1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Bài giải phần giải mạch P11

60 183 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 60
Dung lượng 1,98 MB

Nội dung

Chapter 11, Solution 1. )t50cos(160)t(v = )9018030t50cos(2)30t50sin(20-)t(i °−°+°−=°−= )60t50cos(20)t(i °+= )60t50cos()t50cos()20)(160()t(i)t(v)t(p ° +== [ ] W)60cos()60t100cos(1600)t(p °+°+= =)t(p W)60t100cos(1600800 ° ++ )60cos()20)(160( 2 1 )cos(IV 2 1 P ivmm °=θ−θ= =P W800 Chapter 11, Solution 2. First, transform the circuit to the frequency domain. °∠→ 030)t500cos(30 , 500=ω 150jLjH3.0 =ω→ 100j- )10)(20)(500( j- Cj 1 F20 6- == ω →µ I I 1 I 2 + − 30 ∠ 0 ° V j150 Ω -j100 Ω 200 Ω 2.0j-902.0 150j 030 1 =°−∠= °∠ = I )t500sin(2.0)90t500cos(2.0)t(i 1 =°−= 06.0j12.056.261342.0 j2 3.0 100j200 030 2 +=°∠= − = − °∠ = I )56.25t500cos(1342.0)t(i 2 °+= °∠=−=+= 49.4-1844.014.0j12.0 21 III )35t500cos(1844.0)t(i °−= For the voltage source, ])35t500cos(1844.0[])t500cos(30[)t(i)t(v)t(p °−×== At , s2t = )351000cos()1000cos(532.5p °−= )935.0)(5624.0)(532.5(p = =p W91.2 For the inductor, ])t500sin(2.0[])t500cos(30[)t(i)t(v)t(p ×== At , s2t = )1000sin()1000cos(6p = )8269.0)(5624.0)(6(p = =p W79.2 For the capacitor, ° ∠== 63.44-42.13)100j-( 2c IV )56.25t500cos(1342.0[])44.63500cos(42.13[)t(i)t(v)t(p °+ ×°−== At , s2t = )56.261000cos()44.631000cos(18p ° +°−= )1329.0)(991.0)(18(p = =p W37.2 For the resistor, °∠== 56.2584.26200 2R IV ])56.26t500cos(1342.0[])56.26t500cos(84.26[)t(i)t(v)t(p °+×°+== At , s2t = )56.251000(cos602.3p 2 °+= 2 1329.0)(602.3(p = =p W0636.0 Chapter 11, Solution 3. 10 , °∠→°+ 3010)30t2cos( 2 =ω 2jLjH1 =ω→ -j2 Cj 1 F25.0 = ω → 4 Ω 2 Ω I I 1 I 2 + − 10∠30° V j2 Ω -j2 Ω 2j2 2 )2j2)(2j( )2j2(||2j += − =− °∠= ++ °∠ = 565.11581.1 2j24 3010 I °∠=== 565.101581.1j 2 2j 1 III °∠= − = 565.56236.2 2 2j2 2 II For the source, )565.11-581.1)(3010( 2 1 * °∠°∠== IVS 5.2j5.718.43905.7 +=°∠=S The average power supplied by the source = W5.7 For the 4-Ω resistor, the average power absorbed is === )4()581.1( 2 1 R 2 1 P 2 2 IW5 For the inductor, 5j)2j()236.2( 2 1 2 1 2 L 2 2 === ZIS The average power absorbed by the inductor = W0 For the 2-Ω resistor, the average power absorbed is === )2()581.1( 2 1 R 2 1 P 2 2 1 IW5.2 For the capacitor, 5.2j-)2j-()581.1( 2 1 2 1 2 c 2 1 === ZIS The average power absorbed by the capacitor = W0 Chapter 11, Solution 4. 20 Ω 10 Ω I 2 I 1 + − -j10 Ω 50 V j5 Ω For mesh 1, 21 10j)10j20(50 II +−= 21 j)j2(5 II +−= (1) For mesh 2, 12 10j)10j5j10(0 II +−+= 12 2j)j2(0 II +−= (2) In matrix form,             − − =       2 1 j22j jj2 0 5 I I 4j5 −=∆ , )j2(5 1 −=∆ , -j10 2 =∆ °∠= − − = ∆ ∆ = 1.12746.1 4j5 )j2(5 1 1 I °∠== ∆ ∆ = 66.128562.1 j4-5 j10- 2 2 I For the source, °∠== 12.1-65.43 2 1 * 1 IVS The average power supplied =°= )1.12cos(65.43 W68.42 For the 20-Ω resistor, == R 2 1 P 2 1 IW48.30 For the inductor and capacitor, =P W0 For the 10-Ω resistor, == R 2 1 P 2 2 IW2.12 Chapter 11, Solution 5. Converting the circuit into the frequency domain, we get: 1 Ω 2 Ω + − j6 –j2 8∠–40˚ W4159.11 2 6828.1 P 38.256828.1 2j26j )2j2(6j 1 408 I 2 1 1 == °−∠= −+ − + °−∠ = Ω Ω P 3H = P 0.25F = 0 W097.52 2 258.2 P 258.238.256828.1 2j26j 6j I 2 2 2 == =°−∠ −+ = Ω Ω Chapter 11, Solution 6. 