q)! m!q! [1 + (−1)m ] (ξ ∗ )m [1 + (−1)n ] (ξ)n ba m, m + q a ˆ2 a ˆ2ˆb2ˆb n + q, n = |N | − |ξ| ∞ 1+q ∞ 1+q ∞ m=0 (m+q)! m!q! ab [1 + (−1)m ] (ξ ∗ )m √ [1 + (−1)n ] (ξ)n ba m, m + q a ˆ2 a ˆ2ˆb2 n n + q, n − P✳✶✵ ab 2 = |N | − |ξ| ∞ × n=0 (n+q)! n!q! 1+q ∞ m=0 (m+q)! m!q! [1 + (−1)m ] (ξ ∗ )m [1 + (−1)n ] (ξ)n √ ˆ2 a ˆ2 n (n − 1) (n − 2) n + q, n − ×ba m, m + q a = |N |2 − |ξ|2 ∞ × n=0 (n+q)! n!q! 1+q ∞ m=0 (m+q)! m!q! ab [1 + (−1)m ] (ξ ∗ )m [1 + (−1)n ] (ξ)n √ ˆ2 n (n − 1) (n − 2) (n + q) ×ba m, m + q a (n + q − 1) |n + q − 2, n − = |N |2 − |ξ|2 ∞ × n=0 (n+q)! n!q! 1+q ∞ m=0 (m+q)! m!q! [1 + (−1)m ] (ξ ∗ )m [1 + (−1)n ] (ξ)n √ ×ba m, m + q n (n − 1) (n − 2) (n + q) (n + q − 1) (n + q − 2) (n + q − 3) |n + q − 4, n − = |N |2 − |ξ|2 ∞ × n=0 √ × n (n+q)! n!q! ab 1+q ∞ m=0 (m+q)! m!q! ab [1 + (−1)m ] (ξ ∗ )m [1 + (−1)n ] (ξ)n (n − 1) (n − 2) (n + q) (n + q − 1) (n + q − 2) (n + q − 3) ×δm+q,n+q−4 δm,n−3 = 2 L = |N | − |ξ| ∞ × n=0 (n+q)! n!q! m=0 × n=0 (n+q)! n!q! 2 (m+q)! m!q! [1 + (−1)m ] (ξ ∗ )m [1 + (−1)n ] (ξ)n ba m, m + q ˆb† a2ˆb2 a ˆ†2 n + q, n = |N |2 − |ξ|2 ∞ 1+q ∞ 1+q ∞ m=0 (m+q)! m!q! ab [1 + (−1)m ] (ξ ∗ )m [1 + (−1)n ] (ξ)n ×ba m, m + q ˆb† a2ˆb2 (n + q + 1) P✳✶✶ (n + q + 2) n + q + 2, n ab 1+q ∞ = |N | − |ξ| ∞ × n=0 (n+q)! n!q! m=0 [1 + (−1)m ] (ξ ∗ )m (m+q)! m!q! m=0 √ √ (n + q + 2) n n − n + q + 2, n − (n + q + 1) 1+q ∞ = |N |2 − |ξ|2 (n+q)! n!q! [1 + (−1)n ] (ξ)n ×ba m, m + q ˆb† a2 ∞ (m+q)! m!q! [1 + (−1)m ] (ξ ∗ )m [1 + (−1)n ] (ξ)n n=0 √ √ ×ba m, m + q ˆb† n n − (n + q + 1) (n + q + 2) n + q, n − × 1+q ∞ = |N |2 − |ξ|2 ∞ × n=0 (n+q)! n!q! (m+q)! m!q! m=0 [1 + (−1)m ] (ξ ∗ )m [1 + (−1)n ] (ξ)n √ ×ba m, m + q | n (n − 1) (n + q + 1) (n + q + 2)| n + q, n − 1+q ∞ = |N |2 − |ξ|2 ∞ × n=0 (n+q)! n!q! ab (m+q)! m!q! m=0 ab [1 + (−1)m ] (ξ ∗ )m [1 + (−1)n ] (ξ)n √ × n (n − 1) (n + q + 1) (n + q + 2) δm+q,n+q δm,n−1 = 2 M = |N | − |ξ| ∞ (n+q)! n!q! × n=0 2 m=0 × n=0 (n+q)! n!q! × n=0 (n+q)! n!q! 1+q ∞ m=0 [1 + (−1)m ] (ξ ∗ )m (m+q)! m!q! ab [1 + (−1)m ] (ξ ∗ )m √ [1 + (−1)n ] (ξ)n ba m, m + q ˆb† a ˆ2ˆb2 n n + q, n − = |N |2 − |ξ|2 ∞ (m+q)! m!q! [1 + (−1)n ] (ξ)n ba m, m + q ˆb† a ˆ2ˆb2ˆb n + q, n = |N | − |ξ| ∞ 1+q ∞ 1+q ∞ m=0 (m+q)! m!q! [1 + (−1)m ] (ξ ∗ )m [1 + (−1)n ] (ξ)n √ ×ba m, m + q ˆb† a ˆ2 n (n − 1) (n − 2) n + q, n − P✳✶✷ ab ab ab 2 = |N | − |ξ| ∞ (n+q)! n!q! × n=0 1+q ∞ m=0 (m+q)! m!q! [1 + (−1)m ] (ξ ∗ )m [1 + (−1)n ] (ξ)n √ ×ba m, m + q ˆb† n (n − 1) (n − 2) (n + q) (n + q − 1) |n + q − 2, n − = |N |2 − |ξ|2 ∞ (n+q)! n!q! × n=0 1+q ∞ m=0 (m+q)! m!q! [1 + (−1)m ] (ξ ∗ )m [1 + (−1)n ] (ξ)n √ ×ba m, m + q n (n − 1) (n + q) (n + q − 1) (n − 2) n + q − 2, n − = |N |2 − |ξ|2 ∞ (n+q)! n!q! × n=0 1+q ∞ m=0 (m+q)! m!q! ab [1 + (−1)m ] (ξ ∗ )m [1 + (−1)n ] (ξ)n √ × n (n − 1) (n + q) (n + q − 1) (n − 2) δm+q,n+q−2 δm,n−2 2 1+q ∞ (n+q)! n!q! [1 + (−1)n ] |ξ|2n ξ −2 n=0 √ √ √ n (n−1) √ × n (n − 1) (n + q) (n + q − 1) (n − 2) √ = |N | − |ξ| × (n+q) = |N |2 − |ξ|2 1+q ∞ × n=0 (n+q)! n!q! [1 + (−1)n ] |ξ|2n ξ −2 ×n(n − 1)(n − 2) P✳✶✸ (n+q−1) ab P❤ư ❧ö❝ ✺ O= π |N | − |ξ| 1+q e −|γ| ∞ ∞ m=0 n=0 n ∗ m (m+q)! m!q! (n+q)! n!q! × [1 + (−1)m ] [1 + (−1)n ] (ξ ) (ξ) √ √ √ √ × m+q+1 m+q+2 n+q+1 n+q+2 × = m n m+q+2 n+q+2 (γ) (γ ∗ ) (γ ∗ −β ∗ ) (γ−β) √ √ √ √ m! n! (m+q+2)! (n+q+2)! ∞ 1+q ∞ 2 −|γ| π |N | − |ξ| e(−|γ−β| ) d2 (γ − β) e m m=0 n=0 n ∗ m n (m+q)! m!q! × [1 + (−1) ] [1 + (−1) ] (ξ ) (ξ) √ × = m (γ) √ (γ ∗ m! π |N | (n+q)! n!q! 1√ (m+q)! (n+q)! ∗ n − β ∗ )m+q+2 (γ√n!) (γ − β)n+q+2 e(−|γ−β| ) d2 (γ − β) − |ξ| 1+q e −|γ| ∞ ∞ (m+q)! m!q! (n+q)! n!q! m=0 n=0 n m (γ ∗ ) √ √ × [1 + (−1) ] [1 + (−1) ] (ξ ∗ )m (ξ)n (γ) m! n! √ (n+q+2)!(m+q+2)! π 1√ ×√ δn+q+2,m+q+2 1n+q+3 (m+q)! (n+q)! 