1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Tài liệu Bài giải xác suất thống kê - chương 1 pdf

13 4K 75

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 13
Dung lượng 146,5 KB

Nội dung

1 BÀI GIẢI XÁC SUẤT THỐNG (GV: Trần Ngọc Hội – 2009) CHƯƠNG 1 NHỮNG ĐỊNH LÝ CƠ BẢN TRONG LÝ THUYẾT XÁC SUẤT Bài 1.1: Có ba khẩu súng I, II và III bắn độc lập vào một mục tiêu. Mỗi khẩu bắn 1 viên. Xác suất bắn trúng mục tiêu cuả ba khẩu I, II và III lần lượt là 0,7; 0,8 và 0,5. Tính xác suất để a) có 1 khẩu bắn trúng. b) có 2 khẩu bắn trúng. c) có 3 khẩu bắn trúng. d) ít nhất 1 khẩu bắn trúng. e) khẩu thứ 2 bắn trúng biết rằng có 2 khẩu trúng. Lời giải Tóm tắt: Khẩu súng I IIù III Xác suất trúng 0,7 0,8 0,5 Gọi A j (j = 1, 2, 3) là biến cố khẩu thứ j bắn trúng. Khi đó A 1 , A 2 , A 3 độc lập và giả thiết cho ta: 11 22 33 P(A ) 0, 7; P(A ) 0, 3; P(A ) 0, 8; P(A ) 0, 2; P(A ) 0, 5; P(A ) 0, 5. == == == a) Gọi A là biến cố có 1 khẩu trúng. Ta có 123 123 123 A AAA AAA AAA=++ Vì các biến cố 123 123 123 A AA,AAA,AAA xung khắc từng đôi, nên theo công thức Cộng xác suất ta có 123 123 123 123 123 123 P(A) P(A A A A A A A A A ) P(A A A ) P(A A A ) P(A A A ) =++ =++ Vì các biến cố A 1 , A 2 , A 3 độc lập nên theo công thức Nhân xác suất ta có 2 123 1 2 3 123 1 2 3 123 1 233 P(A A A ) P(A )P(A )P(A ) 0,7.0,2.0,5 0,07; P(A A A ) P(A )P(A )P(A ) 0,3.0,8.0,5 0,12; P(A A A ) P(A )P(A )P(A ) 0,3.0,2.0,5 0, 03. === === === Suy ra P(A) = 0,22. b) Gọi B là biến cố có 2 khẩu trúng. Ta có 123 123 123 B AAA AAA AAA=++ Tính toán tương tự câu a) ta được P(B) = 0,47. c) Gọi C là biến cố có 3 khẩu trúng. Ta có 123 C AAA.= Tính toán tương tự câu a) ta được P(C) = 0,28. d) Gọi D là biến cố có ít nhất 1 khẩu trúng. Ta có DABC.= ++ Chú ý rằng do A, B, C xung khắc từng đôi, nên theo công thức Cộng xác suất ta có: P(D) = P(A) + P(B) + P(C) = 0,22 + 0,47 + 0,28 = 0,97. e) Gỉa sử có 2 khẩu trúng. Khi đó biến cố B đã xảy ra. Do đó xác suất để khẩu thứ 2 trúng trong trường hợp này chính là xác suất có điều kiện P(A 2 /B). Theo công thức Nhân xác suất ta có: P(A 2 B) = P(B)P(A 2 /B) Suy ra 2 2 P(A B) P(A /B) . P(B) = Mà 2123123 A BAAA AAA=+ nên lý luận tương tự như trên ta được P(A 2 B)=0,4 Suy ra P(A 2 /B) =0,851. Bài 1.2: Có hai hộp I và II mỗi hộp chứa 10 bi, trong đó hộp I gồm 9 bi đỏ, 1 bi trắng; hộp II gồm 6 bi đỏ, 4 bi trắng. Lấy ngẫu nhiên từ mỗi hộp 2 bi. a) Tính xác suất để được 4 bi đỏ. b) Tính xác suất để được 2 bi đỏ và 2 bi trắng. c) Tính xác suất để được 3 bi đỏ và 1 bi trắng. d) Giả sử đã lấy được 3 bi đỏ và 1 bi trắng. Hãy tìm xác suất để bi trắng có được của hộp I. Printed with FinePrint trial version - purchase at www.fineprint.com 3 Lời giải Gọi A i , B i (i = 0, 1, 2) lần lượt là các biến cố có i bi đỏ và (2 - i) bi trắng có trong 2 bi được chọn ra từ hộp I, hộp II. Khi đó - A 0 , A 1 , A 2 xung khắc từng đôi và ta có: 0 11 91 1 2 10 20 91 2 2 10 P(A ) 0; 9 P(A ) ; 45 36 P(A ) . 45 CC C CC C = == == - B 0 , B 1 , B 2 xung khắc từng đôi và ta có: 02 64 0 2 10 11 64 1 2 10 20 64 2 2 10 6 P(B ) ; 45 24 P(B ) ; 45 15 P(B ) . 45 CC C CC C CC C == == == - A i và B j độc lập. - Tổng số bi đỏ có trong 4 bi chọn ra phụ thuộc vào các biến cố A i và B j theo bảng sau: B 0 B 1 B 2 A 0 0 1 2 A 1 1 2 3 A 2 2 3 4 a) Gọi A là biến cố chọn được 4 bi đỏ. Ta có: A = A 2 B 2 . Từ đây, do tính độc lập , Công thức nhân xác suất thứ nhất cho ta: 22 36 15 P(A) P(A )P(B ) . 0, 2667. 45 45 === b) Gọi B là biến cố chọn được 2 bi đỏ và 2 bi trắng. Ta có: 4 B = A 0 B 2 + A 1 B 1 + A 2 B 0 Do tính xung khắc từng đôi của các biến cố A 0 B 2 , A 1 B 1 , A 2 B 0 , công thức Cộng xác suất cho ta: P(B) = P(A 0 B 2 + A 1 B 1 + A 2 B 0 ) = P(A 0 B 2 ) + P(A 1 B 1 ) + P(A 2 B 0 ) Từ đây, do tính độc lập , Công thức nhân xác suất thứ nhất cho ta: P(B) = P(A 0 )P(B 2 ) + P(A 1 )P(B 1 ) + P(A 2 )P(B 0 ) = 0,2133. c) Gọi C là biến cố chọn được 3 bi đỏ và 1 bi trắng. Ta có: C = A 1 B 2 + A 2 B 1 . Lý luận tương tự như trên ta được P(C) = P(A 1 )P(B 2 ) + P(A 2 )P(B 1 ) = 0,4933. d) Giả sử đã chọn được 3 bi đỏ và 1 bi trắng. Khi đó biến cố C đã xảy ra. Do đó xác suất để bi trắng có được thuộc hộp I trong trường hợp này chính là xác suất có điều kiện P(A 1 /C). Theo Công thức nhân xác suất , ta có 11 P(A C) P(C)P(A /C)= . Suy ra 1 1 P(A C) P(A /C) P(C) = . Mà A 1 C = A 1 B 2 nên 11212 915 P(A C) P(A B ) P(A )P(B ) . 