Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 79 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
79
Dung lượng
2,35 MB
Nội dung
Chapter 4, Solution 1.
i i
o
5
Ω
8
Ω
1
Ω
+
−
1 V
3 Ω
Ω=+ 4)35(8 ,
5
1
41
1
i =
+
=
===
10
1
i
2
1
i
o
0.1A
Chapter 4, Solution 2.
,3)24(6 Ω=+ A
2
1
i
21
==i
,
4
1
i
2
1
i
1o
== ==
oo
i2v 0.5V
5
Ω
4
Ω
i
2
8
Ω
i
1
i
o
6
Ω
1 A
2 Ω
If i
s
= 1µA, then v
o
= 0.5µV
Chapter 4, Solution 3.
R
+
v
o
−
3R
i
o
3R
3R
R
+
−
3R
+
−
1 V
1.5R
V
s
(b)
(a)
(a)
We transform the Y sub-circuit to the equivalent
∆
.
,R
4
3
R
4
R3
R3R
2
== R
2
3
R
4
3
R
4
3
=+
2
v
v
s
o
= independent of R
i
o
= v
o
/(R)
When v
s
= 1V, v
o
= 0.5V, i
o
= 0.5A
(b)
When v
s
= 10V, v
o
= 5V, i
o
= 5A
(c)
When v
s
= 10V and R = 10Ω,
v
o
= 5V, i
o
= 10/(10) = 500mA
Chapter 4, Solution 4.
If I
o
= 1, the voltage across the 6Ω resistor is 6V so that the current through the 3Ω
resistor is 2A.
+
v
1
−
3A
I
s
2
Ω
4 Ω
i
1
3A
1A
I
s
2A
6
Ω
4
Ω
3 Ω
2 Ω 2
Ω
(a)
(b)
Ω= 263
, v
o
= 3(4) = 12V, .A3
4
v
o
1
==
i
Hence I
s
= 3 + 3 = 6A
If I
s
= 6A I
o
= 1
I
s
= 9A I
o
= 6/(9) = 0.6667A
Chapter 4, Solution 5.
If v
o
= 1V, V21
3
1
V
1
=+
=
3
10
v
3
2
2V
1s
=+
=
If v
s
=
3
10
v
o
= 1
Then v
s
= 15 v
o
= =15x
10
3
4.5V
v
o
3
Ω
2 Ω
+
−
6
Ω
6
Ω
6 Ω
v
1
V
s
Chapter 4, Solution 6
Let
s
T
T
oT
V
RR
R
V
RR
RR
RRR
132
32
32
then ,//
+
=
+
==
133221
32
1
32
32
32
32
1
RRRRRR
RR
R
RR
RR
RR
RR
RR
R
V
V
k
T
T
s
o
++
=
+
+
+
=
+
==
Chapter 4, Solution 7
We find the Thevenin equivalent across the 10-ohm resistor. To find V
Th
, consider the
circuit below.
3V
x
5Ω 5
Ω
+
+
4V 15
Ω
V
Th
- 6
Ω
-
+ V
x -
From the figure,
V3)4(
515
15
,0 =
+
==
Thx
VV
To find R
Th,
consider the circuit below:
3V
x
5
Ω 5
Ω
V
1
V
2
+
4V 15
Ω
1A
- 6
Ω
+ V
x
-
At node 1,
12
2111
73258616,
515
3
5
4
VVxV
VVV
V
V
xx
−=→==
−
++=
−
(1)
At node 2,
950
5
31
21
21
−=→=
−
++ VV
VV
V
x
(2)
Solving (1) and (2) leads to V
2
= 101.75 V
mW 11.22
75.1014
9
4
,75.101
1
2
max
2
===Ω==
xR
V
p
V
R
Th
Th
Th
Chapter 4, Solution 8.
Let i = i
1
+ i
2
,
where i
1
and i
L
are due to current and voltage sources respectively.
6
Ω
i
1
+
−
20V
i
2
5 A
4 Ω 6 Ω
4 Ω
(a)
(b)
i
1
= ,A3)5(
46
6
=
+
A2
46
20
2
=
+
=i
Thus i = i
1
+ i
2
= 3 + 2 = 5A
Chapter 4, Solution 9.
Let
i
2
x
1
xx
ii +=
where
i is due to 15V source and i is due to 4A source,
1
x
2
x
12
Ω
-4A
40Ω 10
Ω
i
x2
40
Ω
i
10 Ω
i
x1
12 Ω
+
−
15V
(a)
(b)
For i
x1
, consider Fig. (a).
10||40 = 400/50 = 8 ohms, i = 15/(12 + 8) = 0.75
i
x1
= [40/(40 + 10)]i = (4/5)0.75 = 0.6
For i
x2
, consider Fig. (b).
12||40 = 480/52 = 120/13
i
x2
= [(120/13)/((120/13) + 10)](-4) = -1.92
i
x
= 0.6 – 1.92 = -1.32 A
p = vi
x
= i
x
2
R = (-1.32)
2
10 = 17.43 watts
Chapter 4, Solution 10.
