Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 30 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
30
Dung lượng
1,04 MB
Nội dung
A MỞ ĐẦU Lý chọn đề tài Năm học 2016-2017, Bộ Giáo dục Đào tạo thực đổi kỳ thi Trung học Phổ thông Quốc gia (THPTQG) Trong mơn tốn đổi từ hình thức thi từ tự luận sang hình thức thi trắc nghiệm Việc thay đổi tạo nên nhiều bỡ ngỡ khó khăn cho giáo viên học sinh việc ơn luyện Hình thức thi trắc nghiệm mơn tốn địi hỏi số cách tiếp cận vấn đề so với hình thức thi tự luận Kỳ thi quốc gia 2018 tổ chức với mục đích xét tốt nghiệp THPT xét vào đại học, cao đẳng Đề thi năm 2018, mơn Tốn thời gian làm 90 phút ( với 50 câu trắc nghiệm, nội dung nằm chương trình Tốn lớp 11 chiếm 20%, lớp 12 chiếm 80%) Năm 2018 năm thứ mơn Tốn thi hình thức trắc nghiệm khách quan 100%, nên trình giảng dạy giáo viên phải có phải ý rèn luyện thêm cho học sinh kỹ làm trắc nghiệm mơn Tốn Trong tiết giảng dạy hàng ngày cần dành thời gian để kiểm tra việc nắm kiến thức bản, kỹ theo yêu cầu chương trình qua việc chuẩn bị thật nhiều câu hỏi tập trắc nghiệm kiểm tra lý thuyết lẫn tập để khắc sâu kiến thức cho học sinh đồng thời phân tích cho học sinh thấy sai sót cần tránh phân tích rõ cách làm trắc nghiệm cho hợp lý Tài liệu tham khảo thị trường tràn lan, nhiều số lượng mà không đảm bảo chất lượng Với mong muốn giúp em học sinh hiểu những kiến thức bản, khắc phục sai lầm giải toán từ tự làm tập bản, tiến tới giải toán nâng cao thấy u thích mơn Tốn hơn, sở tiếp thu số kết đồng nghiệp trước thực tế trình giảng dạy, tơi chọn đề tài nghiên cứu cho là: “ PHÂN TÍCH MỘT SỐ SAI LẦM THƯỜNG GẶP CỦA HỌC SINH KHI GIẢI CÁC BÀI TOÁN TRẮC NGHIỆM VÀ HƯỚNG KHẮC PHỤC” Mục đích nghiên cứu Đề tài nghiên cứu nhằm mục đích cải tiến nội dung phương pháp giảng dạy tiết học lí thuyết tập, từ đó: - Hình thành cho học sinh kiến thức Toán học - Giúp học sinh nhận thấy sai lầm thường mắc phải giải toán cách khắc phục - Giúp cho học sinh có khả tư quán linh hoạt sáng tạo Giúp em đạt kết cao học tập mơn Tốn từ mà thấy say mê mơn Tốn Đồng thời rèn luyện đức tính tốt cho học sinh học tập nghiên cứu - Tích lũy kinh nghiệm giảng dạy cho giáo viên, tạo cảm hứng cho giáo viên sáng tạo giảng dạy, thêm yêu ngành yêu nghề Đối tượng nghiên cứu - Lựa chọn ví dụ ,các tập cụ thể sai lầm học sinh vận dụng hoạt động lực tư kỹ vận dụng kiến thức học sinh để từ đưa lời giải toán Phương pháp nghiên cứu 4.1 Nghiên cứu lý luận: Nghiên cứu sách, báo, tư liệu, cơng trình nghiên cứu vấn đề có liên quan đến đề tài 4.2.Phương pháp điều tra thực tế: + Điều tra GV HS THPT tình hình thực tiễn có liên quan + Tham khảo ý kiến giáo viên Toán kinh nghiệm xây dựng khai thác tốn có nội dung thực tiễn 4.3 Phương pháp thực nghiệm sư phạm: Sử dụng phương pháp thử nghiệm sư phạm để kiểm tra tính khả thi hiệu giải pháp đề B NỘI DUNG