Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 51 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
51
Dung lượng
1,84 MB
Nội dung
Chapter 5, Solution 1.
(a) R
in
= 1.5 MΩ
(b) R
out
= 60 Ω
(c) A = 8x10
4
Therefore A
dB
= 20 log 8x10
4
= 98.0 dB
Chapter 5, Solution 2.
v
0
= Av
d
= A(v
2
- v
1
)
= 10
5
(20-10) x 10
-6
= 0.1V
Chapter 5, Solution 3.
v
0
= Av
d
= A(v
2
- v
1
)
= 2 x 10
5
(30 + 20) x 10
-6
= 10V
Chapter 5, Solution 4.
v
0
= Av
d
= A(v
2
- v
1
)
v
2
- v
1
= V20
10x2
4
A
v
5
0
µ−=
−
=
If v
1
and v
2
are in mV, then
v
2
- v
1
= -20 mV = 0.02
1 - v
1
= -0.02
v
1
= 1.02 mV
Chapter 5, Solution 5.
+
v
0
-
-
v
d
+
R
0
R
in
I
v
i
-
+
Av
d
+
-
-v
i
+ Av
d
+ (R
i
- R
0
) I = 0 (1)
But v
d
= R
i
I,
-v
i
+ (R
i
+ R
0
+ R
i
A) I = 0
v
d
=
i0
ii
R)A1(R
Rv
++
(2)
-Av
d
- R
0
I + v
0
= 0
v
0
= Av
d
+ R
0
I = (R
0
+ R
i
A)I =
i0
ii0
R)A1(R
v)ARR(
++
+
4
5
54
i0
i0
i
0
10
)101(100
10x10100
R)A1(R
ARR
v
v
⋅
++
+
=
++
+
=
≅
()
=⋅
+
4
5
9
10
101
10
=
001,100
000,100
0.9999990
Chapter 5, Solution 6.
-
v
d
+
+
v
o
-
R
0
R
in
I
v
i
+
-
Av
d
+
-
(R
0
+ R
i
)R + v
i
+ Av
d
= 0
But v
d
= R
i
I,
v
i
+ (R
0
+ R
i
+ R
i
A)I = 0
I =
i0
i
R)A1(R
v
++
−
(1)
-Av
d
- R
0
I + v
o
= 0
v
o
= Av
d
+ R
0
I = (R
0
+ R
i
A)I
Substituting for I in (1),
v
0
=
++
+
i0
i0
R)A1(R
ARR
−
v
i
=
()
()
65
356
10x2x10x2150
1010x2x10x250
++
⋅+
−
−
≅
mV
10x2x001,200
10x2x000,200
6
6
−
v
0
= -0.999995 mV
Chapter 5, Solution 7.
100 k
Ω
1
2
10 kΩ
-
+
+
V
d
-
+
V
out
-
R
out
= 100 Ω
R
in
AV
d
+
-
V
S
At node 1, (V
S
– V
1
)/10 k = [V
1
/100 k] + [(V
1
– V
0
)/100 k]
10
V
S
– 10 V
1
= V
1
+ V
1
– V
0
which leads to V
1
= (10V
S
+ V
0
)/12
At node 2, (V
1
– V
0
)/100 k = (V
0
– AV
d
)/100
But V
d
= V
1
and A = 100,000,
V
1
– V
0
= 1000 (V
0
– 100,000V
1
)
0= 1001V
0
– 100,000,001[(10V
S
+ V
0
)/12]
0 = -83,333,334.17 V
S
- 8,332,333.42 V
0
which gives us (V
0
/ V
S
) = -10 (for all practical purposes)
If V
S
= 1 mV, then V
0
= -10 mV
Since V
0
= A V
d
= 100,000 V
d
, then V
d
= (V
0
/10
5
) V = -100 nV
Chapter 5, Solution 8.
(a) If v
a
and v
b
are the voltages at the inverting and noninverting terminals of the op
amp.
v
a
= v
b
= 0
1mA =
k2
v0
0
−
v
0
= -2V
(b)
10 kΩ
2V
+ -
+
v
a
-
10 kΩ
i
a
+
v
o
-
+
v
o
-
v
a
v
b
i
a
2 k
Ω
2V
-
+
1V
-
+
-
+
(b)
(a)
Since v
a
= v
b
= 1V and i
a
= 0, no current flows through the 10 kΩ resistor. From Fig. (b),
-v
a
+ 2 + v
0
= 0 v
a
= v
a
- 2 = 1 - 2 = -1V
Chapter 5, Solution 9.
(a) Let v
a
and v
b
be respectively the voltages at the inverting and noninverting
terminals of the op amp
v
a
= v
b
= 4V
At the inverting terminal,
1mA =
k2
0
v4
−
v
0
= 2V
Since v
a
= v
b
= 3V,
-v
b
+ 1 + v
o
= 0 v
o
= v
b
- 1 = 2V
+
v
b
-
+
v
o
-
+ -
(b)
1V
Chapter 5, Solution 10.
Since no current enters the op amp, the voltage at the input of the op amp is v
s
.
