Để đáp ứng nhu cầu học tập Thuỷ điện của sinh viên khoa Xây dựng Thuỷ lợi - Thuỷ điện thuộc Trường Đại học Bách khoa Đà Nẵng trong giai đoạn mới, chúng tôi biên soạn giáo trình "Turbine thuỷ l
GIÁO TRÌNH TUABIN THỦY LỰC Tháng 11-2010 TRƯỜNG ĐẠI HỌC BÁCH KHOA ĐÀ NẴNG 1 LỜI NÓI ĐẦU Để đáp ứng nhu cầu học tập Thuỷ điện của sinh viên khoa Xây dựng Thuỷ lợi - Thuỷ điện thuộc Trường Đại học Bách khoa Đà Nẵng trong giai đoạn mới, chúng tôi biên soạn giáo trình "Turbine thuỷ lực - các thiết bị thuỷ lực và Công trình trạm Thuỷ điện" (là giáo trình môn học Thuỷ điện 2). Giáo trình này được biên soạn theo nội dung "Đề cương môn học Thuỷ điện" đã được nhà trường phê duyệt năm 2005. Giáo trình Thuỷ điện 2 gồm 17 chương, được trình bày trong hai phần lớn: phần I (thiết bị thuỷ điện) và phần II (công trình Thuỷ điện): Phần I - "Turbine thuỷ lực - các thiết bị thuỷ lực" của trạm thuỷ điện, gồm 8 chương (từ chương I đến chương VIII). Phần này dùng để giảng với 20 tiết trên lớp, nội dung tìm hiểu: turbine thuỷ lực, thiết bị điều tốc, các thiết bị phụ và các hệ thống thiết bị phụ thuỷ lực . về cấu tạo, tính năng hoạt động cũng như lựa chọn, tính toán xác định các thông số cơ bản và kích thước của thiết bị đủ phục vụ cho thiết kế trạm thuỷ điện. Phần II - "Công trình trạm thuỷ điện", gồm 9 chương dùng để giảng 40 tiết trên lớp, thuộc hai phần: Phần IIa -"Các công trình thuộc tuyến năng lượng" với 7 chương (từ chương IX đến chương XV), bao gồm các công trình thuộc tuyến năng lượng: cửa lấy nước, bể lắng cát, công trình dẫn nước, bể áp lực, đường ống turbine, buồng điều áp. Nội dung trình bày về cấu tạo cũng như tính toán xác định kích thước các công trình thông qua tính toán thuỷ lực và tính toán dòng không ổn định của chúng. Phần IIb - "Nhà máy thuỷ điện", gồm 2 chương XVI và XVII, nội dung trình bày các loại nhà máy thuỷ điện và một số thiết bị cơ điện của chúng, cách bố trí, xác định kích thước nhà máy, tính toán ổn định và tính kết cấu các phần dưới nước của nhà máy. Giáo trình này đề cập khá đầy đủ nội dung chuyên môn của môn học Thủy điện 2, đáp ứng 60 tiết giảng trên lớp và còn có thể dùng tham khảo thêm sau này khi sinh viên ra trường tham gia vào lĩnh vực thiết kế công trình thuỷ điện sẽ gặp phải. Trong quá trình biên soạn giáo trình, do khả năng có hạn do vậy không tránh khỏi thiếu sót, mong nhận được nhiều ý kiến đóng góp của đồng nghiệp và bạn đọc để sửa chữa cho tốt hơn. Tháng 5 - 2006 Tác giả 2 Phần I TURBINE THỦY LỰC & CÁC THIẾT BỊ THỦY LỰC CỦA TTĐ Turbine thủy lực là loại động cơ chạy bằng sức nước, nó nhận năng lượng dòng nước để quay và kéo rô to máy phát điện quay theo để tạo ra dòng điện. Tổ hợp turbine thủy lực và máy phát điện gọi là "Tổ máy phát điện thủy lực". Ở phần này chúng ta chỉ nghiên cứu về turbine thủy lực, thiết bị điều tốc và giới thiệu một số hệ thống thiết bị thủy lực có liên quan . Chương I. KHÁI NIỆM CHUNG VỀ TURBINE THỦY LỰC I. 1. PHÂN LOẠI TURBINE THỦY LỰC CỦA TRẠM THỦY ĐIỆN Trong quá trình đấu tranh sinh tồn và cải tạo thế giới tự nhiên, loài người đã sớm biết sử dụng các động cơ thủy lực: từ những bánh xe nước dùng vào việc kéo máy xay xát nông sản đến phát triển chúng lên thành những turbin thuỷ lực hiện đại kéo máy phát điện để sản xuất ra điện năng ngày nay. Để sử dụng một cách có hiệu quả năng lượng dòng nước đặc trưng bởi tổ hợp cột nước và lưu lượng khác nhau cần phải có đủ những loại turbine khác nhau về cấu tạo, kích thước cũng như quá trình làm việc của chúng. Dựa vào việc sử dụng dạng năng lượng trong cơ cấu bánh xe công tác (BXCT) của turbine người ta