Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 56 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
56
Dung lượng
2,5 MB
Nội dung
MỤC LỤC Chủ đề TỔNG HỢP CÁC DAO ĐỘNG ĐIỀU HOÀ 354 A TĨM TẮT LÍ THUYẾT 354 Biểu diễn dao động điều hòa véc tơ quay 354 Tổng hợp dao động điều hòa 354 B PHƯƠNG PHÁP GIẢI CÁC DẠNG TOÁN 354 Dạng BÀI TOÁN THUẬN TRONG TỔNG HỢP DAO ĐỘNG ĐIỀU HÒA 354 BÀI TẬP TỰ LUYỆN 366 Dạng BÀI TOÁN NGƯỢC VÀ “BIẾN TƯỚNG” TRONG TỔNG HỢP DAO ĐỘNG ĐIỀU HỊA 372 Bài tốn ngược tổng hợp dao động điều hoà 372 “Biến tướng” tổng hợp dao động điều hoà 379 Hai chất điểm dao động điều hòa đường thẳng song song hai mặt phẳng song song có vị trí cân gốc tọa độ 382 Hiện tượng trùng phùng gặp 389 4.1 Hiện tượng trùng phùng với hai lắc có chu kì khác nhiều 389 4.2 Hiện tượng trùng phùng với hai lắc có chu kì xấp xỉ 390 4.3 Hiện tượng gặp hai lắc 391 BÀI TẬP TỰ LUYỆN 398 Chủ đề TỔNG HỢP CÁC DAO ĐỘNG ĐIỀU HỒ A TĨM TẮT LÍ THUYẾT Biểu diễn dao động điều hòa véc tơ quay Mỗi dao đơng điều hịa biểu diễn véc tơ quay Véc tơ có góc góc tọa độ trục Ox, có độ dài biên độ dao động A, hợp với hục Ox góc ban đầu cp quay quanh O với vận tốc góc ω Tổng hợp dao động điều hòa Phương pháp giản đồ Fre−nen: Lần lượt vẽ hai véc tơ quay biếu diễn hai phương trình dao động thành phần Sau vẽ véc tơ tổng hợp hai véc tơ Véc tơ tổng véc tơ quay biểu diễn phương trình dao động tổng hợp x A1 cos t 1 x A cos t 2 + Nếu vật tham gia đồng thời hai dao x x1 x A cos t dao động tổng hợp là: với A xác định bởi: A A12 A 22 2A1 A cos 2 1 tan A1 sin 1 A sin 2 A1 cos 1 A cos 2 Biên độ pha ban đầu dao động tổng hợp phụ thuộc vào biên độ pha ban đầu dao động thành phần 1 2k + Khi hai dao động thành phần pha ( ) dao động tổng hợp có biên độ cực đại: A = A1 + A2 1 2k 1 + Khi hai dao động thành phần ngược pha ( ) dao động tổng hợp có biên A A1 A độ cực tiểu: A A �A �A1 A + Trường hợp tổng quát: B PHƯƠNG PHÁP GIẢI CÁC DẠNG TỐN Bài tốn thuận tổng hợp dao động điều hịa Bài tốn ngược tổng hợp dao động điều hòa Dạng BÀI TỐN THUẬN TRONG TỔNG HỢP DAO ĐỘNG ĐIỀU HỊA Nội dung tốn: Cho biết phương trình dao động thành phần, yêu cầu tìm dao động tổng hợp Phương pháp giải: Tổng hợp hai hay nhiều dao động điều hoà phương, tần số dao động điều hoà phương, tần số Cách Phương pháp áp dụng trực tiếp cơng thức tính A tan � A A12 A 22 2A1A cos 2 1 �x1 A1 cos t 1 � � � x A cos t � � A1 sin 1 A sin 2 �x A cos t 2 �tan A � cos 1 A cos 2 � � sin t cos � t � 2� � * Nếu dạng hàm cos, dạng hàm sin đổi: 1 k2 � A max A1 A * Nếu hai dao động pha: 1 2k 1 � A A1 A * Nếu hai dao động thành phần ngược pha: 2 i1 2k 1 � A A12 A 22 * Nếu hai dao động thành phần vuông pha: Cách Phương pháp cộng hàm lượng giác x x1 x x A1 cos t 1 A cos t 2 x cos t A1 cos 1 A cos 2 sin t A1 sin 1 A sin 2 E555555555555555555 F E55555555555555F