Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 13 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
13
Dung lượng
405 KB
Nội dung
Phương Pháp GiảiMạchĐiện 1. BIỂU DIỄN DÒNG ÁP HÌNH SIN BẰNGSỐPHỨC 1.1. Khái niệm số phức. Cho sốphức • V = a + jb gồm có: a: phần thực ; jb: Phần ảo Chúng được biểu diễnbằng một véctơ trong mặt phẳng phức. Môđun của số phức: c= 22 ba + Arcgument của số phức: ϕ = acrtg a b V a b +j Trục thực -j Trục ảo c Hình 2.4 • các dạng biểu diễn của số phức. + Dạng đại số: • V = a + jb + Dạng lượng giác: • V = c(cos ϕ + jsin ϕ ) + Dạng số mũ: • V = c ϕ j e (công thức ơle: cos ϕ + jsin ϕ = ïj e ϕ ) + Dạng cực: • V = c ϕ ∠ Trong kỹ thuật điệnsốphức biểu diễn ho các đại lượng dòng áp hình sin, có mun đungd bằng trò hiệu dụng còn acrgument bằng pha ban đầu của đại lượng điện hình sin đó. Sốphức biểu diễn các đại lượng sin ký hiệu bằng các chữ in hoa có dấu chấm ở trên. • I , • U , • E . Ví dụ: i 1 = 2 10I 1 sin ( t ω + 2 π ) → • I = 10 2 π j e * Chu ýù : 1 Phương Pháp GiảiMạchĐiện - Sốphức liên hiệp. Cho sốphức • V = a + jb thì sốphức ∧ V = a – jb là sốphức liên hiệp. Hai sốphức được gọi là liên hiệp với nhau khi chúng có cùng phần thực và phần ảo trái dấu. - Số đo j. (j 2 = -1) Từ sốphức dưới dạng lượng giác: c(cos ϕ + jsin ϕ ) = c ϕ j e Khi c =1, ϕ = 2 π → cos 2 π + jsin 2 π = 2 π j e ⇒ j = 2 π j e ; - j = 2 π j e − 1.2. Các phép tính của số phức. a) Cộng trừ số phức. Cho số phức: 1 • V = a 1 + jb 1 2 • V = a 2 + jb 2 ⇒ 1 • V + 2 • V = (a 1 + a 2 ) + j(b 1 + b 2 ) Cho số phức: • V = a + jb ⇒ • V + ∧ V = 2a = 2Re • V • V - ∧ V = 2jb = 2 Imf • V b) Phép nhân chia số phức. Cho số phức: 1 • V = c 1 1 ϕ j e ; 2 • V = c 2 2 ϕ j e 1 • V . 2 • V = c 1 c 2 )( 21 ϕϕ + j e • • 2 1 V V = 2 1 c c )( 21 ϕϕ − j e c) Nhân sốphức với ± j. cho sốphức • V = c ϕ j e ⇒ j . • V = jc ϕ j e = 2 π j e . c ϕ j e = c ) 2 ( π ϕ + j e ⇒ -j . • V = -jc ϕ j e = 2 π j e − . c ϕ j e = c ) 2 ( π ϕ − j e 2 Phương Pháp GiảiMạchĐiện V a b +j Trục thực -j Trục ảo c -JV +JV Hình 2.5 ⇒ Như vậy khi nhân một sốphức với j, ta quay véctơ biểu diễnsốphức một góc 2 π ngược chiều kim đồng hồ. Khi nhân với (-j ) ta quay véctơ biểu diễnsốphức một góc 2 π cùng chiều kim đồng hồ ( hình 2.5). d) Đạo hàm của một hàm hình sin theo thời gian biểu diễn dưới dạng phức. Đạo hàm của một hàm hình sin theo thời gian biểu diễn dưới dạng phức thì bằngsốphức biểu diễn hàm hình sin đó nhân với j ω . Cho dòng điện i = I m sin ( t ω + ϕ ) ⇒ dt di = = j ω • I e) Tích phân của một hàm