0, 0667. 45 45 == == Do đó xác suất cần tìm là: P(A 1 /C) = 0,1352. Bài 1.3: Một lô hàng chứa 10 sản phẩm gồm 6 sản phẩm tốt và 4 sản phẩm xấu. Khách hàng kiểm tra bằng cách lấy ra từng sản phẩm cho đến khi nào được 3 sản phẩm tốt thì dừng lại. a) Tính xác suất để khách hàng dừng lại ở lần kiểm tra thứ 3. b) Tính xác suất để khách hàng dừng lại ở lần kiểm tra thứ 4. b) Giả sử khách hàng đã dừng lại ở lần kiểm tra thứ 4. Tính xác suất để ở lần kiểm tra thứ 3 khách hàng gặp sản phẩm xấu. Lời giải Gọi T i , X i lần lượt là các biến cố chọn được sản phẩm tốt, xấu ở lần kiểm tra thứ i. a) Gọi A là biến cố khách hàng dừng lại ở lần kiểm tra thứ 3. Ta có: Printed with FinePrint trial version - purchase at www.fineprint.com 5 A = T 1 T 2 T 3 . Suy ra P(A) = P(T 1 T 2 T 3 ) = P(T 1 ) P(T 2 /T 1 ) P(T 3 / T 1 T 2 ) = (6/10)(5/9)(4/8) = 0,1667. b) Gọi B là biến cố khách hàng dừng lại ở lần kiểm tra thứ 4. Ta có: B = X 1 T 2 T 3 T 4 + T 1 X 2 T 3 T 4 + T 1 T 2 X 3 T 4 . Suy ra P(B) = P(X 1 T 2 T 3 T 4 ) + P(T 1 X 2 T 3 T 4 ) + P(T 1 T 2 X 3 T 4 ) = P(X 1 ) P(T 2 /X 1 ) P(T 3 /X 1 T 2 ) P(T 4 /X 1 T 2 T 3 ) + P(T 1 ) P(X 2 /T 1 ) P(T 3 /T 1 X 2 ) P(T 4 /T 1 X 2 T 3 ) + P(T 1 ) P(T 2 /T 1 ) P(X 3 / T 1 T 2 ) P(T 4 / T 1 T 2 X 3 ) = (4/10)(6/9)(5/8)(4/7) + (6/10)(4/9)(5/8)(4/7)+(6/10)(5/9)(4/8)(4/7) = 3(4/10)(6/9)(5/8)(4/7) = 0,2857. c) Giả sử khách hàng đã dừng lại ở lần kiểm tra thứ 4. Khi đó biến cố B đã xảy ra. Do đó xác suất để ở lần kiểm tra thứ 3 khách hàng gặp sản phẩm xấu trong trường hợp này chính là xác suất có điều kiện P(X 3 /B). Theo Công thức nhân xác suất , ta có 33 P(X B) P(B)P(X /B)= . Suy ra 3 3 P(X B) P(X /B) P(B) = . Mà X 3 B = T 1 T 2 X 3 T 4 nên P(X 3 B) = P(T 1 T 2 X 3 T 4 ) = P(T 1 ) P(T 2 /T 1 ) P(X 3 / T 1 T 2 ) P(T 4 / T 1 T 2 X 3 ) = (6/10)(5/9)(4/8)(4/7) = 0,0952. Suy ra P(X 3 /B) = 0,3333. Bài 1.4: Một hộp bi gồm 5 bi đỏ, 4 bi trắng và 3 bi xanh có cùng cỡ. Từ hộp ta rút ngẫu nhiên không hòan lại từng bi một cho đến khi được bi đỏ thì dừng lại. Tính xác suất để a) được 2 bi trắng, 1 bi xanh và 1 bi đỏ. b) không có bi trắng nào được rút ra. 6 Lời giải Gọi D i , T i , X i lần lượt là các biến cố chọn được bi đỏ, bi trắng, bi xanh ở lần rút thứ i. a) Gọi A là biến cố rút được 2 bi trắng, 1 bi xanh và 1 bi đỏ. Ta có: A xảy ra ⇔ Rút được TTXD TXTD XTTD −−− ⎡ ⎢ −−− ⎢ ⎢ −−− ⎣ Suy ra A = T 1 T 2 X 3 D 4 + T 1 X 2 T 3 D 4 + X 1 T 2 T 3 D 4 Từ đây, do tính xung khắc từng đôi của các biến cố thành phần, ta có: P(A) = P(T 1 T 2 X 3 D 4 )+ P(T 1 X 2 T 3 D 4 ) + P(X 1 T 2 T 3 D 4 ) Theo Công thức Nhân xác suất, ta có P(T 1 T 2 X 3 D 4 ) = P(T 1 )P(T 2 /T 1 )P(X 3 /T 1 T 2 )P(D 4 /T 1 T 2 X 3 ) = (4/12)(3/11)(3/10)(5/9) = 1/66; P(T 1 X 2 T 3 D 4 ) = P(T 1 )P(X 2 /T 1 )P(T 3 /T 1 X 2 )P(D 4 /T 1 X 2 T 3 ) = (4/12)(3/11)(3/10)(5/9) = 1/66; P(X 1 T 2 T 3 D 4 ) = P(X 1 )P(T 2 /X 1 )P(T 3 /X 1 T 2 )P(D 4 /X 1 T 2 T 3 ) = (3/12)(4/11)(3/10)(5/9) = 1/66. Suy ra P(A) = 3/66 = 1/22 = 0,0455. b) Gọi B là biến cố không có bi trắng nào được rút ra. Ta có: B xảy ra ⇔ Rút được D XD XXD X XXD ⎡ ⎢ − ⎢ ⎢ −− ⎢ −−− ⎣ Suy ra B = D 1 + X 1 D 2 + X 1 X 2 D 3 + X 1 X 2 X 3 D 4 Từ đây, do tính xung khắc từng đôi của các biến cố thành phần, ta có: P(B) = P(D 1 )+ P(X 1 D 2 ) + P(X 1 X 2 D 3 ) + P(X 1 X 2 X 3 D 4 ) Theo Công thức Nhân xác suất, ta có Printed with FinePrint trial version - purchase at www.fineprint.com 7 P(B) = P(D 1 ) + P(X 1 )P(D 2 /X 1 ) + P(X 1 )P(X 2 /X 1 )P(D 3 /X 1 X 2 ) + P(X 1 )P(X 2 /X 1 )P(X 3 /X 1 X 2 )P(D 4 /X 1 X 2 X 3 ) = 5/12+ (3/12)(5/11) + (3/12)(2/11)(5/10) + (3/12)(2/11)(1/10)(5/9) = 5/9 Bài 1.5: Sản phẩm X bán ra ở thò trường do một nhà máy gồm ba phân xưởng I, II và III sản xuất, trong đó phân xưởng I chiếm 30%; phân xưởng II chiếm 45% và phân xưởng III chiếm 25%. Tỉ lệ sản phẩm loại A do ba phân xưởng I, II và III sản xuất lần lượt là 70%, 50% và 90%. a) Tính tỉ lệ sản phẩm lọai A nói chung do nhà máy sản xuất. b) Chọn mua ngẫu nhiên một sản phẩm X ở thò trường. Giả sử đã mua được sản phẩm loại A. Theo bạn, sản phẩm ấy có khả năng do phân xưởng nào sản xuất ra nhiều nhất? c) Chọn mua ngẫu nhiên 121 sản phẩm X (trong rất nhiều sản phẩm X) ở thò trường. 1) Tính xác suất để có 80 sản phẩm loại A. 2) Tính xác suất để có từ 80 đến 85 sản phẩm loại A. Lời giải Tóm tắt: Phân xưởng I II III Tỉ lệ sản lượng 30% 45% 25% Tỉ lệ loại A 70% 50% 90% a) Để tính tỉ lệ sản phẩm loại A nói chung do nhà máy sản xuất ta chọn mua ngẫu nhiên một sản phẩm ở thò trường. Khi đó tỉ lệ sản phẩm loại A chính là xác suất để sản phẩm đó thuộc loại A. Gọi B là biến cố sản phẩm chọn mua thuộc loại A. A 1 , A 2 , A 3 lần lượt là các biến cố sản phẩm do phân xưởng I, II, III sản xuất. Khi đó A 1 , A 2 , A 3 là một hệ đầy đủ, xung khắc từng đôi và P(A 1 ) = 30% = 0,3; P(A 2 ) = 45% = 0,45; P(A 3 ) = 25% = 0,25. Theo công thức xác suất đầy đủ, ta có: P(B) = P(A 1 )P(B/A 1 ) + P(A 2 )P(B/A 2 ) + P(A 3 )P(B/A 3 ) Theo giả thiết, P(B/A 1 ) = 70% = 0,7; P(B/A 2 ) = 50% = 0,5; P(B/A 3 ) = 90% = 0,9. 8 Suy ra P(B) = 0,66 = 66%. Vậy tỉ lệ sản phẩm loại A nói chung do nhà máy sản xuất là 66%. b) Chọn mua ngẫu nhiên một sản phẩm X ở thò trường. Giả sử đã mua được sản phẩm loại A. Theo bạn, sản phẩm ấy có khả năng do phân xưởng nào sản xuất ra nhiều nhất? Giả sử đã mua được sản phẩm loại A. Khi đó biến cố B đã xảy ra. Do đó, để biết sản phẩm loại A đó có khả năng do phân xưởng nào sản xuất ra nhiều nhất ta cần so sánh các xác suất có điều kiện P(A 1 /B), P(A 2 /B) và P(A 3 /B). Nếu P(A i /B) là lớn nhất thì sản phẩm ấy có khả năng do phân xưởng thứ i sản xuất ra là nhiều nhất. Theo công thức Bayes ta có: 11 1 22 2 33 3 P(A )P(B/A ) 0, 3.0,7 21 P(A /B) ; P(B) 0, 66 66 P(A )P(B/A ) 0, 45.0,5 22,5 P(A /B) ; P(B) 0, 66 66 P(A )P(B/A ) 0, 25.0, 9 22,5 P(A /B) . P(B) 0, 66 66 === === === Vì P(A 2 /B) = P(A 3 /B) > P(A 1 /B) nên sản phẩm loại A ấy có khả năng do phân xưởng II hoặc III sản xuất ra là nhiều nhất. c) Chọn mua ngẫu nhiên 121 sản phẩm X (trong rất nhiều sản phẩm X) ở thò trường. 1) Tính xác suất để có 80 sản phẩm loại A. 2) Tính xác suất để có từ 80 đến 85 sản phẩm loại A. p dụng công thức Bernoulli với n = 121, p = 0,66, ta có: 1) Xác suất để có 80 sản phẩm loại A là 80 80 41 80 80 41 121 121 121 P (80) C p q C (0, 66) (0, 34) 0,076.== = 2) Xác suất để có từ 80 đến 85 sản phẩm loại A là 85 85 85 k k 121 k k k 121 k 121 121 121 k80 k80 k80 P (k) C p q C (0, 66) (0,34) 0,3925. −− == = == = ∑∑ ∑ Printed with FinePrint trial version - purchase at www.fineprint.com 9 Bài 1.6: Có ba cửa hàng I, II và III cùng kinh doanh sản phẩm Y. Tỉ lệ sản phẩm loại A trong ba cửa hàng I, II và III lần lượt là 70%, 75% và 50%. Một khách hàng chọn nhẫu nhiên một cửa hàng và từ đó mua một sản phẩm a) Tính xác suất để khách hàng mua được sản phẩm loại A. b) Giả sử đã mua được sản phẩm loại A. Theo bạn, khả năng người khách hàng ấy đã chọn cửa hàng nào là nhiều nhất? Lời giải Tóm tắt: Cửa hàng I II III Tỉ lệ loại A 70% 75% 50% Chọn nhẫu nhiên một cửa hàng và từ đó mua một sản phẩm. a) Tính xác suất để khách hàng mua được sản phẩm loại A. Gọi B là biến cố sản phẩm chọn mua thuộc loại A. A 1 , A 2 , A 3 lần lượt là các biến cố chọn cửa hàng I, II, III. Khi đó A 1 , A 2 , A 3 là một hệ đầy đủ, xung khắc từng đôi và P(A 1 ) = P(A 2 ) = P(A 3 ) = 1/3. Theo công thức xác suất đầy đủ, ta có: P(B) = P(A 1 )P(B/A 1 ) + P(A 2 )P(B/ A 2 )+ P(A 3 )P(B/A 3 ) Theo giả thiết, P(B/A 1 ) = 70% = 0,7; P(B/A 2 ) = 75% = 0,75; P(B/A 3 = 50% = 0,5. Suy ra P(B) = 0,65 = 65%. Vậy xác suất để khách hàng mua được sản phẩm loại A là 65%. b) Giả sử đã mua được sản phẩm loại A. Theo bạn, khả năng người khách hàng ấy đã chọn cửa hàng nào là nhiều nhất? Giả sử đã mua được sản phẩm loại A. Khi đó biến cố B đã xảy ra. Do đó, để biết sản phẩm loại A đó có khả năng khách hàng ấy đã chọn cửa hàng nào là nhiều nhất ta cần so sánh các xác suất có điều kiện P(A 1 /B), 10 P(A 2 /B) và P(A 3 /B). Nếu P(A i /B) là lớn nhất thì cửa hàng thứ i có nhiều khả năng được chọn nhất. Theo công thức Bayes ta có: 11 1 22 2 33 3 P(A )P(B/A ) (1 / 3).0,7 70 P(A /B) ; P(B) 0, 65 195 P(A )P(B/A ) (1 / 3).0,75 75 P(A /B) ; P(B) 0, 65 195 P(A )P(B/A ) (1 / 3).0,5 50 P(A /B) . P(B) 0, 65 195 === === === Vì P(A 2 /B) > P(A 1 /B) > P(A 3 /B) nên cửa hàng II có nhiều khả năng được chọn nhất. Bài 1.7: Có hai hộp I và II mỗi hộp chứa 12 bi, trong đó hộp I gồm 8 bi đỏ, 4 bi trắng; hộp II gồm 5 bi đỏ, 7 bi trắng. Lấy ngẫu nhiên từ hộp I ba bi rồi bỏ sang hộp II; sau đó lấy ngẫu nhiên từ hộp II bốn bi. a) Tính xác suất để lấy được ba bi đỏ và một bi trắng từ hộp II. b) Giả sử đã lấy được ba bi đỏ và một bi trắng từ hộp II. Tìm xác suất để trong ba bi lấy được từ hộp I có hai bi đỏ và một bi trắng. Lời giải Gọi A là biến cố chọn được 3 bi đỏ và 1 bi trắng từ hộp II. A i (i = 0, 1, 2, 3) là biến cố có i bi đỏ và (3-i) bi trắng có trong 3 bi chọn ra từ hộp I. Khi đó A 0 , A 1 , A 2 , A 3 là một hệ đầy đủ, xung khắc từng đôi và ta có: 03 84 0 3 12 12 84 1 3 12 21 84 2 3 12 30 84 3 3 12 4 P(A ) ; 220 48 P(A ) ; 220 112 P(A ) ; 220 56 P(A ) . 220 CC C CC C CC C CC C == == == == a) Tính xác suất để lấy được 3 bi đỏ và 1 bi trắng từ hộp II. Printed with FinePrint trial version - purchase at www.fineprint.com 11 Theo công thức xác suất đầy đủ, ta có: P(A)=P(A 0 )P(A/A 0 )+P(A 1 )P(A/A 1 )+P(A 2 )P(A/A 2 )+P(A 3 )P(A/A 3 ) Theo công thức tính xác suất lựa chọn, ta có 31 510 0 4 15 31 69 1 4 15 31 78 2 4 15 31 87 3 4 15 100 P(A / A ) ; 1365 180 P(A / A ) ; 1365 280 P(A / A ) ; 1365 392 P(A / A ) . 1365 CC C CC C CC C CC C == == == == Suy ra xác suất cần tìm là P(A) = 0,2076. b) Giả sử đã lấy được 3 bi đỏ và 1 bi trắng từ hộp II. Tìm xác suất để trong 3 bi lấy được từ hộp I có 2 bi đỏ và 1 bi trắng. Giả sử đã lấy được 3 bi đỏ và 1 bi trắng từ hộp II. Khi đó biến cố A đã xảy ra. Do dó xác suất để trong 3 bi lấy được từ hộp I có 2 bi đỏ và 1 bi trắng trong trường hợp này chính là xác suất có điều kiện P(A 2 /A). p dụng công thức Bayes, ta có: 22 2 112 280 . P(A )P(A/A ) 220 1365 P(A /A) 0, 5030. P(A) 0, 2076 === Vậy xác suất cần tìm là P(A 2 /A) = 0,5030. Bài 1.8: Có ba hộp mỗi hộp đựng 5 viên bi trong đó hộp thứ nhất có 1 bi trắng, 4 bi đen; hộp thứ hai có 2 bi trắng, 3 bi đen; hộp thứ ba có 3 bi trắng, 2 bi đen. a) Lấy ngẫu nhiên từ mỗi hộp một bi. 1) Tính xác suất để được cả 3 bi trắng. 2) Tính xác suất được 2 bi đen, 1 bi trắng. 3) Giả sử trong 3 viên lấy ra có đúng 1 bi trắng.Tính xác suất để bi trắng đó là của hộp thứ nhất. b) Chọn ngẫu nhiên một hộp rồi từ hộp đó lấy ngẫu nhiên ra 3 bi. Tính xác suất được cả 3 bi đen. 12 Lời giải a) Gọi A j (j = 1, 2, 3) là biến cố lấy được bi trắng từ hộp thứ j. Khi đó A 1 , A 2 , A 3 độc lập và 11 22 33 14 P(A ) ; P(A ) ; 55 23 P(A ) ; P(A ) ; 55 32 P(A ) ;P(A ) . 55 == == == 1) Gọi A là biến cố lấy được cả 3 bi trắng. Ta có 123 A AAA.= Suy ra P(A) = P(A 1 ) P(A 2 ) P(A 3 ) = 0,048. 2) Gọi B là biến cố lấy 2 bi đen, 1 bi trắng. Ta có 123 123 123 B AAA AAA AAA=++ Suy ra P(B) =0,464 . 