A cos A sin � x A cos t Cách Phương pháp cộng số phức x x1 x x A1�1 A �2 Kinh nghiệm: 1) Khi cần tổng hợp hai dao động điều hòa dùng ba cách Khi cần tổng hợp ba dao động điều hịa trở lên nên dùng cách cách 2) Phương pháp cộng số phức áp dụng trường hợp số liệu tường minh biên độ chủng có dạng nhân với số � A1 2A � � A 3a � � � A 5a � Ví dụ: Chọn a = 3) Trường hợp chưa biết đại lượng nên dùng phương pháp vectơ quay cộng hàm lượng giác Trường hợp hai dao động thành phần biên độ nên dùng phương pháp lượng Ví dụ 1: Một vật thực hai dao động điều hòa phương tần số: x = 4cos(ωt + 30) cm, x2 = 8cos(ωt + 90) cm (với ω đo rad/s t đo giây) Dao động tổng hợp có biên độ A 6,93 cm B 10,58 cm C 4,36 cm D 11,87 cm Hướng dẫn Bài toán đơn giản nên ta dùng cách : A A12 A 22 2A1A cos 2 1 A 42 82 2.4.8cos 90 30 �4,36 cm � Chọn C Nếu hiểu nhầm 30 rad 90 rad 30° 90° dẫn đến kết sai Ví dụ 2: Cho hai dao động điều hòa phương, tần số, biên độ có pha ban đầu π/3 π/6 (phương trình dạng cos) Pha ban đầu dao động tổng hợp hai dao động A −π/2 B π/4 C π/6 D π/12 Hướng dẫn a sin a sin A1 sin 1 A sin 2 � � tan A1 cos 1 A cos a cos a cos Chọn B Ví dụ 3: Một vật thực đồng thời dao động điều hoà phương, tần số có phương x cos t / cm; x cos t trình: cm Phương trình dao động tổng hợp A x = 2cos(ωt − π/3) cm B x = 2cos(ωt + 2π/3) cm C x = 2cos(ωt + 5π/6) cm D x = 2cos(ωt – π/6) cm Hướng dẫn 2 � 2 � x 3� 1� 2� � x cos � t � cm � 3 � � Chọn B Dùng máy tính Casio fx 570 − ES, bấm sau: shift MODE (Để chọn đơn vị góc radian) MODE (Để chọn chế độ tính tốn với số phức) Shift () Shift () (Màn hình máy tính hiển thị 3� 1� ) Shift 2� Màn hình kết quả: 2 nên ta chọn B Nghĩa biên độ A = cm pha ban đầu Chú ý: Để thực phép tính vê số phức, bấm: MODE hình xuất CMPLX Muốn biểu diễn số phức dạng A� bấm | SHIFT SHIFT Muốn biểu diễn số phức dạng: a + bi, bấm SHIFT () Để nhập ký tự � bấm: Khi nhập số liệu phải thống đơn vị đo góc độ hay rađian Nếu chọn đơn vị đo độ (D), bấm: SHIFT MODE hình hiển thị chữ D Nếu chọn đơn vị đo Rad (R), bấm : SHIFT MODE hình hiển thị chữ R Ví dụ 4: Một vật thực đồng thời dao động điều hoà phương, tần số có phương trình: x1 = 2sin(πt – 5π/6) cm, x2 = cos(πt + π/6) cm Phương trình dao động tổng hợp A x = cos(πt + 1,63) cm B x = cos(πt – 5π/6) cm C x = cos(πt − π/6) cm D x = cos(πt − 1,51) cm Hướng dẫn � � 5 � � 4 � t � cos � t � cm �x1 2sin � � � � � � � � �x cos � t � cm � � � 6� Đổi hàm sin cos: � � � 4 � A A12 A 22 2A1A cos 2 1 2 12 2.2.1cos � � � cm � �6 � � 4 � 2sin 1.sin A sin A sin � 8 � 1,51 rad 1 2 �tan A cos A cos 1 2 cos 1.cos � � Cách 1: � Chọn D: Cách 2: � 5 � � � x x1 x 2sin �t � cos �t � � � � 6� 5 5 x 2sin t cos cos t sin cos t cos sin t sin 6 6 x cos t 2 1 sin t cos t 1,51 cm � 2 F E5555F E5555 cos 1,51 sin 1,51 Chọn D Cách 3: x x1 x 2� 4 1� 5�1, 