Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 37 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
37
Dung lượng
1,25 MB
Nội dung
Chapter 2, Solution 1
v = iR i = v/R = (16/5) mA = 3.2 mA
Chapter 2, Solution 2
p = v
2
/R → R = v
2
/p = 14400/60 = 240 ohms
Chapter 2, Solution 3
R = v/i = 120/(2.5x10
-3
) = 48k ohms
Chapter 2, Solution 4
(a) i = 3/100 = 30 mA
(b) i = 3/150 = 20 mA
Chapter 2, Solution 5
n = 9; l = 7; b = n + l – 1 = 15
Chapter 2, Solution 6
n = 12; l = 8; b = n + l –1 = 19
Chapter 2, Solution 7
7 elements or 7 branches and 4 nodes, as indicated.
30 V
1 20
Ω
2 3
+++-
2A 30
Ω
60
Ω
40
Ω
10
Ω
4
+-
Chapter 2, Solution 8
d
c
b
a
9 A
i
3
i
2
12 A
12 A
i
1
8 A
At node a, 8 = 12 + i
1
i
1
= - 4A
At node c, 9 = 8 + i
2
i
2
= 1A
At node d, 9 = 12 + i
3
i
3
= -3A
Chapter 2, Solution 9
Applying KCL,
i
1
+ 1 = 10 + 2 i
1
= 11A
1 + i
2
= 2 + 3 i
2
= 4A
i
2
= i
3
+ 3 i
3
= 1A
Chapter 2, Solution 10
At node 1, 4 + 3 = i
1
i
1
= 7A
At node 3, 3 + i
2
= -2 i
2
= -5A
3
2
-2A
3A
1
4A
i
2
i
1
Chapter 2, Solution 11
Applying KVL to each loop gives
-8 + v
1
+ 12 = 0 v
1
= 4v
-12 - v
2
+ 6 = 0 v
2
= -6v
10 - 6 - v
3
= 0 v
3
= 4v
-v
4
+ 8 - 10 = 0 v
4
= -2v
Chapter 2, Solution 12
For loop 1, -20 -25 +10 + v
1
= 0 v
1
= 35v
For loop 2, -10 +15 -v
2
= 0 v
2
= 5v
For loop 3, -v
1
+v
2
+v
3
= 0 v
3
= 30v
+ 15v
-
loop 3
loop 2
loop 1
+
20v
-
+ 10v
-
– 25v
+
+ v
2
-
+
v
1
-
+
v
3
-
Chapter 2, Solution 13
2A
I
2
7A I
4
1 2 3 4
4A
I
1
3A I
3
At node 2,
37
0 10
22
++ = →=−
IIA
12
2A
25A
At node 1,
II I I A
12 1 2
22
+= →=−=
At node 4,
24
24
44
=+ →=−=−
II
At node 3,
77
43 3
+= →=−=
II I
Hence,
IAI AIAI
12 34
12 10 5 2
==−==
,,,
A
−
V
11
8
Chapter 2, Solution 14
+ + -
3V V
1
I
4
V
2
- I
3
- + 2V - +
- + V
3
- + +
4V
I
2
- I
1
V
4
+ -
5V
For mesh 1,
−++= →=
VV
44
250 7
For mesh 2,
++ + = →=−−=−
40 47
34 3
VV V V
For mesh 3,
−+ − = →=+=−
30 3
13 1 3
VV V V V
For mesh 4,
−− −= →=−−=
VV V V V
12 2 1
20 26
Thus,
VVVVV VV
123 4
86 11
=− = =−
V7
=
,, ,
Chapter 2, Solution 15
+ +
+ 12V 1 v
2
- - 8V + -
v
1
- 3 + 2 -
v
3
10V
- +
For loop 1,
812 0 4
22
−+= →=
vvV
V
V
For loop 2,
−−− = →=−
vv
33
810 0 18
For loop 3,
−+ + = →=−
vv v
13 1
12 0 6
Thus,
vVvVv
123
64
=− = =−
,,
V18
Chapter 2, Solution 16
+ v
1
-
+ - + -
6V
-
+
loop 1
loop 2
12V
10V
+
v
1
-
+ v
2
-
Applying KVL around loop 1,
–6 + v
1
+ v
1
– 10 – 12 = 0 v
1
= 14V
Applying KVL around loop 2,
12 + 10 – v
2
= 0 v
2
= 22V
Chapter 2, Solution 17
+ v
1
-
+
- +
-
+
10V
12V
24V
loop 2
+
v
3
-
v
2
-
loop 1
-
+
It is evident that v
3
= 10V
Applying KVL to loop 2,
v
2
+ v
3
+ 12 = 0 v
2
= -22V
Applying KVL to loop 1,
-24 + v
1
- v
2
= 0 v
1
= 2V
Thus,
v
1
= 2V, v
2
= -22V, v
3
= 10V
Chapter 2, Solution 18
Applying KVL,
-30 -10 +8 + I(3+5) = 0
8I = 32 I = 4A
-V
ab
+ 5I + 8 = 0 V
ab
= 28V
Chapter 2, Solution 19