chia turbine thủy lực ra làm hai loại: turbine xung kích và turbine phản kích. Trong các loại lại chia ra các hệ và các kiểu turbine. Viết phương trình Becnully cho cửa vào (chỉ số1) cửa ra (chỉ số2) của bánh xe công tác turbine, ta có năng lượng viết cho một đơn vị trọng lượng nước như sau: H = (Z1 - Z2) + p p12−γ + αα1122222VVg− Z1-Z2 : là thành phần năng lượng do chênh lệch vị trí tạo ra, gọi là vị năng; pp12−γ: là áp năng; gộp vị năng và áp năng thành thế năng ( T ). αα112222VV−2g: là động năng ( Đ ). Từ những thành phần năng lượng trên ta có những loại turbine thuỷ lực sau: * Turbine chỉ sử dụng phần động năng để làm quay BXCT gọi là loại turbine xung kích. Loại này còn gọi là turbine dòng chảy không áp vì dòng chảy trong môi trường khí quyển nên chuyển động của dòng tia trên cánh BXCT là chuyển động không áp, áp suất ở cửa vào và cửa ra như nhau và bằng áp suất khí trệ sau: ời. Turbine xung kích đuợc chia ra các h+ Hệ turbine xung kích gáo (turbine Penton); + Hệ turbine xung kích kiểu phun xiên; + Hệ turbine xung kích hai lần (turbine Banki). 3 4 ảy òng ệ sau: ục ( gọi tắt là là turbine tâm trục, hay Franxis); + Hệ TB dòng ( gồm turbine dòng nửa thẳng và turbine dòng thẳng ); m việc theo hai chế độ: máy bơm và turbine). dòng tia trên các cánh bánh xe công tác (BXCT) là chúng ta nghiên cứu cụ thể cácrbine, làm uay BXCT kéo theo trục turbine 5 quay, nước đập vào cánh gáo bị bắn ra hai phía và được vỏ 6 của turbine gom lại dẫn về hầm xả để tháo về hạ lưu của nhà máy. * Turbine sử dụng cả thế năng và động năng, trong đó phần thế năng là chủ yếu gọi là loại turbine phản kích . Loại này còn gọi là turbine dòng chảy có áp, áp lực dòng chở cửa vào của BXCT luôn lớn hơn áp lực ở cửa ra của nó. Dòng chảy qua TB là dliên tục điền đầy nước trong toàn bộ máng cánh. Loại này được chia ra các h + Hệ TB xuyên tâm hướng tr + Hệ TB hướng trục ( gồm turbine cánh quạt và turbine cánh quay ); + Hệ TB hướng chéo; + Hệ TB thuận nghịch ( làI . 2. TURBINE XUNG KÍCH Như trên đã nói, turbine xung kích là loại chỉ sử dụng phần động năng của dòng chảy. Ở loại turbine này, dòng nước sau khi ra khỏi vòi phun thì toàn bộ năng lượng dòng chảy đều biến thành động năng để đẩy bánh xe công tác. Vì chảy trong môi trường khí quyển nên chuyển động của chuyển động không áp hay còn gọi là dòng tia tự do. Sau đây hệ của turbine xung kích: I . 2 .1. Turbine xung kích gáo ( còn gọi là turbine Penton ) Turbine này do người Mỹ tên là Penton đưa ra năm 1880 nên còn gọi là turbine Penton. Quá trình hoạt động của turbine gáo như sau (xem hình 1-1): nước từ thượng lưu theo ống áp lực 1 chảy qua vòi phun 2 (ở đây lưu lượng được điều chỉnh trước khi phóng vào cánh BXCT nhờ van kim 7), rồi phóng vào cánh dạng gáo 4 của tuq Hình 1-1. Turbine xung kích gáo Sau đây chúng ta xem xét cấu tạo và tác dụng các bộ phận chính của turbine gáo (hình 1-2). Vòi phun 1 nhận nước từ ống áp lực biến toàn bộ năng lượng dòng nước thành động năng trước khi đưa vào BXCT và điều chỉnh lưu lượng vào turbine nhờ dịch 5 . Sự phố hợp dịch chuyển van kim và thiết bị tách dòng liên hợp với nhau nhờ cơ cấu liên hợp trong máy điều tốc (xem chương VII -Thiết bị điều tốc của turbine thuỷ lực). chuyển qua lại của van kim 3 đặt bên trong (hình 1-2,a). Turbine gáo cột nước cao và ống áp lực dài còn có bộ phận tách dòng 5 để hướng một phần hay toàn bộ tia nước không cho vào BXCT để tránh hiện tượng nước va xảy ra quá lớn khi đóng nhanh van kim của nó. Bộ phận này chỉ làm việc khi cắt giảm phụ tải máy phát điện. Khi phụ tải giảm, van kim cần phải nhanh chóng đóng