63 � x cos t 1, 63 cm � Chọn A Bình luận: Đáp án A! Vậy cách cách sai đâu ? Ta dễ thấy véc tơ tổng ur ur uuu r A A1 A 1,51rad nằm góc phần tư thứ III khơng thể lấy � 1,51 rad tan 8 � � 1,51 �1, 63 rad � Sai lầm chỗ, phương trình có hai nghiệm: Ta phải chọn nghiệm 1,63 rad véc tơ tổng “bị kẹp” hai véc tơ thành phần Qua ta thấy máy tính khơng “dính bẫy” thơng thường giống người! Đây lợi cách Ví dụ 5: Cho hai dao động điều hoà phương tần số, biên độ a a 2 / 3, 2 / pha ban đầu tương ứng Pha ban đầu dao động tổng hợp là: A π/2 B π/3 C −π/2 D 2π/3 Hướng dẫn Muốn sử dụng máy tính ta chọn a = thực sau : 2 � � x x1 x 1� 3� 2� � x cos � t � cm � � 3� Chọn B Dùng máy tính Casio fx 570 − ES, bấm sau: Shift MOD (Để chọn đơn vị góc radian) MODE (Để chọn chế độ tính toán với số phức) 2 Shift () Shift ( ) 2 1� 3� (Màn hình máy tính hiển thị Shift 2� Màn hình kết quả: nên ta chọn B Nghĩ biên độ A = 2a, pha ban đầu Dùng máy tính Casio fx 570MS bấm sau: Shift MODE (Để cài đặt ban đầu, đơn vị đo góc độ) MODE (Để cài đặt tính tốn với số phức) SHIFT () 120 SHIFT () 30 Bấm SHIFT A = Bấm SHIFT 60 Nghĩa biên độ A = cm pha ban đầu = 60° nên ta chọn B Chú ý : Nếu hai dao động thành phần có biên độ ta nên dùng phương pháp lượng x a cos t 1 a cos t 2 2a cos 1 2 � 1 2 � cos � t 2 � � � giác: Ví dụ 6: Phương trình dao động tổng hợp dao động thành phần phương tần số: x = 4cos(100t) (cm); x2 = 4cos(100t + π/2) (cm) B x = cos(100t + π/8) (cm) A x = 4cos(100t + π/4) (cm) C x = cos(100t + π/4) (cm) D x = 4cos(100t + 3π/4) (cm) Hướng dẫn � � � � x x1 x 2.4 cos cos � 100t � cos � 100t � cm � 4� 4� � � Chọn B Ví dụ 7: Biên độ dao động tổng hợp ba dao động x 3cos 4t 0, 25 cm x1 cos 4 t cm , x cos 4t 0, 75 (cm) C cm D 2cm Hướng dẫn Cách 1: Phương pháp cộng hàm lượng giác x x1 x A 7cm B 2cm x cos t A1 cos 1 A cos 2 sin t A1 sin 1 A sin 2 x 3 � 3 � � � x cos 4t �4 cos cos 3cos � sin 4t � sin 4sin 3sin � 4� 4� � � � � x 3,5 cos t 3,5 sin t cos � t � cm � A cm � 4� � Chọn A Cách 2: Phương pháp cộng số phức: x x1 x A1�1 A 2� 3 x 2�0 4� 3� 7� � 4 Chọn A Dùng máy tính Casio fx 570 − ES, bấm sau: Shift MODE (Để chọn đơn vị góc radian) MIDE (Để chọn chế độ tính tốn với số phức) 3 Shift ( ) 4 3 2�0 4� 3� 4 (Màn hình máy tính hiển thị: Shift ( ) Shift () Shift 7� Màn hình kết quả: nên ta chọn A Nghĩa biên độ A = cm pha ban đầu 3 4� 3� 4 kểt nhưtrên) (Pha ban đâu cân nhập Dùng máy tính Casio fx 570− MS, bấm sau: SHIFT MODE (Để cài đặt ban đầu, đom vị đo góc độ) MODE (Để cài đặt tính tốn với số phức) SHIFT () 135 SHIFT ( ) 45 Bấm SHIFT A = Bầm SHIFT 45 Nghĩa biên độ A = cm pha ban đầu = 45° nên ta chọn A Ví dụ 8: Một vật thực đồng thời dao động điều hịa pha tần số có phương trình x = 5cos(2πt + ) cm; x = 3cos(2πt − π) cm ; x = 4cos(2πt – 5π/6) cm, với < < π/2 tan = 4/3 Phương trình dao động