hình sin theo thời gian biểu diễn dưới dạng phức. Tích phân của một hàm hình sin theo thời gian biểu diễn dưới dạng phức thì bằngsốphức biểu diễn hàm hình sin đó chia cho j ω . Cho dòng điện i = 2 I sin ( t ω + ϕ ) ⇒ idt ∫ = I j ω • Ví dụ. Cho dòng điện i = 2 50 sin ( t ω + 3 π ) 3 Phương Pháp GiảiMạchĐiện dt di = j ω • I = j ω 50 e j 3 π ∫ idt = ω j I • = ω π j e j 3 50 1.3. Đònh luật kiếchốp 1. Tổng đại số các dòng điện tại một nút thì bằng không. ∑ = n k k i 1 = 0 (1.17) • Quy ước: Dòng điện nào có chiều đi tới nút thì lấy dấu dương ngược lai thì lấy dấu âm. 1.4. Đònh luật Kiếchốp 2. Đi theo một vòngkhép kín, theo một chiều tuỳ ý đã chọn, tổng đại số các điện áp rơi trên các phần tử R,L,C bằng tổng đại số các sức điện động trong vòng. • Quy ước: Những sức điện động và dòng điện có chiều trùng với chiều đi vòng sẽ lấy dấu dương, ngược lại mang dấu âm. ∑ = n k k u 1 = ∑ = m l l e 1 (1.18) * Biểu diễnsốphức các phương trình trong đònh luật kiếchốp. ∑ = n k k i 1 = 0 → ∑ = • n k k I 1 = 0 ∑ = n k k u 1 = ∑ = m l l e 1 → ∑ = • n k k U 1 = ∑ = • m l l E 1 • Ví dụ 1: Cho mạchđiện như hình 1.7. Hãy viết đònh luật Kiếchốp I và II cho mạch điện. 4 Phương Pháp GiảiMạchĐiện 1 1 R 1 e 1 e 2 e 3 R 3 C 3 C 2 L 2 i 2 3 + + M Hình 1.7 Phương trình định luật kiếchốp 1 tại nút M: 1 2 3 0I I I − − = g g g Phương trình định luật kiếchốp 2: 1 1 2 2 1 2 1 1 2 2 3 3 2 2 2 3 3 3 2 2 (1) (2) L C L C L C R I jX I jX I jX I E E jX I R I jX I jX I E E + − + = − − + − + = − g g g g g g g g g g g g 2. PHƯƠNG PHÁP BIỂU DIỄNSỐPHỨC * Các bước thực hiện. - Biểu diễnđiện áp và tổng trở các nhánh dưới dạng phức U → • U R,x → − Z = R + jx - Dùng đònh luật Omh, đòng luật kizhhoff để tính các dòng, áp khác dưới dạng phức. Từ đó suy ra trò hiệu dụng. * VÍ DỤ. Cho mạchđiện như hình 3.1. với các thông sốmạch như sau. R 1 = 5 Ω ; R 2 = 5 3 Ω ; X 1 = X 2 = 5 Ω ; U = 100 V Tính I 1, I 2 , I, U CD ? 5 Phương Pháp GiảiMạchĐiện R 1 R 2 X 2 X 1 C D I 1 I 2 u A B Hình 3.1 Bài giải. Tổng trở phức nhánh 1. 111 jXRZ += = 5 + j 5 Dòng điệnphức nhánh 1: 1 1 Z U I • • = = 55 100 j + = 10 – j10 Trò số hiệu dụng: I 1 = 22 1010 + = 10 2 A Tổng trở phức nhánh 2. 