1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Tài liệu Bài giải mạch P5 doc

51 381 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 51
Dung lượng 1,84 MB

Nội dung

Chapter 5, Solution 1. (a) R in = 1.5 MΩ (b) R out = 60 Ω (c) A = 8x10 4 Therefore A dB = 20 log 8x10 4 = 98.0 dB Chapter 5, Solution 2. v 0 = Av d = A(v 2 - v 1 ) = 10 5 (20-10) x 10 -6 = 0.1V Chapter 5, Solution 3. v 0 = Av d = A(v 2 - v 1 ) = 2 x 10 5 (30 + 20) x 10 -6 = 10V Chapter 5, Solution 4. v 0 = Av d = A(v 2 - v 1 ) v 2 - v 1 = V20 10x2 4 A v 5 0 µ−= − = If v 1 and v 2 are in mV, then v 2 - v 1 = -20 mV = 0.02 1 - v 1 = -0.02 v 1 = 1.02 mV Chapter 5, Solution 5. + v 0 - - v d + R 0 R in I v i - + Av d + - -v i + Av d + (R i - R 0 ) I = 0 (1) But v d = R i I, -v i + (R i + R 0 + R i A) I = 0 v d = i0 ii R)A1(R Rv ++ (2) -Av d - R 0 I + v 0 = 0 v 0 = Av d + R 0 I = (R 0 + R i A)I = i0 ii0 R)A1(R v)ARR( ++ + 4 5 54 i0 i0 i 0 10 )101(100 10x10100 R)A1(R ARR v v ⋅ ++ + = ++ + = ≅ () =⋅ + 4 5 9 10 101 10 = 001,100 000,100 0.9999990 Chapter 5, Solution 6. - v d + + v o - R 0 R in I v i + - Av d + - (R 0 + R i )R + v i + Av d = 0 But v d = R i I, v i + (R 0 + R i + R i A)I = 0 I = i0 i R)A1(R v ++ − (1) -Av d - R 0 I + v o = 0 v o = Av d + R 0 I = (R 0 + R i A)I Substituting for I in (1), v 0 =       ++ + i0 i0 R)A1(R ARR   − v i = () () 65 356 10x2x10x2150 1010x2x10x250 ++ ⋅+ − − ≅ mV 10x2x001,200 10x2x000,200 6 6 − v 0 = -0.999995 mV Chapter 5, Solution 7. 100 k Ω 1 2 10 kΩ - + + V d - + V out - R out = 100 Ω R in AV d + - V S At node 1, (V S – V 1 )/10 k = [V 1 /100 k] + [(V 1 – V 0 )/100 k] 10 V S – 10 V 1 = V 1 + V 1 – V 0 which leads to V 1 = (10V S + V 0 )/12 At node 2, (V 1 – V 0 )/100 k = (V 0 – AV d )/100 But V d = V 1 and A = 100,000, V 1 – V 0 = 1000 (V 0 – 100,000V 1 ) 0= 1001V 0 – 100,000,001[(10V S + V 0 )/12] 0 = -83,333,334.17 V S - 8,332,333.42 V 0 which gives us (V 0 / V S ) = -10 (for all practical purposes) If V S = 1 mV, then V 0 = -10 mV Since V 0 = A V d = 100,000 V d , then V d = (V 0 /10 5 ) V = -100 nV Chapter 5, Solution 8. (a) If v a and v b are the voltages at the inverting and noninverting terminals of the op amp. v a = v b = 0 1mA = k2 v0 0 − v 0 = -2V (b) 10 kΩ 2V + - + v a - 10 kΩ i a + v o - + v o - v a v b i a 2 k Ω 2V - + 1V - + - + (b) (a) Since v a = v b = 1V and i a = 0, no current flows through the 10 kΩ resistor. From Fig. (b), -v a + 2 + v 0 = 0 v a = v a - 2 = 1 - 2 = -1V Chapter 5, Solution 9. (a) Let v a and v b be respectively the voltages at the inverting and noninverting terminals of the op amp v a = v b = 4V At the inverting terminal, 1mA = k2 0 v4 − v 0 = 2V Since v a = v b = 3V, -v b + 1 + v o = 0 v o = v b - 1 = 2V + v b - + v o - + - (b) 1V Chapter 5, Solution 10. Since no current enters the op amp, the voltage at the input of the op amp is v s . Hence v s = v o 2 v 1010 10 o =       + s o v v = 2 Chapter 5, Solution 11. 