3) Giả sử trong 3 viên lấy ra có đúng 1 bi trắng. Khi đó biến cố B đã xảy ra. Do đó xác suất để bi trắng đó là của hộp thứ nhất trong trường hợp này chính là xác suất có điều kiện P(A 1 /B). Theo công thức Nhân xác suất ta có: P(A 1 B) = P(B)P(A 1 /B) Suy ra 1 1 P(A B) P(A /B) . P(B) = Mà 1123 A BAAA= nên lý luận tương tự như trên ta được P(A 1 B) = 0,048. Suy ra P(A 1 /B) =0,1034 . b) Chọn ngẫu nhiên một hộp rồi từ hộp đó lấy ngẫu nhiên ra 3 bi. Tính xác suất được cả 3 bi đen. Gọi A là biến cố lấy được cả 3 bi đen. A 1 , A 2 , A 3 lần lượt là các biến cố chọn được hộp I, II, III. Khi đó A 1 , A 2 , A 3 là một hệ đầy đủ, xung khắc từng đôi và P(A 1 ) = P(A 2 ) = P(A 3 ) = 1/3. Theo công thức xác suất đầy đủ, ta có: P(A) = P(A 1 )P(A/A 1 ) + P(A 2 )P(A/ A 2 )+ P(A 3 )P(A/A 3 ) Theo công thức xác suất lựa chọn, ta có: Printed with FinePrint trial version - purchase at www.fineprint.com 13 03 03 23 14 123 33 55 CC CC 41 P(A/A ) = ;P(A/A ) = ;P(A/A ) =0. 10 10 CC == Suy ra P(A) = 0,1667. Bài 1.9: Có 20 hộp sản phẩm cùng lọai, mỗi hộp chứa rất nhiều sản phẩm, trong đó có 10 hộp của xí nghiệp I, 6 hộp của xí nghiệp II và 4 hộp của xí nghiệp III. Tỉ lệ sản phẩm tốt của các xí nghiệp lần lượt là 50%, 65% và 75%. Lấy ngẫu nhiên ra một hộp và chọn ngẫu nhiên ra 3 sản phẩm từ hộp đó. a) Tính xác suất để trong 3 sản phẩm chọn ra có đúng 2 sản phẩm tốt. b) Giả sử trong 3 sản phẩm chọn ra có đúng 2 sản phẩåm tốt. Tính xác suất để 2 sản phẩm tốt đó của xí nghiệp I. Lời giải Gọi A là biến cố trong 3 sản phẩm chọn ra có đúng 2 sản phẩm tốt. A j (j = 1, 2, 3) là biến cố chọn được hộp của xí nghiệp thứ j. Khi đó A 1 , A 2 , A 3 là một đầy đủ, xung khắc từng đôi và ta có: 1 10 1 1 20 1 6 2 1 20 1 4 3 1 20 10 P(A ) ; 20 6 P(A ) ; 20 4 P(A ) . 20 C C C C C C == == == Mặt khác, từ giả thiết, theo công thức Bernoulli, ta có 22 13 22 23 22 33 P(A / A ) C (0, 5) (1 0, 5) 0,375 P(A / A ) C (0,65) (1 0, 65) 0, 443625 P(A / A ) C (0,75) (1 0, 25) 0, 421875 =−= =−= =−= Theo công thức xác suất đầy đủ, ta có P(A) = P(A 1 )P(A/A 1 ) + P(A 2 )P(A/A 2 ) + P(A 3 )P(A/A 3 ) = (10/20).0,375 + (6/20). 0,443625 + (4/20). 0,421875 = 0,4050. b) Giả sử trong 3 sản phẩm chọn ra có đúng 2 sản phẩåm tốt. Khi đó, biến cố A đã xảy ra. Do đó, xác suất để 2 sản phẩm tốt đó của xí nghiệp I chính là xác suất có điều kiện P(A 1 /A). 14 p dụng Công thức Bayes và sử dụng kết quả vừa tìm được ở câu a) ta có 11 1 P(A )P(A/A ) (10/20).0,375 P(A /A) 0, 4630. P(A) 0,4050 === Bài 1.10: Có 10 sinh viên đi thi, trong đó có 3 thuộc loại giỏi, 4 khá và 3 trung bình. Trong số 20 câu hỏi thi qui đònh thì sinh viên lọai giỏi trả lời được tất cả, sinh viên khá trả lời được 16 câu còn sinh viên trung bình được 10 câu. Gọi ngẫu nhiên một sinh viên và phát một phiếu thi gồm 4 câu hỏi thì anh ta trả lời được cả 4 câu hỏi. Tính xác suất để sinh viên đó thuộc loại khá. Lời giải Tóm tắt: Xếp loại sinh viên Giỏi Khá Trung bình Số lượng 3 4 3 Số câu trả lời được/20 20 16 10 Gọi A là biến cố sinh viên trả lời được cả 3 câu hỏi. A 1 , A 2 , A 3 lần lượt là các biến cố sinh viên thuộc loại Giỏi, Khá; Trung bình. Yêu cầu của bài toán là tính xác suất có điều kiện P(A 2 /A). Các biến cố A 1 , A 2 , A 3 là một hệ đầy đủ, xung khắc từng đôi, và ta có: P(A 1 ) = 3/10; P(A 2 ) = 4/10; P(A 3 ) = 3/10. Theo công thức Bayes, ta có 22 2 P(A )P(A/A ) P(A /A) . P(A) = Mặt khác, theo công thức xác suất đầy đủ, ta có P(A) = P(A 1 )P(A/A 1 ) + P(A 2 )P(A/A 2 ) + P(A 3 )P(A/A 3 ). Theo công thức tính xác suất lựa chọn, ta có: 4 20 1 4 20 40 16 4 2 4 20 40 10 10 3 4 20 C P(A / A ) 1; C C C 1820 P(A / A ) ; C4845 CC 210 P(A / A ) . C4845 == == == Printed with FinePrint trial version - purchase at www.fineprint.com 15 Suy ra P(A 2 /A) = 0,3243. Bài 1.11: Có hai hộp I và II, trong đó hộp I chứa 10 bi trắng và 8 bi đen; hộp II chứa 8 bi trắng và 6 bi đen. Từ mỗi hộp rút ngẫu nhiên 2 bi bỏ đi, sau đó bỏ tất cả các bi còn lại của hai hộp vào hộp III (rỗng). Lấy ngẫu nhiên 2 bi từ hộp III. Tính xác suất để trong 2 bi lấy từ hộp III có 1 trắng, 1 đen. Lời giải Gọi A là biến cố bi lấy được 1 trắng, 1 đen. A j (j = 0, 1, 2, 3, 4) là biến cố có j bi trắng và (4-j) bi đen có trong 4 bi bỏ đi (từ cả hai hộp I và II). Khi đó A 0 , A 1 , A 2 , A 3 , A 4 là một hệ đầy đủ, xung khắc từng đôi. Theo công thức xác suất đầy đủ, ta có P(A) = P(A 0 )P(A/A 0 ) + P(A 1 )P(A/A 1 ) + P(A 2 )P(A/A 2 )+ P(A 3 )P(A/A 3 ) + P(A 4 )P(A/A 4 ). trong đó 11 18 10 0 2 28 CC 10 P(A/A ) = 21 C = (Vì khi A 0 đã xảy ra thì trong hộp III có 28 bi gồm 18 trắng , 10 đen). Tương tự, 11 11 17 11 16 12 12 22 28 28 11 11 15 13 14 14 34 22 28 28 CC CC 187 32 P(A/A ) = ;P(A/A ) = ; 378 63 CC CC CC 65 14 P(A/A ) = ;P(A/A ) = . 