20 Ω 10 Ω I 2 I 1 + − -j10 Ω 50 V j5 Ω For mesh 1, 04)604(2j)2j4( o1 =+°∠−+ VI (1) )604(2 2o IV −°∠= (2) For mesh 2, 04)604(2)j2( o2 =−°∠−− VI (3) Substituting (2) into (3), 0)604(8608)j2( 22 =−°∠−°∠−− II j10 6040 2 − °∠ =I Hence, j10 608j- j10 6040 6042 o − °∠ =       − °∠ −°∠=V Substituting this into (1),       − − °∠= − °∠ +°∠=+ j10 j14 )608j( j10 6032j 608j)2j4( 1 I °∠= + +°∠ = 125.06498.2 8j21 )14j1)(604( 1 I === )4()498.2( 2 1 R 2 1 P 2 2 14 IW48.12 Chapter 11, Solution 7. 20 Ω 10 Ω I 2 I 1 + − -j10 Ω 50 V j5 Ω Applying KVL to the left-hand side of the circuit, oo 1.04208 VI +=°∠ (1) Applying KCL to the right side of the circuit, 0 5j105j 8 11 o = − ++ VV I But, o11o 10 5j10 5j10 10 VVVV − =→ − = Hence, 0 1050j 5j10 8 o oo =+ − + V VI oo 025.0j VI = (2) Substituting (2) into (1), )j1(1.0208 o +=°∠ V j1 2080 o + °∠ =V °∠== 25- 2 10 10 o 1 V I =             == )10( 2 100 2 1 R 2 1 P 2 1 IW250 Chapter 11, Solution 8. We apply nodal analysis to the following circuit. At node 1, I o V 2 V 1 6∠0° A 0.5 I o j10 Ω -j20 Ω I 2 40 Ω 20j-10j 6 211 VVV − += 21 120j VV −= (1) At node 2, 40 5.0 2 oo V II =+ But, j20- 21 o VV I − = Hence, 40j20- )(5.1 221 VVV = − 21 )j3(3 VV −= (2) Substituting (1) into (2), 0j33360j 222 =+−− VVV j6)-1( 37 360 j6 360j 2 += − =V j6)-1( 37 9 40 2 2 +== V I =       == )40( 37 9 2 1 R 2 1 P 2 2 2 I W78.43 Chapter 11, Solution 9. rmsV8)2)(4(V 2 6 1V so ==       += === mW 10 64 R V P 2 o 10 mW4.6 The current through the 2 -kΩ resistor is mA1 k2 V s = == RIP 2 2 mW2 Similarly, == RIP 2 6 mW6 Chapter 11, Solution 10. No current flows through each of the resistors. Hence, for each resistor, =P W0 . Chapter 11, Solution 11. , , 377=ω 4 10R = -9 10200C ×= 754.0)10200)(10)(377(RC -94 =×=ω °=ω 02.37)RC(tan -1 Ω°∠=°∠ + = k37.02-375.637.02- )754.0(1 k10 Z 2 ab mA)68t377cos(2)22t377sin(2)t(i °−=°+= °∠= 68-2I 3 2 -3 ab 2 rms 10)37.02-375.6( 2 102 ZIS ×°∠       × == mVA37.02-751.12S °∠= == )02.37cos(SP mW181.10 Chapter 11, Solution 12. (a) We find using the circuit in Fig. (a). Th Z Z th 8 Ω - j2 Ω (a) 882.1j471.0)4j1( 17 8 j28 (8)(-j2) -j2||8 Th −=−= − == Z == * ThL ZZ Ω+ 882.1j471.0 We find using the circuit in Fig. (b). Th V I o + V th − - j2 Ω 4 ∠ 0 ° A 8 Ω (b) )04( 2j8 2j- o °∠ − = I j28 j64- I8 oTh − == V =       == )471.0)(8( 68 64 R8 P 2 L 2 Th max V W99.15 (b) We obtain from the circuit in Fig. (c). Th Z 5 Ω -j3 Ω Z th j2 Ω 4 Ω (c) 167.1j5.2 3j9 )3j4)(5( 2j)3j4(||52j Th += − − +=−+= Z == * ThL ZZ Ω− 167.1j5.2

Ngày đăng: 17/10/2013, 11:15

TỪ KHÓA LIÊN QUAN

w