Bµi tËp B¶ng c«ng thøc ( ) 0)(x 2 1 ' >= x x ( ) ''' ' wvuwvu −+=−+ ( ) ) sè lµ h»ng k ( '. ' ukku = ( ) uvvuvu '.' ' += 2 ' '.'. v uvvu v u − = 2 ' '1 v v v − = ⇒ ( ) ( ) '. 1 ' unuu n n − = ( ) u u u 2 ' ' = ( ) ) sè lµ h»ng c ( 0 ' = c ( ) ccx = ' ( ) 1)n N,n ( 1 ' >∈= −nn nxx KiÓm tra bµi cò C©u hái : Lêi gi¶i sau sai ë ®©u ? ( ) x xxxx 2 32523 ' 2 −−=−+− ( ) x xxxx 1 32523 ' 2 +−=−+− Bµi 1 : TÝnh ®¹o hµm cña c¸c hµm sè sau : ( )( ) 32 254y ) xxc −−= 4 3 5,0 32 ) x xx ya −+= ( ) 20 2 3x2x-1y ) += b Gi¶i : ( ) 3232 ' 4 ' 3 ' ' 4 3 2 2 1 4.5,0 3 3 2 1 5,0 32 5,0 32 y' ) xxxx x xx x xx a −+=−+= − + = −+= Bµi 1 : TÝnh ®¹o hµm cña c¸c hµm sè sau : ( )( ) 32 254y ) xxc −−= 4 3 5,0 32 ) x xx ya −+= ( ) 20 2 3x2x-1y ) += b ( ) ( ) ( ) ( ) ( ) ( ) ( ) )13(2x-140- 622x-120 3213x2x-120 321y' ) 19 19 ' 2 19 2 ' 20 2 −= +−= +−+= +−= x x xx xxb Bµi 1 : TÝnh ®¹o hµm cña c¸c hµm sè sau : ( )( ) 32 254y ) xxc −−= 4 3 5,0 32 ) x xx ya −+= ( ) 20 2 3x2x-1y ) += b