tổng hợp x cos 2t 5 / x 3 cos 2t 2 / A cm B cm x cos 2t 5 / C cm D x = 3cos(2πt – 5π/6) cm Hướng dẫn 5 5 5�arctan 3� 4� 4� � 6 Chọn C 5 Shift () Shift tan Shift ( ) Shift ( ) Shift 4� Màn hình kết quả: Ví dụ 9: Vật thực đơng thời hai dao động phương có phương trình x = 8cos(20t – π/3) cm x2 = 3cos(20t + π/3) cm (với t đo giây) Tính gia tốc cực đại, tốc độ cực đại vận tốc vật vị trí cách vị trí cực đại gần cm Hướng dẫn Biên độ dao động tổng hợp: A A12 A 22 2A1A cos 2 1 64 2.8.3.cos 2 cm � a max 2 A 20 A 20 2.7 2800 cm / s � � v A 20.7 140 cm / s Gia tốc cực đại tốc độ cực đại: � max Vị trí cách vị trí cực đại gần cm, tức vị trí cách vị trí cân bằng: |x| = − = (cm) v � A x �20 52 �40 cm / s Vận tốc tính theo cơng thức: (cm/s) Ví dụ 10: Một vật có khối lượng 0,5 kg thực đồng thời ba dao động điều hoà thương, x1 cos 10t / cm, x cos 10t / cm tần số có phương trình: , x 8cos 10t / cm (với t đo s) Tính dao động độ lớn gia tốc vật vị trí cách vị trí cực đại gần cm Hướng dẫn shift 23 } 3� 4� 8� 6� 6 Tổng hợp theo phương pháp cộng số phức: Biên độ dao động tổng hợp cm nên dao động : 1 W m2 A 2 0,5.102.0,062 = 0,09 (J) Vị trí cách vị trí cực đại gần cm, tức vị trí cách vị trí cân bằng: |x| = − = 4(cm) a 2 x 10 2.4 400 cm / s Độ lớn gia tốc vật tính theo cơng thức: Ví dụ 11: Một vật tham gia đồng thời dao động diêu hồ phương tần số vng pha với Nếu tham gia dao động thứ dao động W Nếu tham gia dao động thứ hai dao động W2 Nếu tham gia đồng thời dao động thi dao động A 0,5(W1 + W2) B (W1 + W2) W C W22 Hướng dẫn 0,5 D 0,5 W12 W22 0,5 A A12 A 22 Cả hai dao động vuông pha nên biên độ dao động tổng hợp: 1 W m2 A m2 A12 m2 A 22 W1 W2 � 2 Cơ dao động: Chọn B Ví dụ 12: Một vật nhỏ có chuyển động tổng hợp hai dao động điều hòa phương Hai x A1 cos t; x A cos t / dao động có phương trình Gọi W vật Khối lượng vật W W 2 2 A1 A 22 A1A A1 A A B W 2W 2 2 A1 A A1 A 22 A1 A C D Hướng dẫn A A12 A 22 2A1A cos A12 A 22 A1A1 Biên độ dao động tổng hợp: 2W W m2 A � m 2 � A1 A 22 A1A Cơ dao động: Chọn D Ví dụ 13: Một vật tham gia đồng thời hai dao động điều hòa phương tần số có phương trình x1 = 2cos(2πt + π/2) (cm) x2 = 2sin(2πt − π/2) (cm) Tính quãng đường từ thời điểm t = 4,25 s đến t = 4,375 s A 10 cm B cm C cm D cm Hướng dẫn Phương trình dao động tổng hợp: x = x1 + x2 = 2cos(2πt + π/2) + 2sin(2πt − π/2) 3 3 � � Shift 23 2� 2� ��� � 2� � x 2 cos �2t � cm 4 � � 3 � 2t 3 1 2.4, 25 4.2 4 2 4, 375 4, 25 � S cm Chú ý: 1) Lực kéo cực đại: Fmax kA m A 2) Lực đàn hồi cực đại: Fdh max k l A mg � l � � k � mg sin �l l � k Trong độ biến sạng lị xo vị trí cân bằng: Ví dụ 14: Con lắc lị xo gồm vật nhỏ nặng kg thực đồng thời hai dao động điều hoà theo phương ngang, theo phương trình: x = 5cosπt (cm) x = 5sinπt (cm) (Gốc tọa độ trùng với vị trí cân bằng, t đo giây, lấy π2 = 10) Lực