126 27 CC == == Bây giờ ta tính P(A 0 ); P(A 1 ); P(A 2 ); P(A 3 ); P(A 4 ). Gọi B i , C i (i = 0, 1, 2) lần lượt là các biến cố có i bi trắng và (2 - i) bi đen có trong 2 bi được chọn ra từ hộp I, hộp II. Khi đó - B 0 , B 1 , B 2 xung khắc và ta có: 02 11 20 10 8 10 8 10 8 012 222 18 18 18 28 80 5 P(B ) ; P(B ) ; P(B ) . 153 153 17 CC CC CC CCC == == == - C 0 , C 1 , C 2 xung khắc và ta có: 02 11 20 86 86 86 012 222 14 14 14 15 48 28 P(C ) ;P(C ) ;P(C ) . 91 91 91 CC CC CC CCC == == == 16 - B i và C j độc lập. - Tổng số bi trắng có trong 4 bi chọn ra phụ thuộc vào các biến cố B i và C j theo bảng sau: C 0 C 1 C 2 B 0 0 1 2 B 1 1 2 3 B 2 2 3 4 A 0 = B 0 C 0 ⇒ P(A 0 ) = P(B 0 )P(C 0 ) = 20/663. A 1 = B 0 C 1 + B 1 C 0 ⇒ P(A 1 ) = P(B 0 )P(C 1 ) + P(B 1 )P(C 0 ) = 848/4641. A 2 = B 0 C 2 + B 1 C 1 + B 2 C 0 ⇒ P(A 2 ) = P(B 0 )P(C 2 )+P(B 1 )P(C 1 )+P(B 2 )P(C 0 ) =757/1989. A 3 = B 1 C 2 + B 2 C 1 ⇒ P(A 3 ) = P(B 1 )P(C 2 )+P(B 2 )P(C 1 ) = 4400/13923. A 4 = B 2 C 2 ⇒ P(A 4 ) = P(B 2 )P(C 2 ) = 20/221. Từ đó suy ra P(A) = 0,5080. Bài 1.12: Có hai hộp cùng cỡ. Hộp thứ nhất chứa 4 bi trắng 6 bi xanh, hộp thứ hai chứa 5 bi trắng và 7 bi xanh. Chọn ngẫu nhiên một hộp rồi từ hộp đó lấy ra 2 bi thì được 2 bi trắng. Tính xác suất để viên bi tiếp theo cũng lấy từ hộp trên ra lại là bi trắng. Lời giải Gọi A 1 là biến cố 2 bi lấy đầu tiên là bi trắng. A 2 là biến cố bi lấy lần sau là bi trắng. Bài tóan yêu cầu tính P(A 2 /A 1 ). Theo công thức nhân xác suất, ta có P(A 1 A 2 ) = P(A 1 ) P(A 2 /A 1 ). Suy ra 12 21 1 P(A A ) P(A / A ) P(A ) = . Bây giờ ta tính các xác suất P(A 1 ) và P(A 1 A 2 ). Gọi B 1 , B 2 lần lượt là các biến cố chọn được hộp I, hộp II. Khi đó B 1 , B 2 là một hệ đầy đủ, xung khắc từng đôi và ta có: P(B 1 ) = P(B 2 ) = 0,5. Theo công thức xác suất đầy đủ, ta có P(A 1 ) = P(B 1 ) P(A 1 / B 1 ) + P(B 2 ) P(A 1 / B 2 ) Printed with FinePrint trial version - purchase at www.fineprint.com 17 Mà 20 46 11 2 10 20 57 12 2 12 6 P(A / B ) ; 45 10 P(A / B ) . 66 CC C CC C == == nên P(A 1 ) = 47/330. Theo công thức xác suất đầy đủ, ta có P(A 1 A 2 ) = P(B 1 ) P(A 1 A 2 / B 1 ) + P(B 2 ) P(A 1 A 2 / B 2 ). Mà 12 1 1 1 2 11 12 2 1 2 2 12 62 1 P(A A / B ) P(A / B )P(A / A B ) ; 45 8 30 10 3 1 P(A A /B ) P(A /B )P(A /A B ) . 66 10 22 === === nên P(A 1 A 2 ) = 13/330. Suy ra xác suất cần tìm là P(A 2 /A 1 ) =13/47= 0,2766. Bài 1.13: Một lô hàng gồm a sản phẩm loại I và b sản phẩm loại II được đóng gới để gửi cho khách hàng. Nơi nhận kiểm tra lại thấy thất lạc 1 sản phẩm. Chọn ngẫu nhiên ra 1 sản phẩm thì thấy đó là sản phẩm loại I. Tính xác suất để sản phẩm thất lạc cũng thuộc loại I. Lời giải Gọi A là biến cố sản phẩm được chọn ra thuộc lọai I. A 1 , A 2 lần lượt là các biến cố sản phẩm thất lạc thuộc loại I, loại II. Yêu cầu của bài toán là tính xác suất có điều kiện P(A 1 /A). Ta thấy A 1 , A 2 là một hệ đầy đủ, xung khắc từng đôi và 10 01 ab ab 12 11 ab ab CC CC ab P(A ) ; P(A ) . Cab Cab ++ == == ++ Theo công thức Bayes, ta có 11 11 1 1122 P(A )P(A / A ) P(A )P(A / A ) P(A / A) P(A) P(A )P(A / A ) P(A )P(A / A ) == + Mà 10 10 a1 b a b1 12 11 ab1 ab1 CC CC a1 a P(A / A ) ; P(A / A ) . C ab1 C ab1 −− +− +− − == == +− +− nên 18 1 aa1 . a1 abab1 P(A / A) aa1 b a ab1 . abab1abab1 − − ++− == − +− + + +− + +− Bài 1.14: Có 3 hộp phấn, trong đó hộp I chứa 15 viên tốt và 5 viên xấu, hộp II chứa 10 viên tốt và 4 viên xấu, hộp III chứa 20 viên tốt và 10 viên xấu. Ta gieo một con xúc xắc cân đối. Nếu thấy xuất hiện mặt 1 chấm thì