1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Tài liệu Bài giải phần giải mạch P6 pptx

40 447 1

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 40
Dung lượng 1,44 MB

Nội dung

Chapter 6, Solution 1. ( =+−== −− t3t3 e6e25 dt dv Ci ) 10(1 - 3t)e -3t A p = vi = 10(1-3t)e -3t ⋅ 2t e -3t = 20t(1 - 3t)e -6t W Chapter 6, Solution 2. 22 11 )120)(40( 2 1 Cv 2 1 w == w 2 = 22 1 )80)(40( 2 1 2 =Cv 1 ( ) =−=−=∆ 22 21 8012020www 160 kW Chapter 6, Solution 3. i = C = − = − 5 160280 10x40 d t dv 3 480 mA Chapter 6, Solution 4. )0(vidt C 1 v t o += ∫ ∫ +1tdt4sin6 2 1 = = 1 - 0.75 cos 4t Chapter 6, Solution 5. v = ∫ + t o )0(vidt C 1 For 0 < t < 1, i = 4t, ∫ − = t o 6 t4 10x20 1 v dt + 0 = 100t 2 kV v(1) = 100 kV For 1 < t < 2, i = 8 - 4t, ∫ +−= − t 1 6 )1(vdt)t48( 10x20 1 v = 100 (4t - t 2 - 3) + 100 kV Thus v (t) =     <<−− << 2t1,kV)2tt4(100 1t0,kVt100 2 2 Chapter 6, Solution 6. 6 10x30 dt dv Ci − == x slope of the waveform. For example, for 0 < t < 2, 3 10x2 10 d t dv − = i = mA150 10x2 10 x10x30 d t dv 3 6 == − − C Thus the current i is sketched below. t (msec) 150 12 10 2 8 6 4 -150 i(t) (mA) Chapter 6, Solution 7. ∫∫ +=+= − − t o 3 3 o 10dt10tx4 10x50 1 )t(vidt C 1 v = =+10 50 t2 2 0.04k 2 + 10 V Chapter 6, Solution 8. (a) tt BCeACe dt dv C 600100 600100 −− −−== i (1) BABCACi 656001002)0( − − =  →  −−== (2) BAvv +=→= −+ 50)0()0( (3) Solving (2) and (3) leads to A=61, B=-11 (b) J 52500104 2 1 )0( 2 1 32 === − xxxCvEnergy (c ) From (1), A 4.264.241041160010461100 60010060031003 tttt eeexxxexxxi −−−−−− −−=−−= Chapter 6, Solution 9. v(t) = () ( ) ∫ −− +=+− t o tt Vet120dte16 21 1 v(2) = 12(2 + e -2 ) = 25.62 V p = iv = 12 (t + e -t ) 6 (1-e -t ) = 72(t-e -2t ) p(2) = 72(2-e -4 ) = 142.68 W Chapter 6, Solution 10 dt dv x dt dv Ci 3 102 − ==      << << << = s4t316t,-64 s 3t116, s10,16 µ µ µ tt v      << << << = s4t3,16x10- s 3t10, s10,1016 6 6 µ µ µ tx dt dv      << << << = s4t3kA, 32- s 3t10, s10,kA 32 )( µ µ µ t ti Chapter 6, Solution 11. v = ∫ + t o )0(vidt C 1 For 0 < t < 1, ∫ == − − t o 3 6 t10dt10x40 10x4 1 v kV v(1) = 10 kV For 1 < t < 2, kV10)1(vvdt C 1 v t 1 =+= ∫ For 2 < t < 3, ∫ +−= − − t 2 3 6 )2(vdt)10x40( 10x4 1 v = -10t + 30kV Thus v(t) =      <<+− << <<⋅ 3t2,kV30t10 2t1,kV10 1t0,kVt10 Chapter 6, Solution 12. π−π== − 4sin)(4(60x10x3 dt dv Ci 3 t) = - 0.7e π sin 4πt A P = vi = 60(-0.72)π cos 4π t sin 4π t = -21.6π sin 8π t W W = ∫∫ t dt ππ−= t o 8 1 o 8sin6.21pdt = π π π 8 8 6. cos 21 8/1 o = -5.4J Chapter 6, Solution 13. Under dc conditions, the circuit becomes that shown below: i 2 50 Ω 20 Ω + − 60V + v 1 − i 1 30 Ω 10 Ω + v 2 − i 2 = 0, i 1 = 60/(30+10+20) = 1A v 1 = 30i 2 = 30V, v 2 = 60-20i 1 = 40V Thus, v 1 = 30V, v 2 = 40V Chapter 6, Solution 14. (a) C eq = 4C = 120 mF (b) 30 4 C 4 C 1 eq == C eq = 7.5 mF Chapter 6, Solution 15. In parallel, as in Fig. (a), v 1 = v 2 = 100 C 2 + v 2 − C 1 + − 100V + v 2 − C 2 + − v 1 C 1 + v 1 − + − 100V (b) (a) w 20 = == − 262 100x10x20x 2 1 Cv 2 1 0.1J w 30 = = − 26 100x10x30x 2 1 0.15J (b) When they are connected in series as in Fig. (b): ,60100x 50 30 V CC C v 21 2 1 == + = v 2 = 40 w 20 = = − 26 60x10x30x 2 1 36 mJ w 30 = = − 26 4010x30 2 xx 1 24 mJ Chapter 6, Solution 16 F 2030 80 80 14 µ =→= + += C C Cx C eq Chapter 6, Solution 17. (a) 4F in series with 12F = 4 x 12/(16) = 3F 3F in parallel with 6F and 3F = 3+6+3 = 12F 4F in series with 12F = 3F i.e. C eq = 3F (b) C eq = 5 + [6 || (4 + 2)] = 5 + (6 || 6) = 5 + 3 = 8F (c) 3F in series with 6F = (3 x 6)/9 = 6F 1 3 1 6 1 2 1 C 1 eq =++= C eq = 1F Chapter 6, Solution 18. For the capacitors in parallel = 15 + 5 + 40 = 60 µF 1 eq C Hence 10 1 60 1 30 1 20 1 C 1 eq =++= C eq = 10 µF Chapter 6, Solution 19. We combine 10-, 20-, and 30- µ F capacitors in parallel to get 60 µ F. The 60 - µ F capacitor in series with another 60- µ F capacitor gives 30 µ F. 30 + 50 = 80 µ F, 80 + 40 = 120 µ F The circuit is reduced to that shown below. 12 120 12 80 120- µ F capacitor in series with 80 µ F gives (80x120)/200 = 48 48 + 12 = 60 60- µ F capacitor in series with 12 µ F gives (60x12)/72 = 10 µ F Chapter 6, Solution 20. 3 in series with 6 = 6x 3 /(9) = 2 2 in parallel with 2 = 4 4 in series with 4 = (4x4)/8 = 2 The circuit is reduced to that shown below: 20 1 6 2 8 6 in parallel with 2 = 8 8 in series with 8 = 4 4 in parallel with 1 = 5 5 in series with 20 = (5x20)/25 = 4 Thus C eq = 4 mF Chapter 6, Solution 21. 4µF in series with 12µF = (4x12)/16 = 3µF 3µF in parallel with 3µF = 6µF 6µF in series with 6µF = 3µF 3µF in parallel with 2µF = 5µF 5µF in series with 5µF = 2.5µF Hence C eq = 2.5µF Chapter 6, Solution 22. Combining the capacitors in parallel, we obtain the equivalent circuit shown below: a b 40 µ F 60 µF 30 µ F 20 µ F Combining the capacitors in series gives C , where 1 eq 10 1 30 1 20 1 60 1 C 1 1 eq =++= C = 10µF 1 eq Thus C eq = 10 + 40 = 50 µF Chapter 6, Solution 23. (a) 3µF is in series with 6µF 3x6/(9) = 2µF v 4µF = 1/2 x 120 = 60V v 2µF = 60V v 6µF = =( 3 + )60 36 20V v 3µF = 60 - 20 = 40V (b) Hence w = 1/2 Cv 2 w 4µF = 1/2 x 4 x 10 -6 x 3600 = 7.2mJ w 2µF = 1/2 x 2 x 10 -6 x 3600 = 3.6mJ w 6µF = 1/2 x 6 x 10 -6 x 400 = 1.2mJ w 3µF = 1/2 x 3 x 10 -6 x 1600 = 2.4mJ Chapter 6, Solution 24. 20µF is series with 80µF = 20x80/(100) = 16µF 14µF is parallel with 16µF = 30µF (a) v 30µF = 90V v 60µF = 30V v 14µF = 60V v 20µF = = + 60x 8020 80 48V v 80µF = 60 - 48 = 12V (b) Since w = 2 Cv 2 1 w 30µF = 1/2 x 30 x 10 -6 x 8100 = 121.5mJ w 60µF = 1/2 x 60 x 10 -6 x 900 = 27mJ w 14µF = 1/2 x 14 x 10 -6 x 3600 = 25.2mJ w 20µF = 1/2 x 20 x 10 -6 x (48) 2 = 23.04mJ w 80µF = 1/2 x 80 x 10 -6 x 144 = 5.76mJ Chapter 6, Solution 25. (a) For the capacitors in series, Q 1 = Q 2 C 1 v 1 = C 2 v 2 1 2 2 1 C C v v = v s = v 1 + v 2 = 2 1 21 22 1 2 v C CC vv C C + =+ s 21 1 2 v CC C + =v Similarly, s 21 2 1 v CC C v + = (b) For capacitors in parallel v 1 = v 2 = 2 2 1 1 C Q C Q = Q s = Q 1 + Q 2 = 2 2 21 22 2 1 Q C CC QQ C C + =+ or Q 2 = 21 2 CC C + s 21 1 1 Q CC C Q + = i = dt dQ s 21 1 1 i CC C + =i , s 21 2 2 i CC C + =i Chapter 6, Solution 26. (a) C eq = C 1 + C 2 + C 3 = 35µF (b) Q 1 = C 1 v = 5 x 150µC = 0.75mC Q 2 = C 2 v = 10 x 150µC = 1.5mC Q 3 = C 3 v = 20 x 150 = 3mC (c) w = J150x35x 2 1 2 22 eq µ= vC 1 = 393.8mJ

Ngày đăng: 25/01/2014, 13:20

TỪ KHÓA LIÊN QUAN