1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Tài liệu Bài giải phần giải mạch P3 ppt

58 447 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 58
Dung lượng 1,91 MB

Nội dung

Chapter 3, Solution 1. 8 Ω v 2 2 Ω 40 Ω v 1 6 A 10 A At node 1, 6 = v 1 /(8) + (v 1 - v 2 )/4 48 = 3v 1 - 2v 2 (1) At node 2, v 1 - v 2 /4 = v 2 /2 + 10 40 = v 1 - 3v 2 (2) Solving (1) and (2), v 1 = 9.143V, v 2 = -10.286 V P 8Ω = () == 8 143.9 8 v 2 2 1 10.45 W P 4Ω = () = − 4 vv 2 21 94.37 W P 2Ω = () = = = 2 286.10 2 v 2 1 2 52.9 W Chapter 3, Solution 2 At node 1, 2 vv 6 5 v 10 v 2111 − +=− − 60 = - 8v 1 + 5v 2 (1) At node 2, 2 vv 63 4 v 212 − ++= 36 = - 2v 1 + 3v 2 (2) Solving (1) and (2), v 1 = 0 V, v 2 = 12 V Chapter 3, Solution 3 Applying KCL to the upper node, 10 = 60 v 2 30 v 20 v 10 v 0oo +++ 0 + v 0 = 40 V i 1 = = 10 0 v 4 A , i 2 = = 20 v 0 2 A, i 3 = = 30 v 0 1.33 A, i 4 = = 60 v 0 67 mA Chapter 3, Solution 4 At node 1, 4 + 2 = v 1 /(5) + v 1 /(10) v 1 = 20 At node 2, 5 - 2 = v 2 /(10) + v 2 /(5) v 2 = 10 i 1 = v 1 /(5) = 4 A, i 2 = v 1 /(10) = 2 A, i 3 = v 2 /(10) = 1 A, i 4 = v 2 /(5) = 2 A Chapter 3, Solution 5 Apply KCL to the top node. k 4 v k 6 v20 k 2 v30 000 = − + − v 0 = 20 V i 1 10 Ω 10 Ω 2A i 4 i 3 v 1 v 2 i 2 4 A 5 Ω 5 Ω 5 A Chapter 3, Solution 6 i 1 + i 2 + i 3 = 0 0 2 10v 6 v 4 12v 00 2 = − ++ − or v 0 = 8.727 V Chapter 3, Solution 7 At node a, ba baaa VV VVVV 3610 101530 10 −=→ − += − (1) At node b, ba bbba VV VVVV 72240 5 9 20 12 10 −=→= −− + − + − (2) Solving (1) and (2) leads to V a = -0.556 V, V b = -3.444V Chapter 3, Solution 8 i 2 5 Ω 2 Ω i 1 3 Ω v 1 i 3 1 Ω + – 4V 0 3V – + + V 0 – i 1 + i 2 + i 3 = 0 0 5 v4v 1 3v 5 v 01 11 = − + − + But 10 v 5 2 v = so that v 1 + 5v 1 - 15 + v 1 - 0v 5 8 1 = or v 1 = 15x5/(27) = 2.778 V, therefore v o = 2v 1 /5 = 1.1111 V Chapter 3, Solution 9 + v 1 – i 2 6 Ω i 1 3 Ω v 1 i 3 8 Ω + – + v 0 – 2v 0 12V – + At the non-reference node, 6 v2v 8 v 3 v 01 11 12 − += − (1) But -12 + v 0 + v 1 = 0 v 0 = 12 - v 1 (2) Substituting (2) into (1), 6 24v3 8 v 3 v 111 − += −12 v 0 = 3.652 V Chapter 3, Solution 10 At node 1, 8 v 4 1 vv 112 += − 32 = -v 1 + 8v 2 - 8v 0 (1) 1 Ω 4A 2i 0 i 0 v 1 v 0 8 Ω 2 Ω v 2 4 Ω At node 0, 0 0 I2 2 v +=4 and 8 v I 1 0 = 16 = 2v 0 + v 1 (2) At node 2, 2I 0 = 4 v 1 v 212 + − v and 8 v 1 0 = I v 2 = v 1 (3) From (1), (2) and (3), v 0 = 24 V, but from (2) we get i o = 62 4 24 2 2 2 v 4 o −=−= − = - 4 A Chapter 3, Solution 11 i 3 6 Ω v i 1 i 2 4 Ω 3 Ω – + 10 V 5 A Note that i 2 = -5A. At the non-reference node 6 v 5 4 v10 =+ − v = 18 i 1 = = − 4 v10 -2 A, i 2 = -5 A Chapter 3, Solution 12 i 3 40 Ω v 1 v 2 10 Ω 20 Ω – + 5 A 50 Ω 24 V At node 1, 40 0v 20 vv 10 v24 1211 − + − = − 96 = 7v 