1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Bài giải mạch P16

60 223 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 60
Dung lượng 1,85 MB

Nội dung

Chapter 16, Solution 1. Consider the s-domain form of the circuit which is shown below. I(s) + − 1 1/s 1/s s 22 2 )23()21s( 1 1ss 1 s1s1 s1 )s(I ++ = ++ = ++ =         = t 2 3 sine 3 2 )t(i 2t- =)t(i A)t866.0(sine155.1 -0.5t Chapter 16, Solution 2. 8/s s s 4 2 + − + V x − 4 V)t(u)e2e24(v 3 8 j 3 4 s 125.0 3 8 j 3 4 s 125.0 s 25.0 16 )8s8s3(s 2s 16V s 32s16 )8s8s3(V 0VsV)s4s2( s )32s16( )8s4(V 0 s 8 4 0V 2 0V s s 4 V t)9428.0j3333.1(t)9428.0j3333.1( x 2 x 2 x x 2 x 2 x xx x −−+− ++−=             −+ − + ++ − +−= ++ + −= + =++ =+++ + −+ = + − + − + − v x = Vt 3 22 sine 2 6 t 3 22 cose)t(u4 3/t43/t4         −         − −− Chapter 16, Solution 3. s 5/s 1/2 + V o − 1/8 Current division leads to: )625.0s(16 5 s1610 5 s 8 1 2 1 2 1 s 5 8 1 V o + = + =             ++ = v o (t) = ( ) V)t(ue13125. t625.0− −0 Chapter 16, Solution 4. The s-domain form of the circuit is shown below. 6 s 10/s 1/(s + 1) + − + V o (s) − Using voltage division,       +++ =       +++ = 1s 1 10s6s 10 1s 1 s106s s10 )s(V 2 o 10s6s CBs 1s A )10s6s)(1s( 10 )s(V 22 o ++ + + + = +++ = )1s(C)ss(B)10s6s(A10 22 ++++++= Equating coefficients : 2 s: -ABBA0 =→+= 1 s: A5-CCA5CBA60 =→+=++= 0 s : -10C-2,B,2AA5CA1010 ===→=+= 22222 o 1)3s( 4 1)3s( )3s(2 1s 2 10s6s 10s2 1s 2 )s(V ++ − ++ + − + = ++ + − + = =)t(v o V)tsin(e4)tcos(e2e2 -3t-3t-t −− Chapter 16, Solution 5. s 2 2s 1 + 2 I o s () () A)t(ut3229.1sin7559.0e or A)t(ueee3779.0eee3779.0e)t(i 3229.1j5.0s )646.2j)(3229.1j5.1( )3229.1j5.0( 3229.1j5.0s )646.2j)(3229.1j5.1( )3229.1j5.0( 2s 1 )3229.1j5.0s)(3229.1j5.0s)(2s( s 2 Vs I )3229.1j5.0s)(3229.1j5.0s)(2s( s2 2ss s2 2s 1 2 s 2 1 s 1 1 2s 1 V t2 t3229.1j2/t90t3229.1j2/t90t2 o 22 2 o 2 −= ++= −+ ++ +− + ++ −− −− + + = −++++ == −++++ =         ++ + =             ++ + = − −°−−°−− Chapter 16, Solution 6. 2 2s 5 + I o 10/s s Use current division. t3sine 3 5 t3cose5)t(i 3)1s( 5 3)1s( )1s(5 10s2s s5 2s 5 s 10 2s 2s I tt o 22222 o −− −= ++ − ++ + = ++ = + ++ + = Chapter 16, Solution 7. The s-domain version of the circuit is shown below. 1/s 1 I x + 2s 1 2 +s – Z 2 2 2 s21 1s2s2 s21 s2 1 s2 s 1 )s2( s 1 1s2// s 1 1Z + ++ = + += + +=+= )5.0ss( CBs )1s( A )5.0ss)(1s( 1s2 1s2s2 s21 x 1s 2 Z V I 22 2 2 2 x ++ + + + = +++ + = ++ + + == )1s(C)ss(B)5.0ss(A1s2 222 ++++++=+ BA2:s 2 += 2CC2CBA0:s −=→+=++= -4B ,6A3 0.5A or CA5.01:constant ==→=+= 222 x 866.0)5.0s( )5.0s(4 1s 6 75.0)5.0s( 2s4 1s 6 I ++ + − + = ++ + − + = [] A)t(ut866.0cose46)t(i t5.0 x − −= Chapter 16, Solution 8. (a) )1s(s 1s5.1s s22 )s21( s 1 )s21//(1 s 1 Z 2 + ++ = + + +=++= (b) )1s(s2 2s3s3 s 1 1 1 s 1 2 1 Z 1 2 + ++ = + ++= 2s3s3 )1s(s2 Z 2 ++ + = Chapter 16, Solution 9. (a) The s-domain form of the circuit is shown in Fig. (a). = ++ + =+= s1s2 )s1s(2 )s1s(||2Z in 1s2s )1s(2 2 2 ++ + 1 1 2 s2/s 1/s s 2 (a) (b) (b) The s-domain equivalent circuit is shown in Fig. (b). 