222 jXRZ −= = 5 3 - j 5 Dòng điệnphức nhánh 2: 2 2 Z U I • • = = 535 100 j − = 5 3 + j 5 ⇒ Trò số hiệu dụng: I 2 = 10 A Theo đònh luật kiếchốp: ••• += 21 III = 10 – j10 + 5 3 + j 5 =(10 + 5 3 ) – j 5 ⇒ Trò số hiệu dụng: I = 19,32 A Điện áp phức CD U * là: 6 Phương Pháp GiảiMạchĐiện CD U * = CD U * + CD U * = -R 1 * 1 I + R 2 * 2 I = -5(10 – j10 ) + 5 3 (5 3 + j 5) = 25 + j(50 + 25 3 ) ⇒ Trò số hiệu dụng: U CD = 96,59 V. 3. PHƯƠNG PHÁP DÒNG ĐIỆN NHÁNH * Các bước giải: - Xác đònh mạchđiện có m nhánh, n nút từ đó suy ra số nút độc lập là n-1, số vòng độc lập là m-n+1 - Viết các phương trình đònh luật kirchhoff 1 cho n-1 nút độc lập và phương trình đònh luật kirchhoff 2 cho m-n+1 vòng độc lập. - Giải hệ phương trình nút và vòng đã biết tìm được dòng điện trên các nhánh. * Thí dụ : Cho mạchđiện như hình vẽ. Z 1 =Z 2 =Z 3 =2 + j2 (Ω) e 1 =e 2 =120 2 sin314t (V) Tính dòng điện trong các nhánh ? I 1 U I 2 I 3 A B Z 1 Z 2 Z 3 + + e 1 e 3 Hình 3.4 7 Phương Pháp GiảiMạchĐiện Bài giảiMạch có : n = 2 → 1 nút độc lập m = 3 → 2 vòng độc lập - Chọn chiều dương cho các mạch vòng độc lập như trên hình vẽ, viết các phương trình theo đònh luật kirchhoff 1 và 2 cho các nhánh và các vòng. Nút A : * I 1 - * I 2 - * I 3 = 0 (1) Vòng 1: Z 1 * I 1 + Z 2 * I 2 = E 1 (2) Vòng 2: Z 3 * I 3 - Z 2 * I 2 = -E 3 (3) Ta có : * I 1 - * I 2 - * I 3 = 0 (4) (2+j 2) * I 1 +(2+j 2) * I 2 =120 (5) (2+j 2) * I 3 - (2+j 2) * I 2 =-120 (6) Giải hệ phương trình (4),(5),(6) Cộng (5),(6) => (2 +j 2) * I 1 + (2+j 2) * I 3 = 0 (7) Nhân (4) với (2+j 2) rồi cộng với (5) (4+j4) * I 1 –(2+j2) * I 3 = 120 (8) Từ (7) và (8) => I 1 = 1010 )1( 20 )1(6 120 j jj −= + = + => I 1 = 10 2 (A) ;=> I 2 , I 3 4. PHƯƠNG PHÁP MẠCHĐIỆN VÒNG * Các bước giải Xét số nút n , vòng m từ đó suy ra số vòng độc lập : m-n+1 - Gán cho mỗi mạch vòng độc lập một dòng chạy kín trong vòng gọi là dòng điện vòng I v - Viết pt đònh luật kirchhff 2 cho các mạch vòng độc lập với dòng điện tác dụng lên mạch là các dòng điện vòng. 8 Phương Pháp GiảiMạchĐiện - Giải hệ phương trình đã biết với ẩn số là các dòng điện vòng - Dòng chạy trong mỗi nhánh bằng tổng đại số các dòng điện vòng chạy qua nhánh đó. * Ví dụ : Giải bài toán theo hình trên bằng phương pháp mạch vòng Z 1 =Z 2 =z 3 =2+j 2 (Ω) e 1 = e 3 = 120 2 sin 314 ϕt (V) Tính I 1 ,I 2 ,I 3 ? I 1 U I 2 I 3 A B Z 1 Z 2 Z 3 e 1 e 3 I v 1 I v 2 Hình 3.5 Bài giải Gán cho mỗi vòng đònh luật một vòng chạy kín trong vòng ( theo hình vẽ) Phương trình đònh luật kirchhoff 2 cho các vòng. −=−+ =−+ 3 * 1 * 22 * 32 1 * 2 * 2 1 * 21 )( )( EIZvIZZ EIZIZZ v vV <=> −=+−+ =+−+ 120)22()44( 120)22()44( 1 * 2 * 2 * 1 * v vV IjvIj IjIj Nhân 2 vào pt1 rồi cộng vào pt2 9 Phương Pháp GiảiMạchĐiện => )()1(10 1 )1(20 )1( 20 120)66( 2 1 1 Aj j j j I Ij v v −= − − = + = =+ )(210 1010 1 11 AI jII v =⇒ −==⇒ Nhân 2 vào pt2 rồi cộng pt1: 