cực đại mà lò xo tác dụng lên vật A 50 N B 0,5 N C 25 Hướng dẫn N D 0,25 N �x1 5cos t � � � � t �� A A12 A 22 2A1A cos 2 1 0,05 cm �x 5sin t 5cos � � 2� � � k m 10 N / m � � Fmax k l A 10 0, 005 0,5 N � Chọn B Ví dụ 15: Con lắc lò xo gồm vật nhỏ nặng kg thực đồng thời hai dao động điều hoà theo x cos10t x sin10t phương thẳng đứng, theo phương trình : (cm) (cm) (Gốc tọa độ trùng với vị trí cân bằng, t đo giây lấy gia tốc trọng trường g = 10 m/s 2) Lực cực đại mà lò xo tác dụng lên vật A 10N B 20 N C 25 N D 0,25 N Hướng dẫn �x1 cos10t � � � � 10t � �x sin10t cos � 2� � � mg k m2 100 N / m � l 0,1 m k � A A12 A 22 2A1A cos 2 1 10 cm 0,1 m � �� Fmax k l A 100 0,1 0,1 20 N � � � Chọn B A x n tăng (giảm) để tính giá trị x x2 có thể: Chú ý: Giả sử thời điểm Dùng phương pháp vectơ quay; Giải phương trình lượng giác Ví dụ 16: Hai dao động điều hịa phương tần số có phương trình x = 6cos(10t + π/6) (cm) x2 = 6cos(10t + 5π/6) (cm) Tại thời điểm li độ dao động tổng hợp cm tăng li độ dao động thứ hai bao nhiêu? A 10cm B 9cm C 6cm D – 3cm Hướng dẫn Phương trình dao động tổng hợp: 5 � � x x1 x 6� 6� 6� cos � 10t � cm 36 2� � 5 10t � 10t Vì x = cm tăng nên pha dao động bằng(ở nửa vòng tròn 5 � � � 5 5 � � x cos � 10t � cos � � cm � � � � 10 t 1, 2n s l n Lần 3n: 3n 3n 1: t 3n 1 t 3n 0,3 s + Lần 3n : t 3n t 3n 0,9 s + Lần Suy ra: 2013 3.671: t 3.671 1, 2.671 805, s Lần 2014 3.671 1: t 2014 t 2013 0,3 805,5 s Lần 2015 3.671 : t 2015 t 2013 0,9 806,1 s Lần 5t � �x1 A sin � �x A sin 2,5t Cách 2: Viết phương trình dạng sin: � Giải phương trình x1 = x2 hay 5t � 2,5t k2 � � 5t 5t � sin 2,5t sin 2,5t l 2 ta hai họ nghiệm: � � � t 0,3 k.0, s k 0,1, � t l 1, s l 1, Từ suy ra: � Cách 3: Dùng vòng tròn lượng giác biểu diễn dao động điều hòa dạng hàm cos: � �5t � �x1 cos �6 � � � � � �x A cos �2,5t � � � � 2� � � Hai chất điểm gặp tổng số pha hiệu số pha số nguyên lần 2π: � � �5t � � 2,5t � � � k.2 � � � �6 2� � � � t 0,3 k.0, s k 0,1, � � �5t � � � 2,5t � � � l 2 � � t l 1, s l 1, � �6 2� � � Từ suy ra: � Kinh nghiệm: � 2 t 2 1 t 1 k.2 � t 2 1t 1 l 2 1 Nếu giải hai phương trình: � � 1t 2 2 t 1 k.2 � t 2 2 t 1 l 2 2 Nếu giải hai phương trình � Ví dụ 2: Hai chất điểm thực dao động điều hòa trục Ox (O vị trí cân bằng) có biên độ A có tần số f = Hz f2 = Hz Lúc đầu, hai chất điểm qua li độ A/2 theo chiều âm Thời điểm lần chất điểm gặp A t = 2/27 s B t = 1/3 s C t = l/9s D t = 1/27 s Hướng dẫn 42 1 2f1 6 rad / s ; 2 2f 12 rad / s � � � 6t � �x1 A cos � 3� � � � � �x A cos � 12t � � � 3� � � Phương trình dao động chất điểm: � �� � � � 12t � � 6t � k.2 � � t k s t � k 1, 2,3 3 � � � � � 27 � �� � �� � � � 12t � � 6t � l 2 � t l s t � l 1, 2,3 � � 3�� 3� � � Giải phương trình: � 1 t s k 27 27 Lần 1: Chú ý: Nếu 1 2 (với < α < π/2 )thì lần ứng với: 2 �t t t 2 1 * Xuất phát