1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Tài liệu Bài giải mạch P2 pptx

37 593 2

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 37
Dung lượng 1,25 MB

Nội dung

Chapter 2, Solution 1 v = iR i = v/R = (16/5) mA = 3.2 mA Chapter 2, Solution 2 p = v 2 /R → R = v 2 /p = 14400/60 = 240 ohms Chapter 2, Solution 3 R = v/i = 120/(2.5x10 -3 ) = 48k ohms Chapter 2, Solution 4 (a) i = 3/100 = 30 mA (b) i = 3/150 = 20 mA Chapter 2, Solution 5 n = 9; l = 7; b = n + l – 1 = 15 Chapter 2, Solution 6 n = 12; l = 8; b = n + l –1 = 19 Chapter 2, Solution 7 7 elements or 7 branches and 4 nodes, as indicated. 30 V 1 20 Ω 2 3 +++- 2A 30 Ω 60 Ω 40 Ω 10 Ω 4 +- Chapter 2, Solution 8 d c b a 9 A i 3 i 2 12 A 12 A i 1 8 A At node a, 8 = 12 + i 1 i 1 = - 4A At node c, 9 = 8 + i 2 i 2 = 1A At node d, 9 = 12 + i 3 i 3 = -3A Chapter 2, Solution 9 Applying KCL, i 1 + 1 = 10 + 2 i 1 = 11A 1 + i 2 = 2 + 3 i 2 = 4A i 2 = i 3 + 3 i 3 = 1A Chapter 2, Solution 10 At node 1, 4 + 3 = i 1 i 1 = 7A At node 3, 3 + i 2 = -2 i 2 = -5A 3 2 -2A 3A 1 4A i 2 i 1 Chapter 2, Solution 11 Applying KVL to each loop gives -8 + v 1 + 12 = 0 v 1 = 4v -12 - v 2 + 6 = 0 v 2 = -6v 10 - 6 - v 3 = 0 v 3 = 4v -v 4 + 8 - 10 = 0 v 4 = -2v Chapter 2, Solution 12 For loop 1, -20 -25 +10 + v 1 = 0 v 1 = 35v For loop 2, -10 +15 -v 2 = 0 v 2 = 5v For loop 3, -v 1 +v 2 +v 3 = 0 v 3 = 30v + 15v - loop 3 loop 2 loop 1 + 20v - + 10v - – 25v + + v 2 - + v 1 - + v 3 - Chapter 2, Solution 13 2A I 2 7A I 4 1 2 3 4 4A I 1 3A I 3 At node 2, 37 0 10 22 ++ = →=− IIA 12 2A 25A At node 1, II I I A 12 1 2 22 += →=−= At node 4, 24 24 44 =+ →=−=− II At node 3, 77 43 3 += →=−= II I Hence, IAI AIAI 12 34 12 10 5 2 ==−== ,,, A − V 11 8 Chapter 2, Solution 14 + + - 3V V 1 I 4 V 2 - I 3 - + 2V - + - + V 3 - + + 4V I 2 - I 1 V 4 + - 5V For mesh 1, −++= →= VV 44 250 7 For mesh 2, ++ + = →=−−=− 40 47 34 3 VV V V For mesh 3, −+ − = →=+=− 30 3 13 1 3 VV V V V For mesh 4, −− −= →=−−= VV V V V 12 2 1 20 26 Thus, VVVVV VV 123 4 86 11 =− = =− V7 = ,, , Chapter 2, Solution 15 + + + 12V 1 v 2 - - 8V + - v 1 - 3 + 2 - v 3 10V - + For loop 1, 812 0 4 22 −+= →= vvV V V For loop 2, −−− = →=− vv 33 810 0 18 For loop 3, −+ + = →=− vv v 13 1 12 0 6 Thus, vVvVv 123 64 =− = =− ,, V18 Chapter 2, Solution 16 + v 1 - + - + - 6V - + loop 1 loop 2 12V 10V + v 1 - + v 2 - Applying KVL around loop 1, –6 + v 1 + v 1 – 10 – 12 = 0 v 1 = 14V Applying KVL around loop 2, 12 + 10 – v 2 = 0 v 2 = 22V Chapter 2, Solution 17 + v 1 - + - + - + 10V 12V 24V loop 2 + v 3 - v 2 - loop 1 - + It is evident that v 3 = 10V Applying KVL to loop 2, v 2 + v 3 + 12 = 0 v 2 = -22V Applying KVL to loop 1, -24 + v 1 - v 2 = 0 v 1 = 2V Thus, v 1 = 2V, v 2 = -22V, v 3 = 10V Chapter 2, Solution 18 Applying KVL, -30 -10 +8 + I(3+5) = 0 8I = 32 I = 4A -V ab + 5I + 8 = 0 V ab = 28V Chapter 2, Solution 19 Applying KVL around the