1 ∞ 1+q ∞ (m+q)! (m+q)! 2 −|γ| e = π |N | − |ξ| m!q! m!q! m=0 n=0 m m (γ ∗ ) √ √ × [1 + (−1)m ] [1 + (−1)m ] (ξ ∗ )m (ξ)m (γ) m! m! √ π (m+q+2)!(m+q+2)! √ ×√ (m+q)! (m+q)! 1+q ∞ (n+q)! 2 −|γ| = 8|N | − |ξ| e [1 + (−1)n ] (ξ)2n n!q! n=0 2n (γ) × n! (n + q + 1)(n + q + 2) m n P✳✶✹ P = 2 π |N | − |ξ| 1+q ∞ −|γ| e ∞ m=0 n=0 n√ ∗ m × [1 + (−1)m ] [1 + (−1)n ] (ξ ) (ξ) m+q+2 m n−1 (m+q)! m!q! (n+q)! n!q! √ √ n m+q+1 m+q+2 n+q (γ) (γ ∗ −β ∗ ) (γ ∗ ) (γ−β) (−|γ−β|2 ) d2 (γ √ √ √ √ e m! (m+q+2)! (n−1)! (n+q)! ∞ ∞ 1+q (m+q)! (n+q)! 2 −|γ| = π |N | − |ξ| e m!q! n!q! m=0 n=0 √ n √ × [1 + (−1)m ] [1 + (−1)n ] (ξ ∗ )m (ξ)n √ (m+q)! (n+q)! × m n+q (γ √ (γ − β) √ (γ ∗ − β ∗ )m+q+2 (γ) m! × = ∗ n−1 π |N | − |ξ| −|γ| e m ∞ ∞ m=0 n=0 n ∗ m n (m+q)! m!q! − β) 2 e(−|γ−β| ) d2 (γ − β) ) (n−1)! 1+q 2 (n+q)! n!q! √ n √ × [1 + (−1) ] [1 + (−1) ] (ξ ) (ξ) √ (m+q)! (n+q)! √ m n−1 π (n+q)!(m+q+2)! (γ) (γ ∗ ) × √m! √ δn+q,m+q+2 1n+q+1 (n−1)! 1+q ∞ (m+q+2)! = − |ξ| e (m+2)!q! m=0 √ m m+2 m+2 m+2 ∗ m √ √ × [1 + (−1) ] + (−1) (ξ ) (ξ) (n+q+2)! (m+q)! √ m m+1 π (m+q+2)!(m+q+2)! (γ) (γ ∗ ) × √m! √ (m+1)! 1+q ∞ (m+q)! 2 −|γ| = 8|N | − |ξ| e [1 + (−1)m ] (ξ)2m (ξ)2 m!q! m=0 2m+1 (γ) × m!(m+1) (m + q + 2) (m + q + 1) π |N | ❚❤❛② tê♥❣ m=n−2 −|γ| (m+q)! m!q! t❛ ✤÷đ❝ ❦➳t q✉↔ = 8|N |2 − |ξ|2 1+q e−|γ| ∞ n=0 2n−3 (γ) × (n−2)!(n−1) 1+q e−|γ| ∞ n=0 2n−3 1+q e−|γ| ∞ n=0 ×(ξ) (n+q)! n!q! [1 + (−1)n ] (ξ)2n (ξ)−2 n(n−1) (n + q) (n + q − 1) (n+q)(n+q−1) = 8|N |2 − |ξ|2 2n [1 + (−1)n ] (ξ)2n (ξ)−2 (n + q) (n + q − 1) = 8|N |2 − |ξ|2 (γ) × (n−2)!(n−1) (n+q−2)! (n−2)!q! 2n−3 (ξ)−2 (γ)n! (n+q−2)! (n−2)!q! (n − 1)n2 P✳✶✺ [1 + (−1)n ] Q= π |N | − |ξ| 1+q e m −|γ| ∞ ∞ m=0 n=0 n√ ∗ m n × [1 + (−1) ] [1 + (−1) ] (ξ ) (ξ) m−1 m+q (m+q)! m!q! (n+q)! n!q! √ √ m n+q+1 n+q+2 n+q+2 n (γ ∗ ) (γ−β) (−|γ−β|2 ) d2 (γ − √ √ e n! (m−1)! (m+q)! (n+q+2)! 