ta chọn hộp I; nếu xuất hiện mặt 2 hoặc 3 chấm thì chọn hộp II, còn xuất hiện các mặt còn lại thì chọn hộp III. Từ hộp được chọn lấy ngẫu nhiên ra 4 viên phấn. Tìm xác suất để lấy được ít nhất 2 viên tốt. Lời giải Gọi A là biến cố chọn được ít nhất 2 viên phấn tốt. A j (j =1,2, 3) là biến cố chọn được hộp thứ j. Khi đó A 1 , A 2 , A 3 là hệ đầy đủ, xung khắc từng đôi và ta có: - A 1 xảy ra khi và chỉ khi thảy con xúc xắc, xuất hiện mặt 1 chấm, do đó P(A 1 ) = 1/6. - Tương tự, P(A 2 ) = 2/6; P(A 3 ) = 3/6. Theo công thức xác suất đầy đủ, ta có P(A) = P(A 1 )P(A/A 1 ) + P(A 2 )P(A/A 2 ) + P(A 3 )P(A/A 3 ). Từ giả thiết ta có: 22 31 40 15 5 15 5 15 5 1 444 20 20 20 22 31 40 10 4 10 4 10 4 2 444 14 14 14 22 31 40 20 10 20 10 20 10 3 444 30 30 30 C C C C C C 4690 P(A / A ) ; C C C 4845 CC CC CC 960 P(A / A ) ; C C C 1001 C C C C C C 24795 P(A / A ) . C C C 27405 =++= =++= =++= Suy ra P(A) =0,9334. Bài 1.15: Có hai kiện hàng I và II. Kiện thứ nhất chứa 10 sản phẩm, trong đó có 8 sản phẩm loại A. Kiện thứ hai chứa 20 sản phẩm, trong đó có 4 sản phẩm loại A. Lấy từ mỗi kiện 2 sản phẩm. Sau đó, trong 4 sản phẩm thu được chọn ngẫu nhiên 2 sản phẩm. Tính xác suất để trong 2 sản phẩm chọn ra sau cùng có đúng 1 sản phẩm loại A. Lời giải Printed with FinePrint trial version - purchase at www.fineprint.com 19 Gọi C là biến cố trong 2 sản phẩm chọn ra sau cùng có đúng 1 sản phẩm loại A. A j (j = 0, 1, 2, 3, 4 ) là biến cố có j sản phẩm lọai A và (4-j) sản phẩm lọai B có trong 4 sản phẩm lấy từ hai kiện I và II. Khi đó A 0 , A 1 , A 2 , A 3 , A 4 là một hệ đầy đủ, xung khắc từng đôi. Theo công thức xác suất đầy đủ, ta có P(C) = P(A 0 )P(C/A 0 ) + P(A 1 )P(C/A 1 ) + P(A 2 )P(C/A 2 ) + P(A 3 )P(C/A 3 ) + P(A 4 )P(C/A 4 ). Ta có: 0 11 13 1 2 4 11 22 2 2 4 11 31 3 2 4 4 P(C/A ) = 0; CC 3 P(C/A ) = 6 C CC 4 P(C/A ) = 6 C CC 3 P(C/A ) = 6 C P(C/A ) =0. = = = Bây giờ ta tính P(A 1 ); P(A 2 ); P(A 3 ). Gọi B i , C i (i = 0, 1, 2) lần lượt là các biến cố có i sp A và (2 - i) sp B có trong 2 sp được chọn ra từ kiện I, kiện II. Khi đó - B 0 , B 1 , B 2 xung khắc từng đôi và ta có: 02 82 0 2 10 11 82 1 2 10 20 82 2 2 10 1 P(B ) ; 45 16 P(B ) ; 45 28 P(B ) . 45 CC C CC C CC C == == == - C 0 , C 1 , C 2 xung khắc từng đôi và ta có: 20 02 416 0 2 20 11 416 1 2 20 20 416 2 2 20 120 P(C ) ; 190 64 P(C ) ; 190 6 P(C ) ; 190 CC C CC C CC C == == == - B i và C j độc lập. - Tổng số sp A có trong 4 sp chọn ra phụ thuộc vào các biến cố B i và C j theo bảng sau: C 0 C 1 C 2 B 0 0 1 2 B 1 1 2 3 B 2 2 3 4 Ta có: A 1 = B 0 C 1 + B 1 C 0 . A 2 = B 0 C 2 + B 1 C 1 + B 2 C 0 . A 3 = B 1 C 2 + B 2 C 1 . Từ đây, nhờ các công thưcù cộng và nhân xác suất ta tính được: P(A 1 ) = 0,2320 ; P(A 2 ) = 0,5135 ; P(A 3 ) = 0,2208 . Suy ra xác suất cần tìm là P(C) = 0,5687. Bài 1.16: Một xạ thủ bắn 10 viên đạn vào một mục tiêu. Xác suất để 1 viên đạn bắn ra trúng mục tiêu là 0,8 . Biết rằng: Nếu có 10 viên trúng thì mục tiêu chắc chắn bò diệt. Nếu có từ 2 đến 9 viên trúng thì mục tiêu bò diệt vơiù xác suất 80%. Nếu có 1 viên trúng thì mục tiêu bò diệt với xác suất 20%. a) Tính xác suất để mục tiêu bò diệt. b) Giả sử mục tiêu đã bò diệt. Tính xác suất có 10 viên trúng. Lời giải Tóm tắt: - Số viên bắn ra: 10 viên. - Xác suất trúng của mỗi viên: 0,8. Printed with FinePrint trial version - purchase at www.fineprint.com [...]