1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Tài liệu Bài giải mạch P10 ppt

91 247 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Nội dung

Chapter 10, Solution 1. ω 1= °∠→°− 45-10)45tcos(10 °∠→°+ 60-5)30tsin(5 jLjH1 =ω→ j- Cj 1 F1 = ω → The circuit becomes as shown below. V o 3 Ω + − 10∠-45° V + − 2 I o j Ω 5 ∠ -60° V Applying nodal analysis, j-j )60-5( 3 )45-10( ooo VVV = − ° ∠ + − °∠ o j60-1545-10j V = ° ∠ + °∠ ° ∠ = ° ∠ + °∠= 9.24715.73150-1545-10 o V Therefore, = )t(v o 15.73 cos(t + 247.9°) V Chapter 10, Solution 2. ω 10= °∠→π− 45-4)4t10cos(4 °∠→π+ 150-20)3t10sin(20 10jLjH1 =ω→ 5j- 2.0j 1 Cj 1 F02.0 == ω → The circuit becomes that shown below. I o V o 10 Ω j 10 Ω - j 5 Ω 20∠-150° V + − 4∠-45° A Applying nodal analysis, 5j-10j 45-4 10 )150-20( ooo VVV +=°∠+ −°∠ o )j1(1.045-4150-20 V + = °∠+°∠ °∠= + °∠+°∠ == 98.150816.2 )j1(j 45-4150-2 10j o o V I Therefore, = )t(i o 2.816 cos(10t + 150.98°) A Chapter 10, Solution 3. ω 4= °∠→ 02)t4cos(2 -j1690-16)t4sin(16 =°∠→ 8jLjH2 =ω→ 3j- )121)(4(j 1 Cj 1 F121 == ω → The circuit is shown below. V o + − 2 ∠ 0° A -j16 V 4 Ω - j 3 Ω 6 Ω 1 Ω j 8 Ω Applying nodal analysis, 8j61 2 3j4 16j- ooo + +=+ − − VVV o 8j6 1 3j4 1 12 3j4 16j- V       + + − +=+ − °∠= °∠ ° ∠ = + − = 02.35-835.3 88.12207.1 15.33-682.4 04.0j22.1 56.2j92.3 o V Therefore, =)t(v o 3.835 cos(4t – 35.02°) V Chapter 10, Solution 4. 16 4,10-16)10t4sin( =ω°∠→°− 4jLjH1 =ω→ j- )41)(4(j 1 Cj 1 F25.0 == ω → j 4 Ω 1 Ω I x - j Ω 16∠-10° V + − V 1 0.5 I x + V o − j12 1 4j )10-16( 1 x 1 − =+ −°∠ V I V But 4j )10-16( 1 x V I −°∠ = So, j18j ))10-16((3 11 − = −°∠ VV 4j1- 10-48 1 + °∠ =V Using voltage division, °∠= + ° ∠ = − = 04.69-232.8 )4j1j)( (1 10-48 j1 1 1o VV Therefore, = )t(v o 8.232 sin(4t – 69.04°) V Chapter 10, Solution 5. Let the voltage across the capacitor and the inductor be V x and we get: 0 3j V 2j V 4 3010I5.0V xxxx =+ − + °∠−− x x xxx V5.0j 2j V Ibut3030I5.1V)4j6j3( = − =°∠=−−+ Combining these equations we get: A38.97615.4 25.1j3 3030 5.0jI 25.1j3 3030 Vor3030V)75.0j2j3( x xx °∠= + °∠ = + ° ∠ =°∠=−+ Chapter 10, Solution 6. Let V o be the voltage across the current source. Using nodal analysis we get: 0 10j20 V 3 20 V4V oxo = + +− − where ox V 10j20 20 V + = Combining these we get: 30j60V)35.0j1(0 10j20 V 3 10j20 V4 20 V o ooo +=−+→= + +− + − = +− = +− + = 5.0j2 )3(20 Vor 5.0j2 30j60 V xo 29.11∠–166˚ V. Chapter 10, Solution 7. At the main node,         ++ + =−− + − →+ − +∠= + −−∠ 50 1 30 j 20j40 1 V 3j196.5 20j40 058.31j91.115 50 V 30j V 306 20j40 V15120 o o V 15408.124 0233.0j04.0 7805.4j1885.3 V o −∠= + − − = Chapter 10, Solution 8. ,200=ω 20j1.0x200jLjmH100 ==ω→ 100j 10x50x200j 1 Cj 1 F50 6 −== ω →µ − The frequency-domain version of the circuit is shown below. 