1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Tài liệu Bài giải phần giải mạch P4 pdf

79 348 2

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 79
Dung lượng 2,35 MB

Nội dung

Chapter 4, Solution 1. i i o 5 Ω 8 Ω 1 Ω + − 1 V 3 Ω Ω=+ 4)35(8 , 5 1 41 1 i = + = === 10 1 i 2 1 i o 0.1A Chapter 4, Solution 2. ,3)24(6 Ω=+ A 2 1 i 21 ==i , 4 1 i 2 1 i 1o == == oo i2v 0.5V 5 Ω 4 Ω i 2 8 Ω i 1 i o 6 Ω 1 A 2 Ω If i s = 1µA, then v o = 0.5µV Chapter 4, Solution 3. R + v o − 3R i o 3R 3R R + − 3R + − 1 V 1.5R V s (b) (a) (a) We transform the Y sub-circuit to the equivalent ∆ . ,R 4 3 R 4 R3 R3R 2 == R 2 3 R 4 3 R 4 3 =+ 2 v v s o = independent of R i o = v o /(R) When v s = 1V, v o = 0.5V, i o = 0.5A (b) When v s = 10V, v o = 5V, i o = 5A (c) When v s = 10V and R = 10Ω, v o = 5V, i o = 10/(10) = 500mA Chapter 4, Solution 4. If I o = 1, the voltage across the 6Ω resistor is 6V so that the current through the 3Ω resistor is 2A. + v 1 − 3A I s 2 Ω 4 Ω i 1 3A 1A I s 2A 6 Ω 4 Ω 3 Ω 2 Ω 2 Ω (a) (b) Ω= 263 , v o = 3(4) = 12V, .A3 4 v o 1 == i Hence I s = 3 + 3 = 6A If I s = 6A I o = 1 I s = 9A I o = 6/(9) = 0.6667A Chapter 4, Solution 5. If v o = 1V, V21 3 1 V 1 =+       = 3 10 v 3 2 2V 1s =+       = If v s = 3 10 v o = 1 Then v s = 15 v o = =15x 10 3 4.5V v o 3 Ω 2 Ω + − 6 Ω 6 Ω 6 Ω v 1 V s Chapter 4, Solution 6 Let s T T oT V RR R V RR RR RRR 132 32 32 then ,// + = + == 133221 32 1 32 32 32 32 1 RRRRRR RR R RR RR RR RR RR R V V k T T s o ++ = + + + = + == Chapter 4, Solution 7 We find the Thevenin equivalent across the 10-ohm resistor. To find V Th , consider the circuit below. 3V x 5Ω 5 Ω + + 4V 15 Ω V Th - 6 Ω - + V x - From the figure, V3)4( 515 15 ,0 = + == Thx VV To find R Th, consider the circuit below: 3V x 5 Ω 5 Ω V 1 V 2 + 4V 15 Ω 1A - 6 Ω + V x - At node 1, 12 2111 73258616, 515 3 5 4 VVxV VVV V V xx −=→== − ++= − (1) At node 2, 950 5 31 21 21 −=→= − ++ VV VV V x (2) Solving (1) and (2) leads to V 2 = 101.75 V mW 11.22 75.1014 9 4 ,75.101 1 2 max 2 ===Ω== xR V p V R Th Th Th Chapter 4, Solution 8. Let i = i 1 + i 2 , where i 1 and i L are due to current and voltage sources respectively. 6 Ω i 1 + − 20V i 2 5 A 4 Ω 6 Ω 4 Ω (a) (b) i 1 = ,A3)5( 46 6 = + A2 46 20 2 = + =i Thus i = i 1 + i 2 = 3 + 2 = 5A Chapter 4, Solution 9. Let i 2 x 1 xx ii += where i is due to 15V source and i is due to 4A source, 1 x 2 x 12 Ω -4A 40Ω 10 Ω i x2 40 Ω i 10 Ω i x1 12 Ω + − 15V (a) (b) For i x1 , consider Fig. (a). 10||40 = 400/50 = 8 ohms, i = 15/(12 + 8) = 0.75 i x1 = [40/(40 + 10)]i = (4/5)0.75 = 0.6 For i x2 , consider Fig. (b). 