8 k Ω v b = V2)3( 510 10 = + i o b a + − 5 k Ω 2 k Ω 4 k Ω + v o − 10 k Ω − + 3 V At node a, 8 vv 2 v3 oaa − = − 12 = 5v a – v o But v a = v b = 2V, 12 = 10 – v o v o = -2V –i o = mA1 4 2 8 22 4 v0 8 vv ooa =+ + = − + − i o = -1mA Chapter 5, Solution 12. 4 k Ω b a + − 2 k Ω 1 k Ω + v o − 4 k Ω − + 1.2V At node b, v b = ooo v 3 2 v 3 2 v 24 4 == + At node a, 4 vv 1 v2.1 oaa − = − , but v a = v b = o v 3 2 4.8 - 4 x ooo vv 3 2 v 3 2 −= v o = V0570.2 7 8.4x3 = v a = v b = 7 6.9 v 3 2 o = i s = 7 2.1 1 v2. a − = 1 − p = v s i s = 1.2 =     − 7 2.1   -205.7 mW Chapter 5, Solution 13. By voltage division, i 1 i 2 90 k Ω 10 k Ω b a + − 100 k Ω 4 k Ω 50 k Ω + − i o + v o − 1 V v a = V9.0)1( 100 = 90 v b = 3 v v 150 o o = 50 But v a = v b 9.0 3 v 0 = v o = 2.7V i o = i 1 + i 2 = =+ k150 v k10 v oo 0.27mA + 0.018mA = 288 µA Chapter 5, Solution 14. Transform the current source as shown below. At node 1, 10 vv 20 vv 5 v10 o1 211 − + − = − But v 2 = 0. Hence 40 - 4v 1 = v 1 + 2v 1 - 2v o 40 = 7v 1 - 2v o (1) 20 k Ω v o 10 k Ω + − v 1 − + v 2 5 k Ω 10 k Ω + v o − 10V At node 2, 0v, 10 vv 20 vv 2 o2 21 = − = − or v 1 = -2v o (2) From (1) and (2), 40 = -14v o - 2v o v o = -2.5V Chapter 5, Solution 15 (a) Let v 1 be the voltage at the node where the three resistors meet. Applying KCL at this node gives 332 1 3 1 2 1 11 R v RR v R vv R v i oo s −         += − += (1) At the inverting terminal, 11 1 1 0 Riv R v i ss −=→ − = (2) Combining (1) and (2) leads to         ++−=→−=         ++ 2 31 31 33 1 2 1 1 R RR RR i v R v R R R R i s oo s (b) For this case, Ω=Ω       ++−= k 92- k 25 4020 4020 x i v s o Chapter 5, Solution 16 10k Ω i x 5k Ω v a i y - v b + v o + 2k Ω 0.5V - 8k Ω Let currents be in mA and resistances be in k Ω . At node a, oa oaa vv vvv −=→ − = − 31 105 5.0 (1) But aooba vvvvv 8 10 28 8 =→ + == (2) Substituting (2) into (1) gives 14 8 8 10 31 =→−= aaa vvv Thus, A 28.14mA 70/1 5 5.0 µ −=−= − = a x v i A 85.71mA 14 8 4 6.0 ) 8 10 (6.0)(6.0 102 µ ==−=−= − + − = xvvvv vvvv i aaao aobo y Chapter 5, Solution 17. (a) G = =−=−= 5 12 R R v v 1 2 i o -2.4 (b) 5 80 v v i o −= = -16 (c) =−= 5 2000 v v i o -400 Chapter 5, Solution 18. Converting the voltage source to current source and back to a voltage source, we have the circuit shown below: 3 20 2010 = kΩ 1 M Ω 3 v2 3 20 50 1000 v i o ⋅ + −= =−= 17 200 v 1 o v -11.764 Chapter 5, Solution 19. We convert the current source and back to a voltage source. 3 4 42 = 5 k Ω v o 0V ( 4/3 ) k Ω 10 k Ω − + 4 k Ω + − (2/3)V ( 20/3 ) k Ω + v o − − + 50 k Ω + − 2v i /3

Ngày đăng: 19/01/2014, 17:20

TỪ KHÓA LIÊN QUAN

w