Cơ sở lí luận Dựa nguyên tắc trình nhận thức người từ: “ sai đến gần đến khái niệm đúng”, nguyên tắc dạy học đặc điểm trình nhận thức học sinh G.Polya viết "Con người phải biết học từ sai lầm thiếu sót mình" Thơng qua sai lầm, ta biết cách nhìn nhận nó, kịp thời uốn nắn sửa chữa giúp ta ghi nhớ lâu tri thức học, đồng thời giúp ta tránh sai lầm tương tự bồi dưỡng thêm mặt tư cho thân người Các kiến thức Tốn học cấp THPT, nhiều học sinh học từ bậc THCS, em có lực học trung bình, yếu bị gốc phần kiến thức dù câu mức đọ nhận biết hay thơng hiểu bế tắc thực lời giải Còn với đa phần em có học lực khá, giỏi tâm lí chung gặp tốn nóng vội lao vào tìm phương pháp giải, tìm phương pháp vội vàng trình bày lời giải, tìm đáp số, thấy kết gọn, đẹp yên tâm, mẩm mà quên thao tác quen thuộc: phân tích đề, kiểm tra điều kiện, kiểm tra phép tính…Vì sai sót xảy điều tất yếu Kinh nghiệm cho thấy việc phát lỗi sai người khác dễ cịn việc phát lỗi sai khó Trong q trình dạy phần kiến thức này, cho em chủ động tự làm theo lối tư logic riêng mình, để em theo dõi nhận xét lời giải từ phát lỗi sai từ phân tích để em hiểu chất vấn đề khắc phục sai sót tổng kết thành kinh nghiệm Tuy nhiên, lúc sai lầm học sinh dễ khiến em thấy nhàm chán, hứng thú học tập Vì vậy, tơi vận dụng linh hoạt tiết dạy có gợi ý cần thiết hỗ trợ cho em tìm kiếm lời giải Thực trạng Năm học 2017-2018 Bộ giáo dục đào tạo tiếp tục đổi thi THPT Quốc gia Để giúp học sinh đạt kết tốt kỳ thi THPT Quốc gia 2018, giáo viên cần phải tích cực đổi phương pháp dạy học kiểm tra đánh giá theo định hướng phát triển lực học sinh Mơn Tốn thi trắc nghiệm 100% (50 câu, thời gian 90 phút ) Để làm thi học sinh phải nắm thật vững kiến thức kỹ qui định chương trình Giáo viên phải có ý thức dạy kỹ sâu kiến thức học, rèn luyện thật kỹ theo yêu cầu học, bên cạnh phải giáo dục cho học sinh tính cẩn thận, làm việc có kế hoạch biết hệ thống hóa kiến thức học Thực tế kì thi quốc gia 2017 cho thấy nhiều em học sinh đạt điểm từ 1,0 đến 3,0 điểm, câu đề thi khơng q khó, số câu nhận biết thông hiểu 50% Các giải pháp Trong môi câu hỏi trăc nghiêm thương găp hiên nay, có 4phương án gơm phương án 3phương án nhiêu Phương án nhiêu thương đươc xây dưng dưa sai lâm học sinh Vìvây, học sinh phải năm chăc kiên thưc mơi cóthê quyêt định chọn phương án môt thơi gian rât ngăn Sau tơi trình bày mơt sơ sai lâm màhọc sinh cóthê găp giải tốn trăc nghiêm 3.1 Nhầm lẫn loại điêu kiện, khái niệệ̣m: Ví dụ 1: Cho hàm số y f x liên tục có bảng biến thiên sau: x y’ + 0+ y Hàm số đạt cực đại điểm điểm đây? A x B x C x D x Phân tích phương án nhiễu Phương án A: Sai HS nhầm với giá trị cực tiểu hàm số Phương án B: Sai HS nhầm với giá trị cực đại hàm số Phương án C: Sai HS nhầm với điểm cực tiểu hàm số Lời giải đúng: Từ bảng biến thiên hàm số ta có hàm số đạt cực đại x 0, yCD 5; hàm số đạt