1 ∞ ∞ 1+q (m+q)! (n+q)! 2 −|γ| = π |N | − |ξ| e m!q! n!q! m=0 n=0 √ m √ × [1 + (−1)m ] [1 + (−1)n ] (ξ ∗ )m (ξ)n √ (m+q)! (n+q)! (γ ∗ −β ∗ ) × √(γ) × (γ ∗ − β ∗ )m+q √(γ) = √ m−1 π |N | ∗ n (γ − β)n+q+2 (γ√n!) e(−|γ−β| ) d2 (γ − β) (m−1)! 1+q ∞ −|γ| − |ξ| ∞ e m β) m=0 n=0 n ∗ m n (m+q)! m!q! (n+q)! n!q! √ m √ × [1 + (−1) ] [1 + (−1) ] (ξ ) (ξ) √ (m+q)! (n+q)! √ m−1 n (γ ∗ ) π (n+q+2)!(m+q)! √ × √(γ) δn+q+2,m+q 1n+q+1 (m−1)! n! 1+q ∞ (n+q)! = − |ξ| e n!q! n=0 √ n+2 √ × + (−1)n+2 [1 + (−1)n ] (ξ ∗ )n+2 (ξ)n √ (n+q+2)! (n+q)! √ n n+1 (γ ∗ ) π (n+q+2)!(n+q+2)! (γ) √ ×√ 1n+q+1 (n+1)! n! 1+q ∞ (n+q)! e−|γ| [1 + (−1)n ] (ξ)2n (ξ)2 = 8|N |2 − |ξ|2 n!q! n=0 2n+1 (γ) × n!(n+1) (n + q + 2) (n + q + 1) π |N | −|γ| (n+q+2)! (n+2)!q! P✳✶✻ T = 2 π |N | − |ξ| 1+q e m ∞ −|γ| ∞ m=0 n=0 n√ ∗ m n × [1 + (−1) ] [1 + (−1) ] (ξ ) (ξ) × = m−1 √(γ) (γ √ (m−1)! π |N | ∗ n−1 ) − |ξ| = m−1 √(γ) (m−1)! π |N | √ m+q (n−1)! (m+q)! 1+q ∞ −|γ| × [1 + (−1)m ] [1 + × (γ ∗ −β ∗ ) − |ξ| √ (n+q)! n!q! 1+q e −|γ| ∗ n−1 ) (n−1)! ∞ ∞ √ m n e(−|γ−β| ) d2 (γ − β) (n+q)! ∞ (m+q)! (n+q)! e m!q! n!q! m=0 n=0 √ mn √ (−1)n ] (ξ ∗ )m (ξ)n √ (m+q)! (n+q)! (γ (γ ∗ − β ∗ )m+q √ n+q (γ−β) (m+q)! m!q! 2 (γ − β)n+q e(−|γ−β| ) d2 (γ − β) (m+q)! m!q! m=0 n=0 m−1 n (γ) ∗ m (n+q)! n!q! ∗ n−1 (γ ) √ × [1 + (−1) ] [1 + (−1) ] (ξ ) (ξ) √ (m−1)! (n−1)! √ √ π (m+q)!(n+q)! mn √ ×√ δn+q,m+q 1n+q+1 m (m+q)! = π |N | n (n+q)! − |ξ| 1+q e −|γ| ∞ ∞ (m+q)! m!q! m=0 n=0 m−1 m (γ) ∗ m (m+q)! m!q! ∗ m−1 (γ ) √ × [1 + (−1) ] [1 + (−1) ] (ξ ) (ξ) √ (m−1)! (m−1)! √ √ π (m+q)!(m+q)! mm √ ×√ m (m+q)! m (m+q)! = 8|N |2 − |ξ|2 1+q e−|γ| ∞ n=0 (n+q)! n!q! P✳✶✼ 2n−2 [1 + (−1)n ] (ξ)2n (γ)n! n2 ... t↔✐ ❧÷đ♥❣ tû ♠ët tr↕♥❣ t❤→✐ ❦➳t ❤đ♣ ❬✶✼❪✱ ❬✶✽❪✱ ❬✷✷❪✳ ❙❛✉ ✤â✱ sû ❞ư♥❣ ♠ỉ ❤➻♥❤ ✈✐➵♥ t↔✐ ❜✐➳♥ ❧✐➯♥ tử tỹ q tr t ợ ỗ rè✐ ❧➔ tr↕♥❣ t❤→✐ ❤❛✐ ♠♦❞❡ ❦➳t ❤ñ♣ ❙❯✭✶✱✶✮ t❤➯♠ ❤❛✐ ✈➔ ❜ỵt ♠ët ♣❤♦t♦♥ ❝❤➤♥✳