6(1+j)I v2 =-120 I V2 = )(1010 1 20 Aj j +−= + − I 2 = I V1 -I V2 = 10 - j10 -(-10+j10) = 20 – j20 (A) )(220 2 AI =⇒ )(210 1010 3 23 AI jII V =⇒ +−== 5. PHƯƠNG PHÁP ĐIỆN ÁP HAI NÚT. Phương pháp này chỉ áp dụng cho những mạch có nhiều nhánh nhưng chỉ có hai nút. * Các bước giải: - Tuỳ ý chọn chiều dòng điện nhánh và điện áp hai nút. - Tìm điện áp hai nút theo công thức: ∑ ∑ = = = n k k n k kk AB Y EY U 1 1 Y k : là tổng trở phức nhánh Y k = k Z 1 E k : là suất điện động nhánh thứ k - Tìm dòng điện nhánh bằng cách áp dụng đònh luật Ôm cho nhánh có nguồn. Khi đó dòng điện trên mỗi nhánh sẽ được tính: 10 [...]...Phương Pháp GiảiMạchĐiện I k = ( E k − U AB ) Yk Với quy ước: dòng điện và nguồn suất điện động nào ngược chiều với điện áp UAB thì lấy dấu “+”, ngược lại lấy dấu “-“ * Ví dụ: Giải mạchđiện thí dụ trên theo phương pháp điện áp hai nút A I1 Z1 I2 UAB I3 Z3 Z2 e1 e3 B Hình 3.6 Z1 = Z 2 = Z3 = 2 + j2Ω E1 = E3 = 120v Vẽ chiều dương điện áp UAB như hình vẽ - Tính UAB U AB... Dòng điện trên các nhánh: 1 20 = = 10 − j10 ⇒ I1 = 10 2 2 + j2 1 + J 1 40 I 2 = −( E 2 − U AB )Y2 = 80 = = 20 − j 20 ⇒ I 2 = 20 2 2 + j2 1+ J I1 = ( E1 − U AB )Y1 = (120 − 80 ) ( A) ( A) 6 PHƯƠNG PHÁP XẾP CHỒNG Tính chất xếp chồng là tính chất cơ bản của mạchđiện tuyến tính : 11 Phương Pháp GiảiMạchĐiện Trong 1 mạchđiện tuyến tính có nhiều nguồn, dòng điện, điện áp trên một nhánh nào đó sẽ bằng. .. tính : 11 Phương Pháp GiảiMạchĐiện Trong 1 mạchđiện tuyến tính có nhiều nguồn, dòng điện, điện áp trên một nhánh nào đó sẽ bằng tổng đại số các dòng áp trên nhánh đó do từng nguồn riêng rẽû tác dụng lên mạch trong khi các nguồn khác bằng 0 * Ví dụ: Giảimạchđiện thí dụ trên theo phương pháp xếp chồng A A I13 U I23 Z1 Z2 Z3 I11 I33 e1= 0 e3 + U A I21 Z2 Z1 Z3 e1 e3 = 0 B I1 I31 = U I2 Z2 Z1 I3 Z3... = 11 = 10(1 − j ) 2 40 1 I11= Z + Z = (2 + j 2) + (1 + j ) = 1 + j = 20(1 − j ) 1 23 Vì Z2=Z3 ⇒ * * * (A) Theo hình 3.7a I 33 = E3 120 = = 20(1 − j ) Z 3 + Z12 (2 + j 2) + (1 + j ) 12 Phương Pháp GiảiMạchĐiện VÌ Z1 = Z 2 ⇒ I 23 = I13 = I 33 = 10(1 − j ) 2 Theo tính chất xếp chồng: I1 = I11-I13 = 20 – j20 – (10 –j10) = 10-j10 ⇒ I1=10 2 (A) I2=I21 + I23 = 10 – j10 +10 –j10 = 20 –j20 ⇒ I2=20 2 (A) I3= . ýù : 1 Phương Pháp Giải Mạch Điện - Số phức liên hiệp. Cho số phức • V = a + jb thì số phức ∧ V = a – jb là số phức liên hiệp. Hai số phức được gọi là liên. Phương Pháp Giải Mạch Điện 1. BIỂU DIỄN DÒNG ÁP HÌNH SIN BẰNG SỐ PHỨC 1.1. Khái niệm số phức. Cho số phức • V = a + jb gồm có: a: phần