cực tiểu x 4, yCT Do phương án D Chú ý: Nếu hàm số f(x) đạt cực đại (cực tiểu) x0 x0 gọi điểm cực đại (điểm cực tiểu) hàm số; f(x0) gọi giá trị cực đại (giá trị cực tiểu) hàm số, kí hiệu fCD (fCT), cịn điểm M x0; f x0 gọi điểm cực đại (điểm cực tiểu) đồ thị hàm số Ví dụ 2: Đồ thị hàm số có đường tiệm cận ngang? x C y y 2x y 4x D y x2 A B x x 2x x 3x 2x Phân tích phương án nhiễu Phương án A: Sai HS hiểu lim y lim x x 2x x2 2và lim y lim x x 2x x2 lim y lim y x x 2 Nhưng thực chất nên đồ thị hàm số y 2x có x2 hai đường tiệm cận ngang Phương án B: Sai HS hiểu lim y lim x lim y ; lim y x x Nhưng thực chất y x nên đồ thị hàm số 3x y lim y lim y x lim y; lim y có hai đường tiệm x 2x2 cận ngang Phương án C: Sai HS hiểu x Nhưng thực chất x nên đồ thị hàm số khơng có đường tiệm cận ngang x Lời giải đúng: Ta có lim 4x lim x2 3x 4x nên đường thẳng y = x2 3x đường tiệm cận ngang đồ thị hàm số y x x 4x Chọn D x2 3x Chú ý: Cho hàm số y = f(x) xác định khoảng vô hạn (là khoảng a, , ;b ; ) Đường thẳng y y0 đường tiệm cận ngang (hay tiệm cận ngang đồ thị hàm số y f x điều kiện sau thỏa mãn lim f x y0 , lim f x x y0 x Ví dụ 3: Trong mệnh đề sau mệnh đề sai? A dx 2x dx C 2x ln B x ln x D Phân tích phương án nhiễu Phương án A: Sai HS hiểu 2x dx 2x 1 ' dx ) Nhưng thực 2x 1 2x 2x dx 2x HS hiểu tan x cos2 x đoạn 0;1 2x nên nguyên hàm Phương án B: Sai 2x dx ln dx chất Nhưng thực chất ln(2x 1) 2x (vì HS hiểu 2x ' 2x ' nên 2x 2x 2x 2x 2x Phương án D: Sai HS nhớ nhầm dx cos2 x cot x Cũng học sinh chọn nghĩ đề yêu cầu chọn phương án Đúng Lời giải đúng: Ta có nguyên hàm Chú ý: dx ln d ln x x Hơn đoạn 2; x < nên x phải ln( x) Do phương án sai C x xC ln x C, x x ln( x) C, x Ví dụ 4: Biết tập nghiệm bất phương trình log x x khoảng a; b Giá trị biểu thức a b2 A 15 B C 11 D 17 2 Lời giải : Ta có log x x x x x x 01 x b2 17 Chọn D a2 Suy a 1; b Do Phân tích phương án nhiễu a2 b2 15 Phương án A: Sai HS giải a 1; b lại tính sai HS giải sai bất phương trình Cụ thể: log x x x x2 21 3x Suy a 3x x 21 3 21 , b 21 Do tính a 2 b2 15 Phương án B: Sai HS giải sai bất phương trình Cụ thể: log x x x x x2 5x 3x Suy a 2 Do tính a b2 35,b Phương án C: Sai HS giải sai bất phương trình Cụ thể: log x x x x2 3x Suy a 13 , b 3x 13 x 13 2 13 Do tính a b2 11 Ví dụ 5: Trong khơng gian với hệ tọa độ Oxyz, cho hình chóp có đỉnh S 2;3;5 đáy đa giác nằm mặt phẳng 12 Tính thể tích khối chóp A B 24 Phân tích phương án nhiễu C P : x y z , có diện tích D 72 Phương án A: Sai HS tính sai độ dài chiều cao hình chóp Cụ thể: h d S,P 2.2 2.53 22122 Suy thể tích khối chóp V 12.1 Phương án B: Sai HS tính độ dài chiều cao thiếu cơng thức tính thể tích khối chóp Phương án D: Sai HS tính sai độ dài chiều cao hình chóp thiếu 13 cơng thức tính thể tích khối chóp.Cụ thể: h d S,P 2.2 2.5 V S h 72 22 12 22 Lời giải đúng: Chiều cao khối chóp có độ dài