1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Tài liệu Bài giải mạch P10 ppt

91 247 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 91
Dung lượng 2,4 MB

Nội dung

Chapter 10, Solution 1. ω 1= °∠→°− 45-10)45tcos(10 °∠→°+ 60-5)30tsin(5 jLjH1 =ω→ j- Cj 1 F1 = ω → The circuit becomes as shown below. V o 3 Ω + − 10∠-45° V + − 2 I o j Ω 5 ∠ -60° V Applying nodal analysis, j-j )60-5( 3 )45-10( ooo VVV = − ° ∠ + − °∠ o j60-1545-10j V = ° ∠ + °∠ ° ∠ = ° ∠ + °∠= 9.24715.73150-1545-10 o V Therefore, = )t(v o 15.73 cos(t + 247.9°) V Chapter 10, Solution 2. ω 10= °∠→π− 45-4)4t10cos(4 °∠→π+ 150-20)3t10sin(20 10jLjH1 =ω→ 5j- 2.0j 1 Cj 1 F02.0 == ω → The circuit becomes that shown below. I o V o 10 Ω j 10 Ω - j 5 Ω 20∠-150° V + − 4∠-45° A Applying nodal analysis, 5j-10j 45-4 10 )150-20( ooo VVV +=°∠+ −°∠ o )j1(1.045-4150-20 V + = °∠+°∠ °∠= + °∠+°∠ == 98.150816.2 )j1(j 45-4150-2 10j o o V I Therefore, = )t(i o 2.816 cos(10t + 150.98°) A Chapter 10, Solution 3. ω 4= °∠→ 02)t4cos(2 -j1690-16)t4sin(16 =°∠→ 8jLjH2 =ω→ 3j- )121)(4(j 1 Cj 1 F121 == ω → The circuit is shown below. V o + − 2 ∠ 0° A -j16 V 4 Ω - j 3 Ω 6 Ω 1 Ω j 8 Ω Applying nodal analysis, 8j61 2 3j4 16j- ooo + +=+ − − VVV o 8j6 1 3j4 1 12 3j4 16j- V       + + − +=+ − °∠= °∠ ° ∠ = + − = 02.35-835.3 88.12207.1 15.33-682.4 04.0j22.1 56.2j92.3 o V Therefore, =)t(v o 3.835 cos(4t – 35.02°) V Chapter 10, Solution 4. 16 4,10-16)10t4sin( =ω°∠→°− 4jLjH1 =ω→ j- )41)(4(j 1 Cj 1 F25.0 == ω → j 4 Ω 1 Ω I x - j Ω 16∠-10° V + − V 1 0.5 I x + V o − j12 1 4j )10-16( 1 x 1 − =+ −°∠ V I V But 4j )10-16( 1 x V I −°∠ = So, j18j ))10-16((3 11 − = −°∠ VV 4j1- 10-48 1 + °∠ =V Using voltage division, °∠= + ° ∠ = − = 04.69-232.8 )4j1j)( (1 10-48 j1 1 1o VV Therefore, = )t(v o 8.232 sin(4t – 69.04°) V Chapter 10, Solution 5. Let the voltage across the capacitor and the inductor be V x and we get: 0 3j V 2j V 4 3010I5.0V xxxx =+ − + °∠−− x x xxx V5.0j 2j V Ibut3030I5.1V)4j6j3( = − =°∠=−−+ Combining these equations we get: A38.97615.4 25.1j3 3030 5.0jI 25.1j3 3030 Vor3030V)75.0j2j3( x xx °∠= + °∠ = + ° ∠ =°∠=−+ Chapter 10, Solution 6. Let V o be the voltage across the current source. Using nodal analysis we get: 0 10j20 V 3 20 V4V oxo = + +− − where ox V 10j20 20 V + = Combining these we get: 30j60V)35.0j1(0 10j20 V 3 10j20 V4 20 V o ooo +=−+→= + +− + − = +− = +− + = 5.0j2 )3(20 Vor 5.0j2 30j60 V xo 29.11∠–166˚ V. Chapter 10, Solution 7. At the main node,         ++ + =−− + − →+ − +∠= + −−∠ 50 1 30 j 20j40 1 V 3j196.5 20j40 058.31j91.115 50 V 30j V 306 20j40 V15120 o o V 15408.124 0233.0j04.0 7805.4j1885.3 V o −∠= + − − = Chapter 10, Solution 8. ,200=ω 20j1.0x200jLjmH100 ==ω→ 100j 10x50x200j 1 Cj 1 F50 6 −== ω →µ − The frequency-domain version of the circuit is shown below. 