1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Tài liệu Bài giải phần giải mạch P7 doc

48 282 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 48
Dung lượng 1,86 MB

Nội dung

Chapter 7, Solution 1. Applying KVL to Fig. 7.1. 0Ridti C 1 t - =+ ∫ ∞ Taking the derivative of each term, 0 dt di R C i =+ or RC dt i di −= Integrating, RC t- I )t(i ln 0 =       RCt- 0 eI)t(i = RCt- 0 eRI)t(Ri)t(v == or RCt- 0 eV)t(v = Chapter 7, Solution 2. CR th =τ where is the Thevenin equivalent at the capacitor terminals. th R Ω = + = 601280||120R th =××=τ -3 105.060 ms30 Chapter 7, Solution 3. (a) ms 10102105,510//10 63 ===Ω== − xxxCRkR ThTh τ (b) 6s3.020,208)255//(20 = = = Ω =++= xCRR ThTh τ Chapter 7, Solution 4. eqeq CR=τ where 21 21 eq CC CC + =C , 21 21 eq RR RR R + = =τ )CC)(RR( CCRR 2121 2121 ++ Chapter 7, Solution 5. τ = 4)-(t- e)4(v)t(v where 24)4(v = , 2)1.0)(20(RC = = =τ 24)-(t- e24)t(v = == 26- e24)10(v V195.1 Chapter 7, Solution 6. Ve4)t(v 25 2 10x2x10x40RC,ev)t(v V4)24( 210 2 )0(vv t5.12 36/t o o − −τ− = ===τ= = + == Chapter 7, Solution 7. τ = t- e)0(v)t(v, CR th =τ where is the Thevenin resistance across the capacitor. To determine , we insert a 1-V voltage source in place of the capacitor as shown below. th R th R 8 Ω i 2 i i 1 10 Ω 0.5 V + v = 1 − + − + − 1 V 1.0 10 1 i 1 == , 16 1 8 5.01 i 2 = − = 80 13 16 1 1.0iii 21 =+=+= 13 80 i 1 R th == 13 8 1.0 13 80 CR th =×==τ =)t(v V20 813t- e Chapter 7, Solution 8. (a) 4 1 RC ==τ dt dv Ci- = =→= Ce-4))(10(Ce0.2- -4t-4t mF5 == C4 1 R Ω50 (b) ===τ 4 1 RC s25.0 (c) =×== )100)(105( 2 1 CV 2 1 )0(w 3-2 0C mJ250 (d) () τ −=×= 0 2t- 2 0 2 0R e1CV 2 1 CV 2 1 2 1 w 2 1 ee15.0 00 8t-8t- =→−= or 2e 0 8t = == )2(ln 8 1 t 0 ms6.86 Chapter 7, Solution 9. τ = t- e)0(v)t(v, CR eq = τ Ω = + + =++= 82423||68||82R eq 2)8)(25.0(CR eq ===τ =)t(v Ve20 2t- Chapter 7, Solution 10. 10 Ω 10 mF + v − i 15 Ω i o i T 4 Ω A2 15 )3)(10( ii10i15 oo ==→= i.e. if i , then A3)0( = A2)0(i o = A5)0(i)0(i)0(i oT =+= V502030)0(i4)0(i10)0(v T = + =+= across the capacitor terminals. Ω =+=+= 106415||104R th 1.0)1010)(10(CR -3 th =×==τ -10tt- e50e)0(v)t(v == τ )e500-)(1010( dt dv Ci 10t-3- C ×== = C iAe5- -10t By applying the current division principle, == + = CC i-0.6)i-( 1510 15 )t(i Ae3 -10t Chapter 7, Solution 11. Applying KCL to the RL circuit, 0 R v dtv L 1 =+ ∫ Differentiating both sides, 0v L R dt dv 0 dt dv R 1 L v =+→=+ LRt- eAv = If the initial current is , then 0 I ARI)0(v 0 == τ = t- 0 eRIv, R L =τ ∫ ∞ = t - dt)t(v L 1 i t - t- 0 e L RI- i ∞ τ τ = τ = t- 0 eRI-i τ = t- 0 eI)t(i Chapter 7, Solution 12. When t < 0, the switch is closed and the inductor acts like a short circuit to dc. The 4 Ω resistor is short-circuited so that the resulting circuit is as shown in Fig. (a). 3 Ω i(0 - ) + − 12 V 2 H 4 Ω (a) (b) A4 3 12 )0(i == − Since the current through an inductor cannot change abruptly, A4)0(i)0(i)0(i === +− When t > 0, the voltage source is cut off and we have the RL circuit in Fig. (b). 