Hence
v
s
= v
o
2
v
1010
10
o
=
+
s
o
v
v
= 2
Chapter 5, Solution 11.
8
k
Ω
v
b
= V2)3(
510
10
=
+
i
o
b
a
+
−
5
k
Ω
2
k
Ω
4
k
Ω
+
v
o
−
10
k
Ω
−
+
3 V
At node a,
8
vv
2
v3
oaa
−
=
−
12 = 5v
a
– v
o
But v
a
= v
b
= 2V,
12 = 10 – v
o
v
o
= -2V
–i
o
=
mA1
4
2
8
22
4
v0
8
vv
ooa
=+
+
=
−
+
−
i
o
= -1mA
Chapter 5, Solution 12.
4
k
Ω
b
a
+
−
2
k
Ω
1
k
Ω
+
v
o
−
4
k
Ω
−
+
1.2V
At node b, v
b
=
ooo
v
3
2
v
3
2
v
24
4
==
+
At node a,
4
vv
1
v2.1
oaa
−
=
−
, but v
a
= v
b
=
o
v
3
2
4.8 - 4 x
ooo
vv
3
2
v
3
2
−= v
o
= V0570.2
7
8.4x3
=
v
a
= v
b
=
7
6.9
v
3
2
o
=
i
s
=
7
2.1
1
v2.
a
−
=
1
−
p = v
s
i
s
= 1.2 =
−
7
2.1
-205.7 mW
Chapter 5, Solution 13.
By voltage division,
i
1
i
2
90
k
Ω
10
k
Ω
b
a
+
−
100 k
Ω
4
k
Ω
50
k
Ω
+
−
i
o
+
v
o
−
1 V
v
a
=
V9.0)1(
100
=
90
v
b
=
3
v
v
150
o
o
=
50
But v
a
= v
b
9.0
3
v
0
= v
o
= 2.7V
i
o
= i
1
+ i
2
= =+
k150
v
k10
v
oo
0.27mA + 0.018mA = 288 µA
Chapter 5, Solution 14.
Transform the current source as shown below. At node 1,
10
vv
20
vv
5
v10
o1
211
−
+
−
=
−
But v
2
= 0. Hence 40 - 4v
1
= v
1
+ 2v
1
- 2v
o
40 = 7v
1
- 2v
o
(1)
20
k
Ω
v
o
10
k
Ω
+
−
v
1
−
+
v
2
5
k
Ω
10
k
Ω
+
v
o
−
10V
At node 2,
0v,
10
vv
20
vv
2
o2
21
=
−
=
−
or v
1
= -2v
o
(2)
From (1) and (2), 40 = -14v
o
- 2v
o
v
o
= -2.5V
Chapter 5, Solution 15
(a) Let v
1
be the voltage at the node where the three resistors meet. Applying
KCL at this node gives
332
1
3
1
2
1
11
R
v
RR
v
R
vv
R
v
i
oo
s
−
+=
−
+=
(1)
At the inverting terminal,
11
1
1
0
Riv
R
v
i
ss
−=→
−
=
(2)
Combining (1) and (2) leads to
++−=→−=
++
2
31
31
33
1
2
1
1
R
RR
RR
i
v
R
v
R
R
R
R
i
s
oo
s
(b)
For this case,
Ω=Ω
++−= k 92- k
25
4020
4020
x
i
v
s
o
Chapter 5, Solution 16
10k
Ω
i
x
5k
Ω
v
a
i
y
-
v
b
+ v
o
+ 2k
Ω
0.5V
- 8k
Ω
Let currents be in mA and resistances be in k
Ω
. At node a,
oa
oaa
vv
vvv
−=→
−
=
−
31
105
5.0
(1)
But
aooba
vvvvv
8
10
28
8
=→
+
== (2)
Substituting (2) into (1) gives
14
8
8
10
31
=→−=
aaa
vvv
Thus,
A 28.14mA 70/1
5
5.0
µ
−=−=
−
=
a
x
v
i
A 85.71mA
14
8
4
6.0
)
8
10
(6.0)(6.0
102
µ
==−=−=
−
+
−
= xvvvv
vvvv
i
aaao
aobo
y
Chapter 5, Solution 17.
(a) G = =−=−=
5
12
R
R
v
v
1
2
i
o
-2.4
(b)
5
80
v
v
i
o
−= = -16
(c)
=−=
5
2000
v
v
i
o
-400
Chapter 5, Solution 18.
Converting the voltage source to current source and back to a voltage source, we have the
circuit shown below:
3
20
2010
= kΩ
1 M
Ω
3
v2
3
20
50
1000
v
i
o
⋅
+
−= =−=
17
200
v
1
o
v
-11.764
Chapter 5, Solution 19.
We convert the current source and back to a voltage source.
3
4
42
=
5
k
Ω
v
o
0V
(
4/3
)
k
Ω 10
k
Ω
−
+
4
k
Ω
+
−
(2/3)V
(
20/3
)
k
Ω
+
v
o
−
−
+
50
k
Ω
+
−
2v
i
/3