d S , P 12.2 Chọn C Suy thể tích khối chóp cho V Ví dụ 6: Cho n số nguyên dương thỏa mãn 5C nn Cn3 Tìm số hạng chứa x5 khai triển nhị thức Niu-tơn 1n ,x x A 35 x B 16 Lời giải: Ta có 5C n C 35 x2 35 16 n C n x D 35 x5 16 nn n 2 n 5n Do ta có khai triển nhị thức Niu-tơn x2 17 x Số hạng chứa x5 khai triển C73 x2 13 35 x5 Chọn A x 16 Phân tích phương án nhiễu Phương án B: Sai HS nhầm số hạng chứa x5 với hệ số số hạng chứa x5 Phương án C: Sai HS viết sai số hạng chứa x5 Cụ thể x2 C7 35 x 2 13 x Phương án D: Sai HS viết sai số hạng chứa x5 Cụ thể x C x 35 16 x Ví dụ 7: Mệnh đề sau đúng? A Hai mặt phẳng phân biệt khơng cắt song song B Nếu mặt phẳng chứa hai đường thẳng song song với mặt phẳng hai mặt phẳng song song với C Hai mặt phẳng song song với mặt phẳng thứ ba song song với D Hai mặt phẳng song song với đường thẳng song song với Phân tích phương án nhiễu Phương án B: khơng nhớ điều kiện đường thẳng phải cắt Phương án C: quên điều kiện hai mặt phẳng phải phân biệt Phương án D: nhớ “Hai đường thẳng phân biệt song song với đường thẳng thứ ba song song với nhau” nên nghĩ hai mặt phẳng Lời giải đúng: Hai mặt phẳng có vị trí tương đối: song song, trùng nhau, cắt nên hai mặt phẳng phân biệt (khơng trùng nhau) khơng cắt song song Chọn A Vídụ 8:Xét khăng định sau: i) Nêu hàm sô y f ( x ) xác định R thỏa mãn f ( 1) f (0) ơđ thị hàm sơ y f ( x ) vàtrục hồnh cóít nhât điêm chung ii) Nêu hàm sô y f ( x ) xác định R thỏa mãn f ( 1) f (0) f (0) f (1) ơđ thịcủa hàm sơ y f ( x ) vàtrục hồnh cóít nhât điêm chung Phát biêu sau làđúng? A Khăng định i) vàkhăng định ii) B Khăng định i) vàkhăng định ii) sai C Khăng định i) sai vàkhăng định ii) D Khăng định i) sai vàkhăng định ii) sai Đây làmôt câu hỏi khó,học sinh cóthê liên tương đên định lívê giátrịtrung gian hàm liên tục đọc giảthiêt hai khăng định Tuy nhiên, giảthiêt thiêu môt điêu kiên rât quan trọng làhàm sơ liên tục Ta cóthê chỉra tình hng đê thây khăng định i) vàii) đêu sai Xét hàm f x x R \ x Hàm sô khơng liên tục Ta có f ( 1) f (0) 0, f (0) f (1) ơđ thịcủa hàm sơ khơng có iêmđ chung vơi Ox Chọn D 3.2 Xét thiêu trường hơp quên điều kiệệ̣n Vídụ 9:Tâp hơp cac sơ thưc m đê ham sô y A.R\ B R Lời giải: Ta có y ' mx mx 3 (m 1)x 4x co cưc tri la C R\ 0;1 D.R\ 2( m 1) x Xét m 0, y ' x đổi dấu qua x=2 nên hàm số có cực trị Xét m 0, ' ( m 1) m Chọn A Phân tích phương án nhiễu: Phương án B: Học sinh nhầm ' m Phương án C: Học sinh quên không lấy kết m=0 Phương án D: Học sinh quên không lấy kết m=0 nhầm ' m Vi du 10: Với giá trị tham số m phương trình x m x m có hai nghiệm trái dấu? A m B m C m D m 2 Lời giải: t2 2m t 6m * Đặt x t Phương trình cho trở thành: 14444444424444444443 f t u cầu tốn * có hai nghiệm t1 , t2 thỏa mãn t1 ' t t 1 t1 t (t 1)(t 2 m Chọn D 1) (hoặc áp dụng f (0) f (1) m 1) Hàm số y x mx ( m 4) x có y ' x 2 mx m2 y '' x 2m