Bài giải mạch P18

43 274 0
Bài giải mạch P18

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

Chapter 18, Solution 1. )2t()1t()1t()2t()t('f −δ+−δ−+δ−+δ= 2jjj2j eeee)(Fj ω−ω−ωω +−−=ωω ω−ω= cos22cos2 F(ω) = ω ω−ω j ]cos2[cos2 Chapter 18, Solution 2.    << = otherwise,0 1t0,t )t(f - δ(t-1) δ(t) f ”(t) t –δ’(t-1) 1 -δ(t-1) 0 1 f ‘(t) t f"(t) = δ(t) - δ(t - 1) - δ'(t - 1) Taking the Fourier transform gives -ω 2 F(ω) = 1 - e -jω - jωe -jω F(ω) = 2 j 1e)j1( ω −ω+ ω or F ∫ ω− =ω 1 0 tj dtet)( But ∫ +−= c)1ax( a e dxex 2 ax ax () =−ω− ω− =ω ω− 1 0 2 j )1tj( j e )(F () [ ] 1ej1 1 j 2 −ω+ ω ω− Chapter 18, Solution 3. 2t2, 2 1 )t('f,2t2,t 2 1 )t(f <<−=<<−= ∫ − − ω− ω −ω− ω− ==ω 2 2 2 2 2 tj tj )1tj( )j(2 e dtet 2 1 )(F [] )12j(e)12j(e 2 1 2j2j 2 −ω−−ω− ω −= ωω− ( ) [] 2j2j2j2j 2 eeee2j 2 1 ω−ωωω −++ω− ω −= () ω+ωω− ω 2sin2j2cos4j 2 1 2 −= F( ω ) = )2cos22(sin j 2 ωω−ω ω Chapter 18, Solution 4. 1 –2δ(t–1) 2δ (t+1) –1 g’ 2 0 –2 t –2δ’(t–1) –2δ (t+1) 1 –2δ(t–1) 2δ’ (t+1) –1 g” 4δ(t) 0 –2 t 4sin4cos4 ej2e24ej2e2)(G)j( )1t(2)1t(2)t(4)1t(2)1t(2g jjjj2 +ωω−ω−= ω−−+ω+−=ωω −δ ′ −−δ−δ++δ ′ ++δ−= ′′ ω−ω−ωω )1sin(cos 4 )(G 2 −ωω+ω ω =ω Chapter 18, Solution 5. 1 0 h’(t) –1 –2δ(t) 1 t δ(t+1) –δ(t–1) 1 0 h”(t) –1 –2δ’(t) 1 t ω−ω=ω−−=ωω δ ′ −−δ−+δ= ′′ ω−ω j2sinj2j2ee)(H)j( )t(2)1t()1t()t(h jj2 H(ω) = ω ω − ω sin j2j2 2 Chapter 18, Solution 6. dtetdte)1()(F tj 0 1 1 0 tj ω− − ω− ∫∫ +−=ω )1(cos 1 tsin t tcos 1 tsin 1 tdtcosttdtcos)(F Re 2 1 0 2 0 1 0 1 1 0 −ω ω =         ω ω +ω ω +ω ω −= ω+ω−=ω − − ∫∫ Chapter 18, Solution 7. (a) f 1 is similar to the function f(t) in Fig. 17.6. )1t(f)t(f 1 −= Since ω −ω = 2 F ω j )1(cos )( =ω=ω ω )(Fe)(F j 1 ω −ω ω− j )1(cose2 j Alternatively, ) ) 2t()1t(2)t()t(f ' 1 −δ+−δ−δ= e2e(eee21)(Fj jjj2jj 1 ωωω−ω−ω− +−=+−=ωω )2cos2(e j −ω= ω− F 1 (ω) = ω −ω ω− j )1e j (cos2 (b) f 2 is similar to f(t) in Fig. 17.14. f 2 (t) = 2f(t) F 2 (ω) = 2 )cos1(4 ω ω− Chapter 18, Solution 8. (a) 2 1 tj 2 2 1 tj 1 0 tj 2 1 tj 1 0 tj )1tj(e 2 e j 4 e j 2 dte)t24(dte2)(F −ω− ω− − ω− + ω− = −+=ω ω−ω−ω− ω−ω− ∫∫ ω−ω−ω− ω+ ω − ω − ω + ω + ω =ω 2j 2 2jj 2 e)2j1( 2 e j 4 j 2 e j 22 )(F (b) g(t) = 2[ u(t+2) – u(t-2) ] - [ u(t+1) – u(t-1) ] ω ω − ω ω =ω sin22sin4 )(G Chapter 18, Solution 9. (a) y(t) = u(t+2) – u(t-2) + 2[ u(t+1) – u(t-1) ] ω ω +ω ω =ω sin 4 2sin 2 )(Y (b) )j1( e22 )1tj( e2 dte)t2()( 2 j 2 1 0 1 0 2 tj tj ω+ ω − ω =−ω− ω− − =−=ω ω−ω− ω− ∫ Z Chapter 18, Solution 10. (a) x(t) = e 2t u(t) X(ω) = 1/(2 + j ω ) (b)     < > = − − 0t,e 0t,e e t t )t( ∫∫∫ −− ω−−ωω +==ω 1 1 0 1 1 0 tjttjttj dteedteedte)t(y)(Y 1 0 t)j1( 0 1 t)j1( )j1( e j1 e ω+− + ω− = ω+− − ω−       ω+ ω−ω + ω− ω+ω − ω+ = − j1 sinjcos j1 sinjcos e 1 2 1 2 Y(ω) = [ ] )sin(cose1 1 2 1 2 ωω−ω− ω+ − Chapter 