5.0 4 2 R L ===τ Hence, == τt- e)0(i)t(i Ae4 -2t Chapter 7, Solution 13. th R L =τ where is the Thevenin resistance at the terminals of the inductor. th R Ω = + = + = 37162120||8030||70R th = × =τ 37 102 -3 s08.81 µ Chapter 7, Solution 14 Converting the wye-subnetwork to delta gives 16 Ω R 2 80mH R 1 R 3 30 Ω Ω==Ω==Ω== ++ = 170 10 1700 ,34 50 1700 ,8520/1700 20 105050202010 321 RR xxx R 30//170 = (30x170)/200 = 25.5 Ω , 34//16=(34x16)/50 =10.88 Ω s x R Lx R Th Th m 14.3 476.25 1080 ,476.25 38.121 38.3685 )88.105.25//(85 3 ===Ω==+= − τ Chapter 7, Solution 15 (a) s R L R Th Th 25.020/5,2040//1012 ===Ω=+= τ (b) ms 5.040/)1020(,408160//40 3 ===Ω=+= − x R L R Th Th τ Chapter 7, Solution 16. eq eq R L =τ (a) LL eq = and 31 31312 31 31 2eq RR RR)RR(R RR RR RR + + + = + += =τ 31312 31 RR)RR(R )RR(L ++ + (b) where 21 21 eq LL LL + =L and 21 21213 21 21 3eq RR RR)RR(R RR RR RR + ++ = + += =τ )RR)RR(R()LL( )RR(LL 2121321 2121 +++ + Chapter 7, Solution 17. τ = t- e)0(i)t(i, 16 1 4 41 R L eq ===τ -16t e2)t(i = 16t-16t- o e2)16-)(41(e6 dt di Li3)t(v +=+= =)t(v o Ve2- -16t Chapter 7, Solution 18. If , the circuit can be redrawn as shown below. 0)t(v = + v o (t) − i(t) R e q 0.4 H 5 6 3||2R eq == , 3 1 6 5 5 2 R L =×==τ -3tt- ee)0(i)t(i == τ === 3t- o e-3)( 5 2- dt di -L)t(v Ve2.1 -3t Chapter 7, Solution 19. i 1 i 2 i 2 i 1 i/2 10 Ω 40 Ω − + 1 V i To find we replace the inductor by a 1-V voltage source as shown above. th R 0i401i10 21 =+− But 2iii 2 += and 1 ii = i.e. i2i2i 21 == 30 1 i0i201i10 =→=+− Ω== 30 i 1 R th s2.0 30 6 R L th ===τ =)t(i Ae2 -5t Chapter 7, Solution 20. (a). L50R 50 1 R L =→==τ dt di Lv- = =→= Le-50))(30(Le150- -50t-50t H1.0 == L50R Ω5 (b). === 50 1 R L τ ms20 (c). === 22 )30)(1.0( 2 1 )0(iL 2 1 w J45 (d). Let p be the fraction () τ −=⋅ 0 2t- 00 e1IL 2 1 pIL 2 1 3296.0e1e1p -0.450(2)(10)- =−=−= i.e. = p %33 Chapter 7, Solution 21. The circuit can be replaced by its Thevenin equivalent shown below. R th + − V th 2 H V40)60( 4080 80 V th = + = R 3 80 R80||40R th +=+= R380 40 R V )(i)0(iI th th + ==∞== 1 380R 40 )2( 2 1 IL 2 1 w 2 2 =       + == 3 40 R1 380R 40 =→= + = R Ω33.13 Chapter 7, Solution 22. τ = t- e)0(i)t(i, eq R L =τ Ω =+= 5120||5R eq , 5 2 =τ =)t(i Ae10 -2.5t Using current division, the current through the 20 ohm resistor is 2.5t- o e-2 5 i- -i)( 205 5 i == + = == o i20)t(v Ve04- -2.5t Chapter 7, Solution 23. Since the 2 Ω resistor, 1/3 H inductor, and the (3+1) Ω resistor are in parallel, they always have the same voltage. -1.5)0(i5.1 13 2 2 2 i- =→= + += The Thevenin resistance at the inductor’s terminals is th R 3 4 )13(||2R th =+= , 4 1 34 31 R L th ===τ 0t,e-1.5e)0(i)t(i -4tt- >== τ 4t- oL e/3)-1.5(-4)(1 dt di Lvv === = o v 0t,Ve2 -4t > = + = Lx v 13 1 v 0t,Ve5.0 -4t > Chapter 7, Solution 24. (a) =)t(v u(t)5- (b) [] [ ] )5t(u)3t(u10)3t(u)t(u-10)t(i − − − + −−= = )5t(u10)3t(u20)t(u10- − − − +

Ngày đăng: 25/01/2014, 13:20