Điều kiện cần để hàm số đạt cực đại x m y'3 m 6m m Thử lại: với m y '' 2.3 nên hàm số không đạt cực đại x Với m y '' 2.3 10 nên hàm số đạt cực đại x Vậy giá trị cần tìm m Phương án nhiễu A: Học sinh sử dụng điều kiện cần để hàm số đạt cực trị x0 y ' x0 mà không dùng điều kiện đủ để kiểm tra lại Phương án nhiễu B, D: Học sinh cách giải nên chọn bừa Ví dụ 17: Tìm m để phương trình + 3sin x cos x - m cos 2 x = có nghiệm m ỉ thuc khong ỗ0; ữ ố 4ứ A m >1 B m ³ ỉ Lời gii: Do x ẻ ỗ0; D m - C < m 1 , chọn A m có nghiệm dương += Phân tích phương án nhiễu: Phương án B: nhầm lẫn chọn mút không; Phương án C: nhầm x nên tìm điều kiện phương trình t +3t 2 có nghiệm t Ỵ (0;1) ; x Phương án D: dùng điều kiện ³ Ví dụ 18: Có giá trị nguyên dương m để phương trình = có hai nghiệm? log ( x +3) + m log 2 x +3 m A B Lời giải đúng: Phương trình cho tương đương với log ( x +3) + C m log ( x +3) - 6=0 D (1) Đặt t = log ( x2 +3) , phương trình trở thành - t +6t = m (2) Nhận xét: 13 + Ta có t = log ( x2 + 3) ³ 1; + Với t >1 , ta giải hai nghiệm x , riêng t =1, ta giải nghiệm x = Do đó, để (1) có hai nghiệm (2) có nghiệm t >1 , nghiệm cịn lại (nếu có) phải nhỏ Dùng bảng biến thiên ta giải m 0; Phương án A: biết đến điều kiện t >1 chưa nắm quan hệ số nghiệm t số nghiệm x ; Phương án B: giống phương án A điều kiện t ³ Vi du 19: Sô nghiêm thưc cua phương trinh 2log x log2 x2 la A B C D Vi co sô vê trai nên hoc sinh co thê nghi đên công thưc log x 2log2 x x dương, hoc sinh biên đôi vê x x x Gia tri không thoa man điêu kiên đê co thê thưc hiên đươc công thưc log x 2log x, hoc sinh co thê kêt luân phương trinh đa cho vô nghiêm Sai lâm la hoc sinh đưa điêu kiên mơi x > đê biên đôi va lam mât nghiêm Lơi giai đung sau: 3x log2 x2 2log2 3x x2 log x x 3x x2 8x 3x 2 x x0 12x log x2 x Chon B Hoc sinh cân phai canh giac vơi biên đôi dân đên phương trinh mơi co tâp xac đinh khac tâp xac đinh cua phương trinh ban đâu b 200 Hỏi có Ví dụ 20: Cho a2018 số thực dương b số nguyên, cặp số a,b thỏa mãn điều kiện logb a logb a2018 ? A 198 B 199 C 398 D 399 14 Lời giải sai: log b a 2018 2018 log b a log b a 2017 2018 , tức bỏ trường hợp log b a , từ dẫn đến chọn đáp án B Lời giải : Ta có log b a 2018 log b a 2018 log b a 2018 a log b a log b a 2018logb a log b a 2017 2018 a 2017 2018a b2017 2018 Do a số thực dương nên với số nguyên b thỏa mãn điều kiện b 200 tạo cặp số a; b thỏa mãn yêu cầu đề Do có 200 1 398 cặp Vậy ta chọn C 3.3 Biên đổi sai biêu thưc tinh toan sai Ví dụ 21: Trong khơng gian với hệ tọa độ Oxyz, cho hai điểm A 2;1; ,B 1;0; đường thẳng d : x y z Đường thẳng vng góc với hai đường thẳng AB d có vectơ phương vectơ vectơ đây? A u1 1; 5;3 B u2 1;5;3 C u3 4; 2;3 D u4 3;11;5 Lời giải đúng: Ta có AB1; 1;2 đường thẳng d có vectơ phương u 2; 1;1 Ta có AB , u 1;5;3 vectơ phương đường thẳng Chọn B Chú ý: Đường thẳng