Let v
ab
= v
ab1
+ v
ab2
where v
ab1
and v
ab2
are due to the 4-V and the 2-A sources
respectively.
+
v
ab2
−
10
Ω
+
−
3v
ab2
2 A
10 Ω
+
−
+
v
ab1
−
+ −
3v
ab1
4V
(a) (b)
For v
ab1
, consider Fig. (a). Applying KVL gives,
- v
ab1
– 3 v
ab1
+ 10x0 + 4 = 0, which leads to v
ab1
= 1 V
For v
ab2
, consider Fig. (b). Applying KVL gives,
-
v
ab2
– 3v
ab2
+ 10x2 = 0, which leads to v
ab2
= 5
v
ab
= 1 + 5 = 6 V
Chapter 4, Solution 11.
Let i = i
1
+ i
2
, where i
1
is due to the 12-V source and i
2
is due to the 4-A source.
12V
4A
2Ω 2
Ω
i
x2
6Ω
4A
3
Ω
2Ω
i
2
3
Ω
i
o
(a)
2
Ω
i
1
6
Ω
+
−
(b)
For i
1
, consider Fig. (a).
2||3 = 2x3/5 = 6/5, i
o
= 12/(6 + 6/5) = 10/6
i
1
= [3/(2 + 3)]i
o
= (3/5)x(10/6) = 1 A
For i
2
, consider Fig. (b), 6||3 = 2 ohm, i
2
= 4/2 = 2 A
i = 1 + 2 =
3 A
Chapter 4, Solution 12.
Let v
o
= v
o1
+ v
o2
+ v
o3
, where v
o1
, v
o2
, and v
o3
are due to the 2-A, 12-V, and 19-V
sources respectively. For v
o1
, consider the circuit below.
5
Ω
5
Ω
+ v
o1
−
i
o
2A
2A
3Ω
4
Ω
6Ω 12
Ω
5 Ω
+ v
o1
−
6||3 = 2 ohms, 4||12 = 3 ohms. Hence,
i
o
= 2/2 = 1, v
o1
= 5io = 5 V
For v
o2
, consider the circuit below.
6 Ω 5 Ω 4
Ω
6
Ω
5 Ω
+ v
o2
−
3
Ω
3 Ω
+
v
1
−
+
−
12V
+ v
o2
−
12
Ω
+
−
3 Ω
12V
3||8 = 24/11, v
1
= [(24/11)/(6 + 24/11)]12 = 16/5
v
o2
= (5/8)v
1
= (5/8)(16/5) = 2 V
For v
o3
, consider the circuit shown below.
4 Ω 5 Ω 5
Ω
4 Ω
2
Ω
+ v
o3
−
12
Ω
+
v
2
−
+
−
19V
+
−
19V
6Ω
+ v
o3
−
12 Ω
3 Ω
7||12 = (84/19) ohms, v
2
= [(84/19)/(4 + 84/19)]19 = 9.975
v = (-5/7)v2 = -7.125
v
o
= 5 + 2 – 7.125 = -125 mV
,
Chapter 4, Solution 13
Let
iiii
321o
+
+
=
where i
1
, i
2
, and i
3
are the contributions to i
o
due to 30-V, 15-V, and 6-mA sources
respectively. For i
1
, consider the circuit below.
1 kΩ 2 k
Ω
3 k
Ω
+ i
1
30V
- 4 k
Ω
5 k
Ω
3//5 = 15/8 = 1.875 kohm, 2 + 3//5 = 3.875 kohm, 1//3.875 = 3.875/4.875 = 0.7949
kohm. After combining the resistors except the 4-kohm resistor and transforming the
voltage source, we obtain the circuit below.
i
1
30 mA
4 k
Ω
0.7949 k
Ω
Using current division,
mA 4.973mA)30(
7949.4
7949.0
1
==i
For i
2
, consider the circuit below.
1 k
Ω 2 k
Ω
3 k
Ω
i
2 -
15V
4 k
Ω
5 k
Ω
+
After successive source transformation and resistance combinations, we obtain the circuit
below:
2.42mA
i
2
4 k
Ω
0.7949 k
Ω
Using current division,
mA 4012.0mA)42.2(
7949.4
7949.0
2
−=−=i
For i
3
, consider the circuit below.
6mA
1 k
Ω 2 k
Ω
3 k
Ω
i
3
4 k
Ω
5 k
Ω
After successive source transformation and resistance combinations, we obtain the circuit
below:
3.097mA
i
3
4 k
Ω
0.7949 k
Ω
mA 5134.0mA)097.3(
7949.4
7949.0
3
−=−=i
Thus,
mA 058.4
321
=++= iiii
o
Chapter 4, Solution 14.
Let v
o
= v
o1
+ v
o2
+ v
o3
, where v
o1
, v
o2
, and v
o3
, are due to the 20-V, 1-A, and 2-A
sources respectively. For v
o1
, consider the circuit below.
6 Ω
20V
+
−
+
v
o1
−
4 Ω
2 Ω
3
Ω
6||(4 + 2) = 3 ohms, v
o1
= (½)20 = 10 V