Applying KVL around the loop, we obtain
-12 + 10 - (-8) + 3i = 0 i = -2A
Power dissipated by the resistor:
p
3Ω
= i
2
R = 4(3) = 12W
Power supplied by the sources:
p
12V
= 12 (- -2) = 24W
p
10V
= 10 (-2) = -20W
p
8V
= (- -2) = -16W
Chapter 2, Solution 20
Applying KVL around the loop,
-36 + 4i
0
+ 5i
0
= 0 i
0
= 4A
Chapter 2, Solution 21
10
Ω
+
-
45V
-
+
+ v
0
-
Apply KVL to obtain
-45 + 10i - 3V
0
+ 5i = 0
But v
0
= 10i,
3v
0
-45 + 15i - 30i = 0 i = -3A
P
3
= i
2
R = 9 x 5 = 45W
5
Ω
Chapter 2, Solution 22
4
Ω
+ v
0
-
10A
2v
0
6 Ω
At the node, KCL requires that
0
0
v210
4
v
++ = 0 v
0
= –4.444V
The current through the controlled source is
i = 2V
0
= -8.888A
and the voltage across it is
v = (6 + 4) i
0
= 10 111.11
4
v
0
−=
Hence,
p
2
v
i
= (-8.888)(-11.111) = 98.75 W
Chapter 2, Solution 23
8//12 = 4.8, 3//6 = 2, (4 + 2)//(1.2 + 4.8) = 6//6 = 3
The circuit is reduced to that shown below.
i
x
1
Ω
+ v
x
-
6A
2
Ω
3
Ω
Applying current division,
iAAvi
xx
=
++
==
2
213
62 12
() ,
V
x
=
The current through the 1.2-
resistor is 0.5i
Ω
x
= 1A. The voltage across the 12-
resistor is 1 x 4.8 = 4.8 V. Hence the power is
Ω
p
v
R
W
== =
22
48
12
192
.
.
Chapter 2, Solution 24
(a) I
0
=
21
RR
V
s
+
α
−=
0
V I
0
(
)
43
RR
=
43
43
2
1
0
RR
RR
RR
V
+
⋅
+
−
α
()
()
4321
430
RRRR
RR
Vs ++
V
−
=
α
(b) If R
1
= R
2
= R
3
= R
4
= R,
10
42
R
R2V
V
S
0
=
α
=⋅
α
=
α = 40
Chapter 2, Solution 25
V
0
= 5 x 10
-3
x 10 x 10
3
= 50V
Using current division,
I
20
=
+
)5001.0(
205
x
=
5
0.1 A
V
20
= 20 x 0.1 kV = 2 kV
p
20
= I
20
V
20
= 0.2 kW
Chapter 2, Solution 26
V
0
= 5 x 10
-3
x 10 x 10
3
= 50V
Using current division,
I
20
=
+
)5001.0(
205
x
=
5
0.1 A
V
20
= 20 x 0.1 kV = 2 kV
p
20
= I
20
V
20
= 0.2 kW
Chapter 2, Solution 27
Using current division,
i
1
=
=
+
)20(
64
4
8 A
i
2
= =
+
)20(
64
6
12 A
Chapter 2, Solution 28
We first combine the two resistors in parallel
=1015 6 Ω
We now apply voltage division,
v
1
= =
+
)40(
614
14
20 V
v
2
= v
3
= =
+
)40(
614
6
12 V
Hence, v
1
= 28 V, v
2
= 12 V, v
s
= 12 V
[...]... 6Ω 1A 1A 28V + 12V - + - 8Ω i1 = 2A 6Ω + 6V - 12 Ω 6Ω 4Ω 1A 0.6A 1A 28V Thus, v2 = + 12V - + - 12 Ω + 6V - + 15 Ω 3.6V v 13 (3 ⋅ 6) = 3 ⋅ 12, i2 = 2 = 0.24 13 15 p2 = i2R = (0.24)2 (2) = 0.1152 W i1 = 2 A, i2 = 0.24 A, v1 = 12 V, v2 = 3.12 V, p2 = 0.1152 W Chapter 2, Solution 35 i 70 Ω 50V + - a + V1 i1 - 30 Ω I0 + 20 Ω i2 b V0 5 Ω - - 6Ω Combining the versions in parallel, 70 30 = i= 70x30 = 21Ω , 100... 3 V Rx = 3/(I) = 3/(40 mA) = 3000/(40) = 75 Ω Chapter 2, Solution 80 The amplifier can be modeled as a voltage source and the loudspeaker as a resistor: V + V R1 - Case 1 Hence p = V 2 p2 R1 , = R p1 R 2 + R2 - Case 2 p2 = R1 10 p1 = (12) = 30 W 4 R2 Chapter 2, Solution 81 Let R1 and R2 be in kΩ R eq = R 1 + R 2 5 (1) 5 R2 V0 = VS 5 R 2 + R 1 (2) From (1) and (2), 0.05 = 5 R1 2 = 5 R2 = 40 From (1),