vuông góc với hai đường thẳng d1 u1 ;u2 Lúc đường thẳng có vtcp u u1 ;u2 Phân tích phương án nhiễu Phương án A: Sai HS tính sai AB , u d2 có vtcp 1; 5;3 xếp sai thứ tự cơng thức tính tích có hướng hai vectơ Phương án C: Sai HS xác định sai vectơ phương d nên tính sai tọa độ vectơ phương Cụ thể : u 1; 2; vectơ phương d Suy nhận vectơ AB , u 4; 2;3 làm vectơ phương Phương án D: Sai HS xác định sai tọa độ vecto AB tọa độ vectơ phương Cụ thể nhận vecto vectơ phương 3;1; nên tính sai AB , u 3;11;5 làm 15 Ví dụ 22: Tìm số giá trị ngun tham số thực m để hàm số y x mx xác định A B C 10 Lời giải: Hàm số y x mx D xác định x mx 0, x m 4.1.6 m Suy giá trị nguyên tham số m thỏa mãn yêu cầu toán 4; 3; 2; 1; 0;1; 2;3; Vậy số có giá trị nguyên tham số m Chọn A Phân tích phương án nhiễu nên tìm Phương án B: Sai HS tính sai biệt thứcm 06 m giá trị 0;26, Phương án C: Sai HS đếm sai Cụ thể có số nguyên thuộc có 10 số khoảng 6; khoảng đối xứng nên khoảng 6; nguyên Phương án D: Sai HS giải sai phương án B đếm sai phương án C Chú ý: Tập xác định hàm số lũy thừa y xa -Với nguyên dương, tập xác định ; tùy thuộc vào giá trị Cụ thể - Với nguyên âm 0, tập xác định \ - với không nguyên, tập xác định 0; ; Gọi góc đường thẳng Ví dụ 23: Cho hình lập phương ABCD.A B C D AC’ với mặt phẳng ABCD Mệnh đề đúng? A B C 4 Lời giải: Ta có AC hình chiếu vng góc AC ' D 96 mặt phẳng ABCD Lại CC ' ABCD nên tam giác C ' AC vuông C Suy AC ', ABCD Ta có tan CC ' AC AC ', AC 2 C ' AC Phân tích phương án nhiễu Phương án A: Sai HS tính tan cho 16 Phương án B: Sai HS tính sai tan AC Phương án D: Sai HS tính sai tan AC ' CC ' nên suy AC ' nên suy Ví dụ 24: Gọi S tập hợp nghiệm thuộc đoạn ; phương trình cos x sin 3x sin x cos x 2sin 2x Giả sử M , m phần tử lớn nhỏ tập hợp S Tính H M m A.H B H 10 C H 11 D H 3 Lờờ̀i giải: Điều kiện 2sin x cos x sin 3x Với điều kiện trên, ta có sin x sin 2x cos x sin x 2sin x cos x sin 3x cos x 2sin 2x cos x cos x cos x 5cos x cos x Vì x x3 k2,k nên ta tìm nghiệm 2;2 ; 5; m Suy M Phân tích phương án nhiễu Phương án A: Sai HS xác định sai m 11; ; ; 11 6 nên H cos x x Phương án C: Sai HS giải sai nghiệm ; 3 10 Chọn B Do H 3 ; k , knên tìm 11 Suy H Phương án D: Sai HS giải sai cos x k x ; ; Suy H 3 5; Do tìm nghiệm x k2 ,k 3.5 Sử dụng máy tính casio Tinh trang học sinh qua tin tương vao may tinh va yên tâm dung kêt qua đươc tim nhơ may tinh sai lầm, khiến em điểm, đặc biệt tốn tính tích phân tính giới hạn 100 Ví dụ 25: Tính tích phân I x -1 2x dx 17 A I 2100 100.ln B I ln C I 2101 2.ln D I 1625 ln 2100 ln Với toán này, học sinh dùng máy tính để bấm kết phương án đúng(do máy tính làm trịn) 100 Lời giải đúng: I x -1 x dx 100 x (2 1)dx ( 2x ln x) 100 2100 100.ln ln Chọn A Một số học sinh cịn q tin vào ”bí kíp’’ casio mạng dẫn đến khơng hiểu chất tốn học, ảnh hưởng khơng tốt đến tư tốn học Trên số