1 - 2v 2 (1) At node 2, 50 v 20 vv 221 = − + 5 500 = -5v 1 + 7v 2 (2) Solving (1) and (2) gives, v 1 = 42.87 V, v 2 = 102.05 V == 40 v i 1 1 1.072 A, v 2 = = 50 v 2 2.041 A Chapter 3, Solution 13 At node number 2, [(v 2 + 2) – 0]/10 + v 2 /4 = 3 or v 2 = 8 volts But, I = [(v 2 + 2) – 0]/10 = (8 + 2)/10 = 1 amp and v 1 = 8x1 = 8volts Chapter 3, Solution 14 1 Ω 2 Ω 4 Ω v 0 v 1 5 A 8 Ω 20 V – + 40 V – + At node 1, 1 v40 5 2 vv 001 − =+ − v 1 + v 0 = 70 (1) At node 0, 8 20v 4 v 5 2 vv 0001 + +=+ − 4v 1 - 7v 0 = -20 (2) Solving (1) and (2), v 0 = 20 V Chapter 3, Solution 15 1 Ω 2 Ω 4 Ω v 0 v 1 5 A 8 Ω 20 V – + 40 V – + Nodes 1 and 2 form a supernode so that v 1 = v 2 + 10 (1) At the supernode, 2 + 6v 1 + 5v 2 = 3 (v 3 - v 2 ) 2 + 6v 1 + 8v 2 = 3v 3 (2) At node 3, 2 + 4 = 3 (v 3 - v 2 ) v 3 = v 2 + 2 (3) Substituting (1) and (3) into (2), 2 + 6v 2 + 60 + 8v 2 = 3v 2 + 6 v 2 = 11 56 − v 1 = v 2 + 10 = 11 54 i 0 = 6v i = 29.45 A P 65 = =       == 6 11 54 Gv R 2 2 1 2 1 v 144.6 W P 55 = =       − = 5 11 56 Gv 2 2 2 129.6 W P 35 = () ==− 3)2(Gvv 2 2 3L 12 W Chapter 3, Solution 16 2 S + v 0 – 13 V – + i 0 1 S 4 S 8 S v 1 v 2 v 3 2 A At the supernode, 2 = v 1 + 2 (v 1 - v 3 ) + 8(v 2 – v 3 ) + 4v 2 , which leads to 2 = 3v 1 + 12v 2 - 10v 3 (1) But v 1 = v 2 + 2v 0 and v 0 = v 2 . Hence v 1 = 3v 2 (2) v 3 = 13V (3) Substituting (2) and (3) with (1) gives, v 1 = 18.858 V, v 2 = 6.286 V, v 3 = 13 V Chapter 3, Solution 17 60 V i 0 3i 0 2 Ω 10 Ω 4 Ω 60 V – + 8 Ω At node 1, 2 vv 8 v 4 v60 2111 − += − 120 = 7v 1 - 4v 2 (1) At node 2, 3i 0 + 0 2 vv 10 v60 212 = − + − But i 0 = . 4 v60 1 − Hence () 0 2 vv 10 v60 4 v603 2121 = − + − + − 1020 = 5v 1 - 12v 2 (2) Solving (1) and (2) gives v 1 = 53.08 V. Hence i 0 = = − 4 v60 1 1.73 A Chapter 3, Solution 18 + v 3 – + v 1 – 10 V – + v 1 v 2 2 Ω 2 Ω 4 Ω 8 Ω v 3 5 A (a) (b) At node 2, in Fig. (a), 5 = 2 vv 2 vv 3212 − + − 10 = - v 1 + 2v 2 - v 3 (1) At the supernode, 8 v 4 v 2 vv 2 vv 3 1 32 12 += − + − 40 = 2v 1 + v 3 (2) From Fig. (b), - v 1 - 10 + v 3 = 0 v 3 = v 1 + 10 (3) Solving (1) to (3), we obtain v 1 = 10 V, v 2 = 20 V = v 3 Chapter 3, Solution 19 At node 1, 321 121 31 4716 482 35 VVV VVV VV −−=→+ − + − += (1) At node 2, 321 32 221 270 428 VVV VV VVV −+−=→ − += − (2) At node 3, 321 3231 3 724360 428 12 3 VVV VVVV V −+=−→= − + − + − + (3) From (1) to (3), BAV V V V =→           − =                     − −− −− 36 0 16 724 271 417 3 2 1 Using MATLAB, V 267.12 V, 933.4 V, 10 267.12 933.4 10 321 1 ===→           == − VVVBAV Chapter 3, Solution 20 Nodes 1 and 2 form a supernode; so do nodes 1 and 3. Hence 040 414 321 3 21 =++→=++ VVV V VV (1) . V 1 . V 2 2 Ω V 3 4Ω 1 Ω 4 Ω

Ngày đăng: 25/01/2014, 13:20

TỪ KHÓA LIÊN QUAN