chiều dương x 0: A x � : * Xuất phát chiều dương A x � : * Xuất phát chiều dương A x� : * Xuất phát chiểu dương tai Ví dụ 3: Hai lắc đơn có chiều dài 81 cm 49 cm treo trần phòng Khi cás vật nhỏ hai lắc vị trí cân bằng, đồng thời truyền cho chung vận tốc hướng cho hai lắc dao động điều hịa với biên độ góc, hai mặt phẳng song song với Gọi Δt khoảng thời gian ngắn kể từ lúc truyền vận tốc đến lúc hai dây treo song song Giá trị Δt gần giá trị nhất: A 2,36s B 8,12s C 0,45s D 0,39.s Hướng dẫn 1 g 10 g 10 rad / s ; 2 rad / s l1 l2 2 �t �0,39 s � 10 10 2 1 Cách 1: Vì Chọn D Cách 2: Hai sợi dây song song x1 = x2 hay: A sin 2 t A sin 1 t � 2 t 1 t � t �0, 39 s 2 1 1 1 Chú ý: Nếu ( ) bội số ( ) ω2 ω1 xảy hai họ nghiệm nhập thành họ nghiệm 43 Ví dụ 4: Hai chất điểm thực dao động điều hòa trục Ox (O vị trí cân bằng) có biên độ A có tần số f = Hz f2 = Hz Lúc đầu, hai chất điểm qua li độ A/2 chất điểm theo chiều âm chất điểm theo chiều dương Tìm thời điểm hai chất điểm gặp Tìm tỉ số vận tốc chất điểm chất điểm gặp lần thứ 26 Hướng dẫn � � � 6t � �x1 A cos � 3� � � � � �x A cos � 12t � � � 3� � Phương trình dao động chất điểm: � � � � � cos � 12t � cos � 6t � x1 x 3� 3� � � Giải phương trình: hay � � � � � 12t � � 6t � k.2 � t k s t � k 0,1, � � 3�� 3� 9 � � � � � � � � 12t � � 6t � l 2 � t l s t � l 1, 2,3 � � 3 � �� � � Họ nghiệm thứ nằm họ nghiệm thứ nên viết nhập lại thành họ nghiệm: t n s : s + Lần 1: n = t2 s + Lần 2: n = 26 t 25 s + Lần 26: n = 29 t1 Tỉ số vận tốc chất điểm chất điểm gặp lần thứ 26: � � 6A sin � 6t � 26 v1 x1' � t s v1 � ' ���� � v2 x v2 � 6A sin � 12t � 3� � Chú ý: Nếu hai dao động điều hoa củng phương biên độ, vị trí cân tần x1 A cos t 1 x A cos t 2 số , phương trình x1 = x2 có họ nghiệm: t 1 t 2 k.2 A sin t 1 v1 Asin t 1 1 v A sin t 2 A sin � k.2 t 1 � � � Lúc đó: Trong chu kỳ chúng gặp lần n chu kỳ gặp 2n lần Ví dụ 5: Hai chất điểm thực dao động điều hòa trục Ox có phương trình x1 = Acos(πt + π/2) x = Acos(πt + π/6) Tìm thời điểm lần 2017 hai chất điểm gặp tính tỉ số vận tốc cua vật vật A t = 0,3 s v1/v2 = B t = 6050/3 s v1/v2 = −1 44 C t = 6038/3 s v1/v2 = −1 D t = 2/3 s v1/v2 = −2 Hướng dẫn Tỉ số vận tốc vật vật 2: � � � � x1 x � �t � � t � k.2 � t k k 1, 2,3 � �� � 6050 t 2013 2017 s 3 Lần thứ 2017 ứng với k 2017 nên v1 1 � v2 Tỉ số vận vận tốc vật vật 2: Chọn B Ví dụ 6: Hai chất điểm dao động điều hoà dọc theo hai đường thẳng song song với trục Ox, cạnh nhau, với biên độ tần số (Hz) (Hz) Vị trí cân chúng xem trùng gốc tọa độ Khi gặp tỉ số tốc độ chất điểm thứ với tốc độ chất điểm thứ hai A : B : C : D : Hướng dẫn 2 v1 1 A x1 f � v 2 A x 22 2 f 2 Chọn C Câu Hai chất điểm thực dao động điều hòa trục Ox có phương trình x1 = Acos4πt x2 = 0,5Acos4πt Tìm thời điểm hai chất điểm gặp tính tỉ số vận tốc vật vật đó: A t = 0,125 s