2s3 )2s(2 s23 )s21(2 )s21(||2 + + = + + =+ 2s3 6s5 )s21(||21 + + =++ =       + + +       + + ⋅ =       + + = 2s3 6s5 s 2s3 6s5 s 2s3 6s5 ||sZ in 6s7s3 )6s5(s 2 ++ + Chapter 16, Solution 10. To find Z Th , consider the circuit below. 1/s V x + 1V 2 V o 2V o - Applying KCL gives s/12 V V21 x o + =+ But xo V s /12 2 V + = . Hence s3 )1s2( V s /12 V s/12 V4 1 x xx + −=→ + = + + s3 )1s2( 1 V Z x Th + −== To find V Th , consider the circuit below. 1/s V y + 1 2 + s 2 V o 2V o - Applying KCL gives )1s(3 4 V 2 V V2 1s 2 o o o + −=→=+ + But 0V s 1 V2V ooy =+•+− )1s(s3 )2s(4 s 2s )1s(3 4 ) s 2 1(VVV oyTh + +− =       + + −=+== Chapter 16, Solution 11. The s-domain form of the circuit is shown below. 4/s s I 2 I 1 + − + − 2 4/(s + 2) 1/s Write the mesh equations. 21 I2I s 4 2 s 1 −       += (1) 21 I)2s(I-2 2s 4- ++= + (2) Put equations (1) and (2) into matrix form.             + + =       + 2 1 I I 2s2- 2-s42 2)(s4- s1 )4s2s( s 2 2 ++=∆ , )2s(s 4s4s 2 1 + +− =∆ , s 6- 2 =∆ 4s2s CBs 2s A )4s2s)(2s( )4s4s(21 I 22 2 1 1 ++ + + + = +++ +−⋅ = ∆ ∆ = )2s(C)s2s(B)4s2s(A)4s4s(21 222 ++++++=+−⋅ Equating coefficients : 2 s: BA21 += 1 s: CB2A22- ++= 0 s: C2A42 += Solving these equations leads to A 2= , 23-B = , -3C = 22 1 )3()1s( 3s23- 2s 2 I ++ − + + = 2222 1 )3()1s( 3 32 3- )3()1s( )1s( 2 3- 2s 2 I ++ ⋅+ ++ + ⋅+ + = =)t(i 1 [] A)t(u)t732.1sin(866.0)t732.1cos(e5.1e2 -t-2t −− 22 2 2 2 )3()1s( 3- )4s2s(2 s s 6- I ++ = ++ ⋅= ∆ ∆ = == )t3sin(e 3 3- )t(i t- 2 A)t(u)t732.1sin(e1.732- -t Chapter 16, Solution 12. We apply nodal analysis to the s-domain form of the circuit below. V o 10/(s + 1) + − 1/(2s) 4 s 3/s o o o sV2 4 V s 3 s V 1s 10 +=+ − + 1s 15s1510 15 1s 10 V)ss25.01( o 2 + ++ =+ + =++ 1s25.0s CBs 1s A )1s25.0s)(1s( 25s15 V 22 o ++ + + + = +++ + = 7 40 V)1s(A 1-so =+= = )1s(C)ss(B)1s25.0s(A25s15 22 ++++++=+ Equating coefficients : 2 s: -ABBA0 =→+= 1 s: C-0.75ACBA25.015 +=++= 0 s: CA25 += 740A = , 740-B = , 7135C = 4 3 2 1 s 2 3 3 2 7 155 4 3 2 1 s 2 1 s 7 40 1s 1 7 40 4 3 2 1 s 7 135 s 7 40- 1s 7 40 V 222 o +       +       ⋅+ +       + + − + = +       + + + + =         +         −= t 2 3 sine )3)(7( )2)(155( t 2 3 cose 7 40 e 7 40 )t(v 2t-2t-t- o =)t(v o V)t866.0sin(e57.25)t866.0cos(e714.5e714.5 2-t2-t-t +− Chapter 16, Solution 13. Consider the following circuit. V o 1/(s + 2) 1/s 2s I o 2 1 Applying KCL at node o, o oo V 1s2 1s s12 V 1s2 V 2s 1 + + = + + + = +

Ngày đăng: 19/10/2013, 17:15

TỪ KHÓA LIÊN QUAN

w