sai lầm phổ biến mà học sinh mắc phải Những sai lầm phần lớn xuất phát từ thiếu chắn kiến thức cộng với thói quen làm thường gặp “tình thuận lợi” dẫn tới tư tưởng chủ quan, nóng vội, cẩu thả Đơi gặp phải tình em bị áp lực tâm lí làm dẫn tới trạng thái khơng kiểm sốt hành vi thân Đê han chê những sai lầm giai toan trắc nghiệm, hoc sinh giáo viên cần chu y Hoc cân thân cac khai niêm, cac đinh li toan hoc Chu y cac điêu kiên liên quan môi mênh đê đung đa biêt đê không bi lưa câu hoi co nôi dung gân giông vơi cac mênh đê điêu kiên đa thay đôi Hoc cân thân cac mênh đê đung vê phương trinh tương đương, phương trinh tương đương va bât phương trinh tương đương Không ngô nhân kêt qua tông quat thông qua môt sô trương hơp riêng Biên đôi biêu thưc cân thân va tinh toan cân thân Trong môt sô trương hơp, cân dung may tinh bỏ túi đê kiêm tra lai kêt qua, khơng q phụ thuộc vào máy tính Vơi loai câu hoi trăc nghiêm co phương an gôm phương an đung va phương an nhiêu hiên nay, cân kêt hơp ca viêc loai trư phương an nhiêu đê tim phương an đung Để khắc phục sai lầm đó, ngồi biện pháp nêu, người giáo viên cần phải giúp em học sinh rèn luyện đức tính cẩn thận, tỉ mỉ, kiên trì đặc biệt khắc phục điểm yếu tâm lí làm Giáo viên nên tạo cho học sinh thói quen “tự vấn”, “tự phản biện” làm để phát hạn chế tối đa sai lầm mắc phải Hiệệ̣u sáng kiến kinh nghiệệ̣m 18 Sau tiến hành thử nghiệm dạy lớp 12A3, Lớp đối chứng 12A10trường THPT Hoằng Hóa 4; hai lớp có lực học tương đương; qua q trình thiết kế soạn, thực nghiệm giảng dạy kiểm tra đánh giá kết quả, thấy rằng: Qua đợt khảo sát chất lượng Lớp 12 Sở giáo dục đào tạo Thanh Hóa, đề thi hay, phù hợp bám sát với thi THPT Quốc Gia Kết thu sau : Điểm 1-3 3.2-4.8 5-6.4 6.4-7.8 8-8.8 9-9.8 10 Tổng Lớp số 12A10 10 14 0 45 12A3 18 12 45 C KẾT LUẬN Kết luận Nghiên cứu, phân tích số sai lầm học sinh giải tốn trắc nghiệm có ý nghĩa lớn trình dạy- học áp dụng sáng kiến giúp học sinh nhìn thấy điểm yếu hiểu biết chưa thật 19 thấu đáo vấn đề từ phát huy học sinh tư độc lập, lực suy nghĩ tích cực chủ động củng cố trau thêm kiến thức, kinh nghiệm từ làm chủ kiến thức, khắc phục sai lầm, đạt kết cao trình học tập hạn chế sai lầm, đạt điểm cao kỳ thi THPT Quốc gia tới Bài viết chắn cịn nhiều thiếu sót mong đóng góp ý kiến, phản hồi đồng nghiệp Kiến nghị -Từ kết nghiên cứu đạt đây, xin mạnh dạn đề xuất số kiến nghị sau: Một là, Sở giáo dục đào tạo: Cần tổ chức tập huấn cho giáo viên nhiều việc đổi phương pháp dạy học, đặc biệt tập huấn việc đề trắc nghiệm Hai là, nhà trường: cần tạo điều kiện thuận lợi sở vật chất, trang thiết bị hỗ trợ giáo viên Có chế độ khen thưởng kịp thời giáo viên có nhiều sáng kiến kinh nghiệm trình giảng dạy Ba , giáo viên: Cần phối hợp nhiều phương pháp dạy học tích cực q trình dạy học, đổi phương pháp theo hướng tích cực hóa người học, tích