... C1 C1 81 9 9 ; = 2 C18 15 3 P(B / A1 ) = C1 C1 72 9 8 = ; 2 C18 15 3 P(B / A 2 ) = C1 C1 63 9 7 = ; 2 C18 15 3 P(B / A 3 ) = C1 C1 54 9 6 = 2 C18 15 3 Suy ra xác suất cần tìm là: P(B) = 0,4235 2 = 3(0, 6) (0, 4) = 0, 288; P(A 2 ) = C2 p2 q1 = 3(0, 6)2 (0, 4 )1 = 0, 432; 3 P(A 3 ) = C3p3q0 = (0, 6)3 = 0, 216 3 23 Printed with FinePrint trial version - purchase at www.fineprint.com c) Giả sử đã lấy được 1sp... C C P(B ) = C C C 0 P(B0 ) = P(A3) = p = (0, 8) ; 10 10 6 3 3 4 = 4 ; 12 0 = 36 ; 12 0 = 60 ; 12 0 = 20 12 0 10 P(A2 ) = 1 − P(A0 ) − P(A1 ) − P(A3) = 1 − (0, 2 )10 − 10 (0, 8)(0, 2)9 − (0, 8 )10 1 Suy ra P(A) = 0,8 215 6 1 2 3 4 10 2 b) Giả sử mục tiêu đã bò diệt Khi đó biến cố A đã xảy ra Do đó xác suất có 10 viên trúng trong trường hợp này chính là xác suất có điều kiện P(A3/A) Theo công thức Bayes, ta... được 2sp tốt, 1sp xấu từ lô II Lời giải Gọi Aj (j = 0 ,1, 2, 3) là biến cố có j sản phẩm tốt và (3-j) sản phẩm xấu có trong 3 sản phẩm được chọn ra từ lô II Khi đó A0, A1, A2, A3 là một hệ đầy đủ, xung khắc từng đôi Theo công thức Bernoulli ta có: P(A 0 ) = C0 p0 q3 = (0, 4)3 = 0, 064; 3 P(A1 ) = C1 p1q2 3 1 C1 C1 77 11 7 = ; 2 C18 15 3 P(A / A 3 ) = A2D = A2B0 C1 C1 80 10 8 ; = 2 C18 15 3 P(A / A 2... 3 4 5 C1C1 81 9 9 ; = 2 C18 15 3 P(A / A1 ) = Nhận xét rằng tổng số sản phẩm loại A có trong 5 sản phẩm thu được phụ thuộc vào các biến cố Ai và Bj theo bảng sau: C1 C1 72 12 6 = 2 C18 15 3 Suy ra xác suất cần tìm là: P(A) = 0,5035 b) Gọi B là biến cố lấy được 1sp tốt, 1sp xấu từ lô I, trong đó sp tốt có trong lô I từ trước Theo công thức xác suất đầy đủ, ta có: P(B) = P(A0)P(B/A0) + P(A1)P(B/A1) + P(A2)P(B/A2)... được 1sp tốt, 1sp xấu từ lô I Theo công thức xác suất đầy đủ, ta có: P(A) = P(A0)P(A/A0) + P(A1)P(A/A1) + P(A2)P(A/A2) + P(A3)P(A/A3) Từ giả thiết ta suy ra trong lô I có 15 .60% = 9 sp tốt và 6 sp xấu Do đó theo công thức tính xác suất lựa chọn, ta có: P(A / A 0 ) = A0 A1 A2 Suy ra D = A0 B2 + A1B1 + A2B0 B0 0 1 2 B1 1 2 3 B2 2 3 4 và Từ đây, ta tính được P(D) = 0,236 ; P(A2D) = 0, 012 Suy ra xác suất. ..Số viên trúng 1 2-9 10 Xác suất mục tiêu bò diệt 20% 80% 10 0% a) Gọi A là biến cố mục tiêu bò diệt A0, A1, A2, A3 lần lượt là các biến cố có 0; 1; 2-9 ; 10 viên trúng Khi đó, A0, A1, A2, A3 là một hệ đầy đủ, xung khắc từng đôi và giả thiết cho ta: P(A/A0) = 0; P(A/A1) = 20% = 0,2; P(A/A2) = 80%= 0,8; P(A/A3) = 10 0% = 1 Lời giải Gọi Aj (j = 0, 1, 2) là các biến cố có j sản phẩm loại A và (2-j) sản phẩm... 0,0508 Bài 1. 18: Có hai lô hàng, mỗi lô chứa 60% sản phẩm tốt, trong đó lô I chứa 15 sản phẩm, lô II chứa rất nhiều sản phẩm Từ lô II lấy ra 3 sản phẩm bỏ vào lô I, sau đó từ lô I lấy ra 2 sản phẩm a) Tính xác suất lấy được 1sp tốt, 1sp xấu từ lô I b) Tính xác suất lấy được 1sp tốt, 1sp xấu từ lô I, trong đó sp tốt có trong lô I từ trước c) Giả sử đã lấy được 1sp tốt, 1sp xấu từ lô I Tính xác suất đã... ) = C 2p2q 0 = (0, 6)2 = 0, 36 2 P(A) = P(A0)P(A/A0) + P(A1)P(A/A1) + P(A2)P(A/A2) + P(A3)P(A/A3) Theo công thức Bernoulli với n =10 ; p = 0,8, q = 0,2, ta có P(A0 ) = q10 = (0, 2 )10 ; P(A1) = C1 pq9 = 10 (0, 8)(0, 2)9; 10 - B0, B1, B2 , B3 xung khắc từng đôi và theo công thức tính xác suất lựa chọn với N = 10 , NA = 6, n= 3 ta có (vì lô hàng gồm 10 sản phẩm với tỉ lệ sản phẩm loại A là 60%, nghóa là lô... sản phẩm do máy sản xuất Gọi Bj (j = 0, 1, 2, 3) là các biến cố có j sản phẩm loại A và (3-j) sản phẩm không thuộc loại A có trong 3 sản phẩm lấy từ lô hàng Khi đó - A0, A1, A2 xung khắc từng đôi và theo công thức Bernoulli với n = 2; p = 0,6; q = 0,4 ta có: P(A 0 ) = C 2p0q 2 = (0, 4)2 = 0 ,16 ; 0 P(A1 ) = C 2p1q1 = 2(0, 6)(0, 4) = 0, 48; 1 Theo công thức xác suất đầy đủ, ta có: P(A 2 ) = C 2p2q 0 =... lập, các công thức cộng và nhân xác suất cho ta: P(C) = P(A0)P(B0)+ P(A1)P(B1)+ P(A2)P(B2) = 0,3293 22 b) Gọi D là biến cố có 2 sản phẩm loại A trong 5 sản phẩm có được Giả sử trong 5 sản phẩm trên có 2 sản phẩm loại A Khi đó biến cố D đã xảy ra Do đó, xác suất để 2 sản phẩm loại A đó đều do máy sản xuất chính là xác suất có điều kiện P(A2/D) Theo công thức nhân xác suất ta có: P(A 2D) P(D) P(A 2 . version - purchase at www.fineprint.com 25 22 2 77 0, 432. P(A )P(A / A ) 15 3 P(A / A) 0, 4 318 . P(A) 0, 5035 === -- -- - -- - -- - -- - * -- -- - -- - -- - -- Printed. có: 11 99 0 2 18 11 10 8 1 2 18 11 11 7 2 2 18 11 12 6 3 2 18 CC 81 P(A / A ) ; C153 CC 80 P(A / A ) ; C153 CC 77 P(A / A ) ; C153 CC 72 P(A / A ) . C153

Ngày đăng: 21/12/2013, 22:16

TỪ KHÓA LIÊN QUAN

w