v1/v2 =2 B t = 0,2 s v1/v2 = −1 C t = 0,4 s v1/v2 = −1 D t = 0,5 s v1/v2 = −2 Hướng dẫn x1 x � A cos 4t 0,5A cos 4t � cos 4t � 4t � t s v A sin 4t � 2� v 0,5A sin t Chọn A Ví dụ 8: (QG − 2015) Đồ thị li độ theo thời gian chất điểm (đường 1) chất điểm (đường 2) hình vẽ, tốc độ cực đại chất điểm 4π (cm/s) Không kế thời điểm t = 0, thời điểm hai chất điểm có li độ lần thứ A 4,0 s B 3,25 s C 3,75 s D 3,5 s Hướng dẫn Biên độ: Al = A2 = cm v max 2 A Tốc độ cực đại chất điểm 2: T � T2 s � T1 1,5 s Cách 1: 2 2 A � 4 T2 T2 45 �x1 6sin 22 t � �x 6sin 2 t Phương trình dao động chất điểm: 2 t 2 t k2 � x1 x ��� � 6sin 22 t 6sin 2 t � � 22 t 2 t l 2 � 2 � t k 3k s k 1, : Ho1 � 2 �� � 2 t l 0,5 l s l 0; : Ho � 32 � 32 l � t1 0,5 0,5 s l � t 0,5 1,5 s l � t 0,5 2,5 s k � t 3.1 s (thuộc họ 1) (thuộc họ 1) (thuộc họ 1) (thuộc họ 2) l � t 0,5 3,5 s (thuộc họ 1) Cách 2: Thời điểm gặp lần thứ nằm hai thời điểm t a = 9T1/4 = 3,375 s tb = 5T2/4 = 3,75 s => Loại trừ phương án => Chọn D Chú ý: Giả sử thời điểm t0, hai lắc có chu kì gặp li độ x 1, sau nửa chu li độ chúng đổi dấu, tức gặp li độ −x1 Do đó: T * Khoảng thời gian hai lần liên tiếp hai lắc gặp T * Khoảng thời gian n lần liên tiếp hai lắc gặp Ví dụ 9: Hai lắc lị xo giống có khối lượng vật nặng 10 (g), độ cứng lò xo 100π N/m dao động điều hòa dọc theo hai đường thẳng song song kề liền (vị trí cân hai vật gốc tọa độ) Biên độ lắc thứ lớn gấp đôi lắc thứ hai Biết hai vật gặp chúng chuyển động ngược chiều Khoảng thời gian ba lần hai vật nặng gặp liên tiếp A 0,03 (s) B 0,02 (s) C 0,04 (s) D 0,01 (s) t n 1 46 Hướng dẫn T m 2 0, 02 s � k Khoảng thời gian lần liên tiếp: Chọn B Ví dụ 10: Cho hai chất điểm dao động điều hịa phương, chu kì T = s Khi chất điểm thứ có vận tốc cực đại chất điểm thứ qua vị trí có li độ nửa giá trị cực đại theo chiều dương Tìm khoảng thời gian chu kì để x 1x2 < (với x1 x2 li độ vật vật 2) A 1/3 s B 2/3 C 0,5 s D 0,6 s Hướng dẫn �x1 A1 cos t � x A cos t Bài toán tổng quát: � Dấu x1x2 x1x2 biểu diễn hình vẽ 1 Phần gạch chéo phần không âm không gạch chéo phần dương Khoảng thời gian t 0 chu kỳ để x1x2 TB) nên có lần hai lắc chuyển động chiều trùng với vị trí cân chúng (gọi lần trùng phùng) Quan sát cho thấy hai lần trùng phùng liên tiếp cách 590 (s) Chu kỳ dao động lắc đơn A A 2,0606 (s) B 2,1609 (s) C 2,0068 (s) D 2,0079 (s) Bài 76: Cho Hai lắc lò xo A B dao động điều hoà hai đường thẳng song song với Ban đầu kéo vật nặng hai lắc phía đoạn buông nhẹ lúc Con lắc B dao động chậm lắc A chút sau phút 14 giây người ta quan sát thây Hai vật nặng lại hùng vị trí ban đầu Nếu chu kì dao động lắc A 0,628 (s) chu kì B A 0,630 (s) B 0,627 (s) C 0,626 (s) D 0,629 (s) Bài 77: Hai lắc lò xo giống hệt dao động điều hòa mặt phẳng nằm ngang, dọc theo Hai đường thẳng song song cạnh song song với trục Ox Biên