0.1 V o 40 Ω V 1 I o V 2 + -j100 Ω 6 o 15∠ 20 Ω V o j20 Ω - At node 1, 40 VV 100j V 20 V V1.0156 2111 1 o − + − +=+∠ or 21 025.0)01.0025.0(5529.17955.5 VVjj − + − = + (1) At node 2, 21 2 1 21 V)2j1(V30 20j V V1.0 40 VV −+=→+= − (2) From (1) and (2), BAVor 0 )5529.1j7955.5( V V )2j1(3 025.0)01.0j025.0( 2 1 =         + =               − −+− Using MATLAB, V = inv(A)*B leads to V 09.1613.110,23.12763.70 21 jVj + − = −−= o 21 o 17.82276.7 40 VV I −∠= − = Thus, A )17.82t200cos(276.7)t(i o o −= Chapter 10, Solution 9. 10 33 10,010)t10cos( =ω°∠→ 10jLjmH10 =ω→ 20j- )1050)(10(j 1 Cj 1 F50 6-3 = × = ω →µ Consider the circuit shown below. V 1 20 Ω V 2 - j 20 Ω 20 Ω I o 30 Ω + V o − 4 I o + − 10∠0° V j 10 Ω At node 1, 20j-2020 10 2111 VVVV − += − 21 j)j2(10 VV −+= (1) At node 2, 10j3020 )4( 20j- 2121 + += − VVVV , where 20 1 o V I = has been substituted. 21 )8.0j6.0()j4-( VV +=+ 21 j4- 8.0j6.0 VV + + = (2) Substituting (2) into (1) 22 j j4- )8.0j6.0)(j2( 10 VV − + ++ = or 2.26j6.0 170 2 − = V °∠= − ⋅ + = + = 26.70154.6 2.26j6.0 170 j3 3 10j30 30 2o VV Therefore, =)t(v o 6.154 cos(10 3 t + 70.26°) V Chapter 10, Solution 10. 2000,100j10x50x2000jLj mH 50 3 =ω==ω→ − 250j 10x2x2000j 1 Cj 1 F2 6 −== ω →µ − Consider the frequency-domain equivalent circuit below. V 1 -j250 V 2 36<0 o 2k Ω j100 0.1V 1 4k Ω At node 1, 21 2111 V004.0jV)006.0j0005.0(36 250j VV 100j V 2000 V 36 −−=→ − − ++= (1) At node 2, 21 2 1 21 V)004.0j00025.0(V)004.0j1.0(0 4000 V V1.0 250j VV ++−=→+= − − (2) Solving (1) and (2) gives o 2o 43.931.89515.893j6.535VV ∠=+−== v o (t) = 8.951 sin(2000t +93.43 o ) kV Chapter 10, Solution 11. cos( 2,01)t2 =ω°∠→ °∠→°+ 60-8)30t2sin(8 2jLjH1 =ω→ j- )21)(2(j 1 Cj 1 F2 == ω →1 4jLjH2 =ω→ 2j- )41)(2(j 1 Cj 1 F4 == ω →1 Consider the circuit below. - j Ω - j Ω 2 I o 2 I o 2 I o 2 I o 2 I 2 2 2 I o 2 At node 1, 2jj-2 )60-8( 2111 VVVV − += −°∠ 21 j)j1(60-8 VV + +=°∠ (1) At node 2, 0 2j4j )60-8( 2j 1 221 = − − °∠ + − + VVV 12 5.0j60-4 VV + +°∠= (2) Substituting (2) into (1), 1 )5.1j1(30460-81 V + = °∠−°∠+ 5.1j1 30460-81 1 + ° ∠ − °∠+ = V °∠= − °∠−°∠+ == 46.55-024.5 j5.1 30460-81 j- 1 o V I Therefore, =)t(i o 5.024 cos(2t – 46.55°) Chapter 10, Solution 12. 20 1000,020)t1000sin( =ω°∠→ 10jLjmH10 =ω→ 20j- )1050)(10(j 1 Cj 1 F50 6-3 = × = ω →µ The frequency-domain equivalent circuit is shown below. 2 I o - j 20 Ω 20 Ω V 2 V 1 20∠0° A 10 Ω I o j 10 Ω At node 1, 1020 220 211 o VVV I − ++= , where 10j 2 o V I = 102010j 2 20 2112 VVVV − ++= 21 )4j2(3400 VV +−= (1) At node 2, 10j20j-1010j 2 22212 VVVVV += − + 21 )2j3-(2j VV += or (2) 21 )5.1j1( VV += Substituting (2) into (1), 222 )5.0j1()4j2()5.4j3(400 VVV + = + − += 5.0j1 400 2 + = V °∠= + == 6.116-74.35 )5.0j1(j 40 10j 2 o V I Therefore, =)t(i o 35.74 sin(1000t – 116.6°) A Chapter 10, Solution 13. Nodal analysis is the best approach to use on this problem. We can make our work easier by doing a source transformation on the right hand side of the circuit. – j 2 Ω 18 Ω j 6 Ω + − 50 ∠ 0º V + − + V x − 3 Ω 40∠30º V

Ngày đăng: 25/01/2014, 12:20

w