0.1 V o 40 Ω V 1 I o V 2 + -j100 Ω 6 o 15∠ 20 Ω V o j20 Ω - At node 1, 40 VV 100j V 20 V V1.0156 2111 1 o − + − +=+∠ or 21 025.0)01.0025.0(5529.17955.5 VVjj − + − = + (1) At node 2, 21 2 1 21 V)2j1(V30 20j V V1.0 40 VV −+=→+= − (2) From (1) and (2), BAVor 0 )5529.1j7955.5( V V )2j1(3 025.0)01.0j025.0( 2 1 =         + =               − −+− Using MATLAB, V = inv(A)*B leads to V 09.1613.110,23.12763.70 21 jVj + − = −−= o 21 o 17.82276.7 40 VV I −∠= − = Thus, A )17.82t200cos(276.7)t(i o o −= Chapter 10, Solution 9. 10 33 10,010)t10cos( =ω°∠→ 10jLjmH10 =ω→ 20j- )1050)(10(j 1 Cj 1 F50 6-3 = × = ω →µ Consider the circuit shown below. V 1 20 Ω V 2 - j 20 Ω 20 Ω I o 30 Ω + V o − 4 I o + − 10∠0° V j 10 Ω At node 1, 20j-2020 10 2111 VVVV − += − 21 j)j2(10 VV −+= (1) At node 2, 10j3020 )4( 20j- 2121 + += − VVVV , where 20 1 o V I = has been substituted. 21 )8.0j6.0()j4-( VV +=+ 21 j4- 8.0j6.0 VV + + = (2) Substituting (2) into (1) 22 j j4- )8.0j6.0)(j2( 10 VV − + ++ = or 2.26j6.0 170 2 − = V °∠= − ⋅ + = + = 26.70154.6 2.26j6.0 170 j3 3 10j30 30 2o VV Therefore, =)t(v o 6.154 cos(10 3 t + 70.26°) V Chapter 10, Solution 10. 2000,100j10x50x2000jLj mH 50 3 =ω==ω→ − 250j 10x2x2000j 1 Cj 1 F2 6 −== ω →µ − Consider the frequency-domain equivalent circuit below. V 1 -j250 V 2 36<0 o 2k Ω j100 0.1V 1 4k Ω At node 1, 21 2111 V004.0jV)006.0j0005.0(36 250j VV 100j V 2000 V 36 −−=→ − − ++= (1) At node 2, 21 2 1 21 V)004.0j00025.0(V)004.0j1.0(0 4000 V V1.0 250j VV ++−=→+= − − (2) Solving (1) and (2) gives o 2o 43.931.89515.893j6.535VV ∠=+−== v o (t) = 8.951 sin(2000t +93.43 o ) kV Chapter 10, Solution 11. cos( 2,01)t2 =ω°∠→ °∠→°+ 60-8)30t2sin(8 2jLjH1 =ω→ j- )21)(2(j 1 Cj 1 F2 == ω →1 4jLjH2 =ω→ 2j- )41)(2(j 1 Cj 1 F4 == ω →1 Consider the circuit below. - j Ω - j Ω 2 I o 2 I o 2 I o 2 I o 2 I 2 2 2 I o 2 At node 1, 2jj-2 )60-8( 2111 VVVV − += −°∠ 21 j)j1(60-8 VV + +=°∠ (1) At node 2, 0 2j4j )60-8( 2j 1 221 = − − °∠ + − + VVV 12 5.0j60-4 VV + +°∠= (2) Substituting (2) into (1), 1 )5.1j1(30460-81 V + = °∠−°∠+ 5.1j1 30460-81 1 + ° ∠ − °∠+ = V °∠= − °∠−°∠+ == 46.55-024.5 j5.1 30460-81 j- 1 o V I Therefore, =)t(i o 5.024 cos(2t – 46.55°) Chapter 10, Solution 12. 20 1000,020)t1000sin( =ω°∠→ 10jLjmH10 =ω→ 20j- )1050)(10(j 1 Cj 1 F50 6-3 = × = ω →µ The frequency-domain equivalent circuit is shown below. 2 I o - j 20 Ω 20 Ω V 2 V 1 20∠0° A 10 Ω I o j 10 Ω At node 1, 1020 220 211 o VVV I − ++= , where 10j 2 o V I = 102010j 2 20 2112 VVVV − ++= 21 )4j2(3400 VV +−= (1) At node 2, 10j20j-1010j 2 22212 VVVVV += − + 21 )2j3-(2j VV += or (2) 21 )5.1j1( VV += Substituting (2) into (1), 222 )5.0j1()4j2()5.4j3(400 VVV + = + − += 5.0j1 400 2 + = V °∠= + == 6.116-74.35 )5.0j1(j 40 10j 2 o V I Therefore, =)t(i o 35.74 sin(1000t – 116.6°) A Chapter 10, Solution 13. Nodal analysis is the best approach to use on this problem. We can make our work easier by doing a source transformation on the right hand side of the circuit. – j 2 Ω 18 Ω j 6 Ω + − 50 ∠ 0º V + − + V x − 3 Ω 40∠30º V

Ngày đăng: 25/01/2014, 12:20

w