12||40 = 480/52 = 120/13 i x2 = [(120/13)/((120/13) + 10)](-4) = -1.92 i x = 0.6 – 1.92 = -1.32 A p = vi x = i x 2 R = (-1.32) 2 10 = 17.43 watts Chapter 4, Solution 10. Let v ab = v ab1 + v ab2 where v ab1 and v ab2 are due to the 4-V and the 2-A sources respectively. + v ab2 − 10 Ω + − 3v ab2 2 A 10 Ω + − + v ab1 − + − 3v ab1 4V (a) (b) For v ab1 , consider Fig. (a). Applying KVL gives, - v ab1 – 3 v ab1 + 10x0 + 4 = 0, which leads to v ab1 = 1 V For v ab2 , consider Fig. (b). Applying KVL gives, - v ab2 – 3v ab2 + 10x2 = 0, which leads to v ab2 = 5 v ab = 1 + 5 = 6 V Chapter 4, Solution 11. Let i = i 1 + i 2 , where i 1 is due to the 12-V source and i 2 is due to the 4-A source. 12V 4A 2Ω 2 Ω i x2 6Ω 4A 3 Ω 2Ω i 2 3 Ω i o (a) 2 Ω i 1 6 Ω + − (b) For i 1 , consider Fig. (a). 2||3 = 2x3/5 = 6/5, i o = 12/(6 + 6/5) = 10/6 i 1 = [3/(2 + 3)]i o = (3/5)x(10/6) = 1 A For i 2 , consider Fig. (b), 6||3 = 2 ohm, i 2 = 4/2 = 2 A i = 1 + 2 = 3 A Chapter 4, Solution 12. Let v o = v o1 + v o2 + v o3 , where v o1 , v o2 , and v o3 are due to the 2-A, 12-V, and 19-V sources respectively. For v o1 , consider the circuit below. 5 Ω 5 Ω + v o1 − i o 2A 2A 3Ω 4 Ω 6Ω 12 Ω 5 Ω + v o1 − 6||3 = 2 ohms, 4||12 = 3 ohms. Hence, i o = 2/2 = 1, v o1 = 5io = 5 V For v o2 , consider the circuit below. 6 Ω 5 Ω 4 Ω 6 Ω 5 Ω + v o2 − 3 Ω 3 Ω + v 1 − + − 12V + v o2 − 12 Ω + − 3 Ω 12V 3||8 = 24/11, v 1 = [(24/11)/(6 + 24/11)]12 = 16/5 v o2 = (5/8)v 1 = (5/8)(16/5) = 2 V For v o3 , consider the circuit shown below. 4 Ω 5 Ω 5 Ω 4 Ω 2 Ω + v o3 − 12 Ω + v 2 − + − 19V + − 19V 6Ω + v o3 − 12 Ω 3 Ω 7||12 = (84/19) ohms, v 2 = [(84/19)/(4 + 84/19)]19 = 9.975 v = (-5/7)v2 = -7.125 v o = 5 + 2 – 7.125 = -125 mV , Chapter 4, Solution 13 Let iiii 321o + + = where i 1 , i 2 , and i 3 are the contributions to i o due to 30-V, 15-V, and 6-mA sources respectively. For i 1 , consider the circuit below. 1 kΩ 2 k Ω 3 k Ω + i 1 30V - 4 k Ω 5 k Ω 3//5 = 15/8 = 1.875 kohm, 2 + 3//5 = 3.875 kohm, 1//3.875 = 3.875/4.875 = 0.7949 kohm. After combining the resistors except the 4-kohm resistor and transforming the voltage source, we obtain the circuit below. i 1 30 mA 4 k Ω 0.7949 k Ω Using current division, mA 4.973mA)30( 7949.4 7949.0 1 ==i For i 2 , consider the circuit below. 1 k Ω 2 k Ω 3 k Ω i 2 - 15V 4 k Ω 5 k Ω + After successive source transformation and resistance combinations, we obtain the circuit below: 2.42mA i 2 4 k Ω 0.7949 k Ω Using current division, mA 4012.0mA)42.2( 7949.4 7949.0 2 −=−=i For i 3 , consider the circuit below. 6mA 1 k Ω 2 k Ω 3 k Ω i 3 4 k Ω 5 k Ω After successive source transformation and resistance combinations, we obtain the circuit below: 3.097mA i 3 4 k Ω 0.7949 k Ω mA 5134.0mA)097.3( 7949.4 7949.0 3 −=−=i Thus, mA 058.4 321 =++= iiii o Chapter 4, Solution 14. Let v o = v o1 + v o2 + v o3 , where v o1 , v o2 , and v o3 , are due to the 20-V, 1-A, and 2-A sources respectively. For v o1 , consider the circuit below. 6 Ω 20V + − + v o1 − 4 Ω 2 Ω 3 Ω 6||(4 + 2) = 3 ohms, v o1 = (½)20 = 10 V

Ngày đăng: 25/01/2014, 13:20

TỪ KHÓA LIÊN QUAN

w