loop, we obtain -12 + 10 - (-8) + 3i = 0 i = -2A Power dissipated by the resistor: p 3Ω = i 2 R = 4(3) = 12W Power supplied by the sources: p 12V = 12 (- -2) = 24W p 10V = 10 (-2) = -20W p 8V = (- -2) = -16W Chapter 2, Solution 20 Applying KVL around the loop, -36 + 4i 0 + 5i 0 = 0 i 0 = 4A Chapter 2, Solution 21 10 Ω + - 45V - + + v 0 - Apply KVL to obtain -45 + 10i - 3V 0 + 5i = 0 But v 0 = 10i, 3v 0 -45 + 15i - 30i = 0 i = -3A P 3 = i 2 R = 9 x 5 = 45W 5 Ω Chapter 2, Solution 22 4 Ω + v 0 - 10A 2v 0 6 Ω At the node, KCL requires that 0 0 v210 4 v ++ = 0 v 0 = –4.444V The current through the controlled source is i = 2V 0 = -8.888A and the voltage across it is v = (6 + 4) i 0 = 10 111.11 4 v 0 −= Hence, p 2 v i = (-8.888)(-11.111) = 98.75 W Chapter 2, Solution 23 8//12 = 4.8, 3//6 = 2, (4 + 2)//(1.2 + 4.8) = 6//6 = 3 The circuit is reduced to that shown below. i x 1 Ω + v x - 6A 2 Ω 3 Ω Applying current division, iAAvi xx = ++ == 2 213 62 12 () , V x = The current through the 1.2- resistor is 0.5i Ω x = 1A. The voltage across the 12- resistor is 1 x 4.8 = 4.8 V. Hence the power is Ω p v R W == = 22 48 12 192 . . Chapter 2, Solution 24 (a) I 0 = 21 RR V s + α −= 0 V I 0 ( ) 43 RR = 43 43 2 1 0 RR RR RR V + ⋅ + − α () () 4321 430 RRRR RR Vs ++ V − = α (b) If R 1 = R 2 = R 3 = R 4 = R, 10 42 R R2V V S 0 = α =⋅ α = α = 40 Chapter 2, Solution 25 V 0 = 5 x 10 -3 x 10 x 10 3 = 50V Using current division, I 20 = + )5001.0( 205 x = 5 0.1 A V 20 = 20 x 0.1 kV = 2 kV p 20 = I 20 V 20 = 0.2 kW Chapter 2, Solution 26 V 0 = 5 x 10 -3 x 10 x 10 3 = 50V Using current division, I 20 = + )5001.0( 205 x = 5 0.1 A V 20 = 20 x 0.1 kV = 2 kV p 20 = I 20 V 20 = 0.2 kW Chapter 2, Solution 27 Using current division, i 1 = = + )20( 64 4 8 A i 2 = = + )20( 64 6 12 A Chapter 2, Solution 28 We first combine the two resistors in parallel =1015 6 Ω We now apply voltage division, v 1 = = + )40( 614 14 20 V v 2 = v 3 = = + )40( 614 6 12 V Hence, v 1 = 28 V, v 2 = 12 V, v s = 12 V [...]... 6Ω 1A 1A 28V + 12V - + - 8Ω i1 = 2A 6Ω + 6V - 12 Ω 6Ω 4Ω 1A 0.6A 1A 28V Thus, v2 = + 12V - + - 12 Ω + 6V - + 15 Ω 3.6V v 13 (3 ⋅ 6) = 3 ⋅ 12, i2 = 2 = 0.24 13 15 p2 = i2R = (0.24)2 (2) = 0.1152 W i1 = 2 A, i2 = 0.24 A, v1 = 12 V, v2 = 3.12 V, p2 = 0.1152 W Chapter 2, Solution 35 i 70 Ω 50V + - a + V1 i1 - 30 Ω I0 + 20 Ω i2 b V0 5 Ω - - 6Ω Combining the versions in parallel, 70 30 = i= 70x30 = 21Ω , 100... 3 V Rx = 3/(I) = 3/(40 mA) = 3000/(40) = 75 Ω Chapter 2, Solution 80 The amplifier can be modeled as a voltage source and the loudspeaker as a resistor: V + V R1 - Case 1 Hence p = V 2 p2 R1 , = R p1 R 2 + R2 - Case 2 p2 = R1 10 p1 = (12) = 30 W 4 R2 Chapter 2, Solution 81 Let R1 and R2 be in kΩ R eq = R 1 + R 2 5 (1) 5 R2 V0 = VS 5 R 2 + R 1 (2) From (1) and (2), 0.05 = 5 R1 2 = 5 R2 = 40 From (1),

Ngày đăng: 19/01/2014, 17:20

TỪ KHÓA LIÊN QUAN