độ lắc A = cm, lắc A2 = cm Con lắc dao động sớm pha lắc trình dao động khoảng cách lớn hai vật dọc theo trục Ox cm Khi động lắc cực tiểu động lắc thứ A 1/4 giá trị cực đại B 3/4 giá trị cực đại C 2/3 giá trị cực đại D 1/2 giá trị cực đại Bài 78: Hai lắc lò xo giống hệt dao động điều hòa mặt phẳng nằm ngang, dọc theo Hai đường thẳng song song cạnh song song với trục Ox Biên độ lắc A = cm, lắc A2 = cm Con lắc dao động sớm pha lắc trình dao động khoảng cách lớn hai vật dọc theo trục Ox cm Khi động lắc bang phần tư giá tri cực đại động lắc thứ 55 A cực tiểu 1/4 giá trị cực đại B cực tiểu 3/4 giá trị cực đại C cực đại 2/3 giá trị cực đại D cực đại 1/4 giá trị cực đại Bài 79: Hai chất điểm M N có khối lượng, dao động điều hòa tần số dọc theo hai đường thẳng song song kề song song với trục tọa độ Ox Vị trí cân M N đêu đường thẳng qua gốc tọa độ vng góc với Ox Biên độ M N cm cm Trong trình dao động, khoảng cách lớn M N theo phương Ox cm Mốc vị trí cân Ở thời điểm mà M có động N A cực đại nửa giá trị cực đại B cực đại 0,75 giá trị cực đại C giá trị cực đại D 0,75 giá trị cực đại Bài 80: Hai chất điểm dao động điều hoà dọc theo hai đường thẳng song song với trục Ox, cạnh nhau, tần số biên độ chất điểm thứ cm chất điểm thứ hai 14,928 cm Vị trí cân chúng xem trùng gốc tọa độ Khi hai chất điểm gặp tọa độ 3,864 cm, chúng chuyển động ngược chiều Hiệu pha hai dao động giá trị sau đây: A 2π/3 B π/3 C π D π/2 Bài 81: Hai lắc đơn (với tần số góc dao động điều hịa 10π/9 rad/s 10π/8 rad/s) treo trần phòng Khi vật nhỏ hai lắc vị trí cân bằng, đồng thời truyền cho chúng vận tốc hướng cho hai lắc dao động điều hòa với biên độ góc, hai mặt phẳng song song với Tìm khoảng thời gian kể từ lúc truyền vận tốc đến lúc hai dây treo song song lần thứ 2014 A 1611,5 s B 14486,4 s C 14486,8 s D 14501,2 s 1.C 2.B 3.C 4.A 5.B 6.C 7.A 8.C 9.C 10.A 11.D 21.C 12.A 22.B 13.A 23.D 14.B 24.B 15.A 25.C 16.B 26.C 17.A 27.A 18.A 28.A 19.B 29.A 20.D 30.D 31.C 41.D 32.C 42.B 33.D 43.A 34.B 44.A 35.B 45.A 36.C 46.B 37.A 47.B 38.C 48.B 39.D 49.A 40.D 50.D 51.C 61.C 52.D 62.B 53.B 63.B 54.D 64.D 55.D 65.D 56.A 66.D 57.B 67.A 58.A 68.A 59.B 69.D 60.C 70.B 71.B 81.A 72.B 73.B 74.B 75.C 76.D 77.A 78.B 79.C 80.D 56 ... tham gia đồng thời dao động diêu hoà phương tần số vuông pha với Nếu tham gia dao động thứ dao động W Nếu tham gia dao động thứ hai dao động W2 Nếu tham gia đồng thời dao động thi dao động A 0,5(W1... 56.D 7.D 17.A 27.C 37.D 47.A 8.B 18.A 28.A 38.A 48.A 9.C 19.A 29.B 39.D 49.D 10.B 20.A 30.D 40.B 50.C Dạng BÀI TOÁN NGƯỢC VÀ “BIẾN TƯỚNG” TRONG TỔNG HỢP DAO ĐỘNG ĐIỀU HỊA Bài tốn ngược tổng hợp dao. .. hai dao động điều hoà phương, tần � 12 22 22 2.2.2.cos � số Biên độ dao động thứ cm biên độ dao động tổng hợp cm Dao động tổng hợp trễ pha π/3 so với dao động thứ hai Biên độ dao