18, Solution 11. f(t) = sin π t [u(t) - u(t - 2)] ( ) ∫∫ ω−π−πω− −=π=ω 2 0 2 0 tjtjtjtj dteee j2 1 dtetsin)(F       + ∫ π+ω−π+ω−+ 2 0 t)(jt)(j dt)ee( j2 1 =       π+ω− + π−ω− π+ω− π−ω− 2 0 t)(j 2 0 t)(j )(j e e )(j 1 j2 1 =         ω+π − + ω−π − ω−ω− 2j2j e1e1 2 1 = () ω− π+π ω−π 2j 22 e22 )(2 1 = F(ω) = ( ) 1e 2j 22 − π−ω π ω− Chapter 18, Solution 12. (a) F = dtedtee)( 0 2 0 t)j1(tjt ∫∫ ∞ ω−ω− =ω = ω− = ω− 2 0 t)j1( e j1 1 ω− − ω− j1 1e 2j2 (b) ∫∫ − ω−ω− −+=ω 0 1 1 0 tjtj dte)1(dte)(H ()( ) )cos22( j 1 1e j 1 e1 j 1 jj ω+− ω =− ω +− ω ω−ω −= = ω ω− = j 2/sin4 2 2 2/ 2/sin j       ω ω ω Chapter 18, Solution 13. (a) We know that )]a()a([]at[cos +ωδ+−ωδπ=F . Using the time shifting property, )a(e)a(e)]a()a([e)]a3/t(a[cos 3/j3/ja3/j +ωδπ+−ωδπ=+ωδ+−ωδπ=π− ππ−ωπ− F (b) sin tsinsintcoscostsin)1t( π−=ππ+ππ=+π g(t) = -u(t+1) sin (t+1) Let x(t) = u(t)sin t, then 22 1 1 1)j( 1 )(X ω− = +ω =ω Using the time shifting property, 1 e e 1 1 )(G 2 j j 2 −ω = ω− −=ω ω ω (c ) Let y(t) = 1 + Asin at, then Y )]a()a([Aj)(2)( −ωδ−+ωδπ+ωπδ=ω h(t) = y(t) cos bt Using the modulation property, )]b(Y)b(Y[ 2 1 )(H −ω++ω=ω [][] )ba()ba()ba()ba( 2 Aj )b()b()(H −−ωδ−−+ωδ++−ωδ−++ωδ π +−ωδ++ωδπ=ω (d) )14j( e j e1 )1tj( e j e dte)t1()( 2 4j4j 2 4 0 2 tj 4 0 tj tj +ω ω − ω − ω =−ω− ω− − ω− =−=ω ω−ω−ω−ω− ω− ∫ I Chapter 18, Solution 14. (a) )t3cos()0(t3sin)1(t3cossint3sincost3cos)t3cos( −=−−=π−π=π+ (f )t(ut3cose)t t − −= F(ω) = ( ) () 9j1 j1 2 +ω+ ω+− (b) [] )1t(u)1t(utcos)t('g −−−ππ= g(t) t 1 -1 -1 1 - π -1 1 g’(t) t π )1t()1t()t(g)t("g 2 −πδ++πδ−π−= ω−ω π+π−ωπ−=ωω− jj22 ee)(G)(G ( ) ωπ−=−π−=ωω−π ω−ω sinj2)ee()(G jj22 G(ω) = 22 sinj2 π−ω ωπ Alternatively, we compare this with Prob. 17.7 f(t) = g(t - 1) F(ω) = G(ω)e -jω () ( ) ωω−ω − π−ω π =ω=ω jj 22 j eee)(FG 22 sin2j π−ω ωπ− = G(ω) = 22 sinj2 ω−π ωπ (c) tcos)0(tsin)1(tcossintsincostcos)1t(cos π−=π+−π=ππ+ππ=−π Let ex = )t(he)1t(u)1t(cos)t( 2)1t(2 −=−−π −− and )t(u)tcos(e)t(y t2 π= − 22 )j2( j2 )(Y π+ω+ ω+ =ω )1t(x)t(y −= ω− ω=ω j e)(X)(Y () () 2 2 j j2 ej2 )(X π+ω+ ω+ =ω ω )(He)(X 2 ω−=ω )(Xe)(H 2 ω−=ω − = () () 2 2 2j j2 ej2 π+ω+ ω+− −ω (d) Let x )t(y)t(u)t4sin(e)t( t2 −=−−= − )t(x)t(p −= where )t(ut4sine)t(y t2 = () 2 2 4j2 j2 )(Y +ω+ ω+ =ω () 16j2 j2 )(Y)(X 2 +ω− ω− =ω−=ω =ω−=ω )(X)(p () 162j 2j 2 +−ω −ω (e) 2j2j e j 1 )(23e j 8 )(Q ω−ω−         ω +ωπδ−+ ω =ω Q(ω) = 2j2j e)(23e j 6 ω−ω ωπδ−+ ω Chapter 18, Solution 15. (a) F =−=ω ω−ω 3j3j ee)( ω 3sinj2 (b) Let g ω− =ω−δ= j e2)(G),1t(2)t( =ω)(F F       ∫ ∞− t dt)t(g )()0(F j )(G ωδπ+ ω ω = )()1(2 j e2 j ωδ−πδ+ ω = ω− = ω ω− j e j 2 (c) F [] 1 2 1 )t2( ⋅=δ =ω−⋅=ω j 2 1 1 3 1 )(F 2 j 3 1 ω −

Ngày đăng: 23/10/2013, 15:15

Từ khóa liên quan

Tài liệu cùng người dùng

Tài liệu liên quan