cực soạn giáo án liên mơn tích hợp giảng dạy XÁC NHẬN CỦA ĐƠN VỊ Hoằng Hóa, ngày 26 tháng năm 2018 Tôi xin cam đoan SKKN viết, khơng chép nội dung người khác Người viết Nguyễn Văn Trường TÀI LIỆU THAM KHẢO Đoàn Quỳnh(Tổng chủ biên), Nguyễn Huy Đoan(Chủ biên), Nguyễn Xuân Liêm, Trần Phương Dung, Đặng Hùng Thắng(2007), Đại số Giải tích 12, 20 11; Đồn Quỳnh(Tổng chủ biên), Văn Như Cương, Phạm Khắc Ban- sách Hình Học 12(nâng cao), NXB Giáo dục Đề minh họa, đề thử nghiệm mơn Tốn THPT Quốc Gia Bộ giáo dục; đề thi thử Sở giáo dục, trường THPT toàn quốc SỞ GIÁO DỤC VÀ ĐÀO TẠO THANH HOÁ Giải toán nào, Tác giả G.Polya, NXB Giáo dục TRƯỜNG THPT HOẰNG HÓA 4 Các đợt tập huấn Sở Giáo dục đào tạo Thanh Hóa Các tài liệu tham khảo Internet, nhóm Word Tốn https://www.facebook.com/groups/1928183394172415/ SÁNG KIẾN KINH NGHIỆM PHÂN TÍCH MỘT SỐ SAI LẦM THƯỜNG GẶP CỦA HỌC SINH KHI GIẢI CÁC BÀI TOÁN TRẮC NGHIỆM VÀ HƯỚNG KHẮC PHỤC Người thực hiện: Nguyễn Văn Trường Chức vụ: Giáo viên SKKN thuộc lĩnh vực (mơn): Tốn THANH HỐ NĂM 2018 21 MỤC LỤC A Mở đầu …………………………………………… Trang 1 Lí chọn đề tài………………………………… Trang 22 Mục đích nghiên cứu…………………………… Trang Đối tượng nghiên cứu…………………………… .Trang Phương pháp nghiên cứu………………………… Trang B Nội dung…………………………………………….Trang Cơ sở lí luận……………………………………….Trang Thực trạng ………………………………… .… Trang 3 Các giải pháp ………… …………………… … Trang Hiệu sáng kiến kinh nghiệm………… …Trang 19 C Kết luận………………………………………… Trang 20 Tài liệu tham khảo…………………………………… DANH MỤC SÁNG KIẾN KINH NGHIỆM ĐÃ ĐƯỢC HỘI ĐỒNG SÁNG KIẾN KINH NGHIỆM NGÀNH GIÁO DỤC VÀ ĐÀO TẠO HUYỆN, TỈNH VÀ CÁC CẤP CAO HƠN XẾP LOẠI TỪ C TRỞ LÊN 23 Họ tên tác giả: Nguyễn Văn Trường Chức vụ đơn vị công tác: Tổ phó tổ Tốn trường THPT Hoằng Hóa TT Tên đề tài SKKN Ứng dụng số phức vào chứng minh đẳng thức bất đẳng Cấp đánh giá xếp loại (Ngành GD cấp huyện/tỉnh; Tỉnh ) Kết đánh giá xếp loại (A, B, C) Năm học đánh giá xếp loại Sở GD_ĐT C 2010-2011 Sở GD_ĐT C 2012-2013 Sở GD_ĐT C 2014-2015 Sở GD_ĐT C 2016-2017 thức Sử dụng phương pháp tọa độ không gian vào giải số toán đại số Lớp 12 Hướng dẫn học sinh sử dụng máy tính bỏ túi giải số hệ phương trình đề thi đại học Một số kinh nghiệm hướng dẫn học sinh Lớp 12 giải toán trắc nghiệm thực tế 24 ... SÁNG KIẾN KINH NGHIỆM PHÂN TÍCH MỘT SỐ SAI LẦM THƯỜNG GẶP CỦA HỌC SINH KHI GIẢI CÁC BÀI TOÁN TRẮC NGHIỆM VÀ HƯỚNG KHẮC PHỤC Người thực hiện: Nguyễn Văn Trường Chức vụ: Giáo viên SKKN thuộc lĩnh... không gian vào giải số toán đại số Lớp 12 Hướng dẫn học sinh sử dụng máy tính bỏ túi giải số hệ phương trình đề thi đại học Một số kinh nghiệm hướng dẫn học sinh Lớp 12 giải toán trắc nghiệm thực... nhận xét lời giải từ phát lỗi sai từ phân tích để em hiểu chất vấn đề khắc phục sai sót tổng kết thành kinh nghiệm Tuy nhiên, lúc sai lầm học sinh dễ khi? ??n em thấy nhàm chán, hứng thú học tập Vì