bớt độ mở để giảm lưu lượng thich hợp, tuy nhiên nếu van đóng quá nhanh trong vòi phun sẽ xuất hiện áp lực nước va quá lớn làm bể vòi phun. Để giảm trị số áp lực nước va, lúc này máy điều tốc sẽ nhanh chóng nhấc thiết bị tách dòng 5 lên ngắt bớt phần lưu lượng thừa ra khỏi cánh gáo. Nhờ vậy lưu lượng vào BXCT vẫn giảm ngay theo yêu cầu giảm tải mà van kim chỉ phải đóng từ từi Hình 1-2. Các bộ phận chính của turbine gáo Bánh xe công tác của turbine gáo ( hình 1-1 và 1-2b,c ) gồm có đĩa 1 trên chu vi đĩa có gắn các cánh dạng gáo 2 (nên gọi là gáo). Phụ thuộc vào cột nước mà số gáo có từ 14÷60 cánh. BXCT có thể là một khối liền khi các cánh gáo và đĩa được đúc thành một khối, và không phải là khối liền khi cánh gáo được đúc riêng và được gắn lên đĩa bằng bu lông hoặc hàn. Chính giữa cánh gáo có gân 3 chia gáo làm hai phần bằng nhau để chia tia nước tác động vào gáo thành hai phần đi về hai hướng bắn ra hai bên. Đuôi dưới của cánh gáo được khoét hõm 4 để cho tia nước xuyên qua hõm của cánh trước 6 đập thẳ óc (th o chiề ay đòn của mômen quay và tránh mômen ng c. Vỏ turbine có n ra ngoài gian máy. Vđược bố trí đều chung ng vào cánh gáo thẳng g e u quay) làm tăng cánh tược của tia nước vào phía sau gáo nằm phía trướhiệm vụ không cho nước từ buồng BXCT bắn ỏ phải có kích thước và hình dáng thế nào để hứng nước từ gáo xuống hầm xả mà không rơi ngược trở lại phía sau gáo làm cản trở việc quay của BXCT. Điều này rất quan trọng đối với turbine gáo trục đứng có nhiều vòi phun. Hầm xả có nhiệm vụ tập trung nước sau khi đi khỏi BXCT lại để dẫn về hạ lưu. Mực nước trong hầm xả phải bảo đảm thấp hơn cao trình thấp nhất của BXCT một khoảng nào đó, thường là bằng đường kính D1 và đặt cao hơn mức nước trong hầm xả. Loại trục ngang thường có công suất bé và có từ một đến hai vòi phun cho mỗi BXCT (hình 1-1,b), số lượng bánh xe công tác trên một trục thường nhỏ hơn ba. Loại trục đứng có số vòi phun nhiều hơn, thường hai đến sáu vòi, quanh BXCT. Hình 1-3 là biểu thị turbine gáo trục đứng có sáu vòi phun. Mặt bằng Mặt đứng Hình 1-3. Turbine gáo trục đứng nhiều vòi phun Turbine gáo sử dụng động năng để quay do vậy cần tạo nên vận tốc dòng phun lớn để tăng công suất turbine, măt khác kết cấu BXCT rất vững chắc do vậy turbine này được sử dụng với cột nước cao lưu lượng nhỏ. Turbine gáo loại lớn có phạm vi sử dụng cột nước từ 200÷2000m hoặc hơn nữa, turbine gáo loại nhỏ thì từ 40÷250m. Trục turbine gáo có thể đứng (hình 1-3) hoặc ngang. Trạm TĐ Bôgôta ở Côlombia đã đạt đến cột nước rất cao H = 2000m, công suất lắp máy N = 500 MW. Trạm Raisec ở Úc có cột nước H = 1767m. Nước ta có các trạm H = 500÷800m như Vĩnh Sơn và Đa Nhim, sử dụng hệ turbine xung kích gáo. I. 2. 2. Turbine xung kích hai lần ( turbine Banki ) Turbine xung kích hai lần có phạm vi sử dụng cột nước từ 6÷150m, thường từ 10÷60m. Kết cấu của nó rất đơn giản (hình1-4), dễ chế tạo nên được sử dụng rộng rãi ở , ccác trạm thủy điện nhỏ có lưu lượng bé ột nước vừa, trục thường nằm ngang. Hình 1-4. Turbine xung kích 2 lần Turbine gồm có vòi phun tiết diện hình chữ nhật 4 được nối liền với đoạn ống chuyển tiếp 8. Vòi có cơ cấu điều chỉnh lưu lượng gồm van phẳng 3 gắn với trục điều khiển 2 có tay quay vô lăng. Khi vô lăng quay, trục điều chỉnh sẽ tịnh tiến về phía trước hoặc phía sau làm cho tiết diện ra của vòi phun thay đổi, nên lưu lượng vào turbine cũng được thay đổi theo. Bánh xe công tác gồm các cánh cong 7 được gắn giữa các đĩa 6, số cánh từ 12÷48. Trục turbine xuyên qua giữa bánh xe công tác gắn chặt với các đĩa bằng then. Vỏ (buồng) 9 dùng để chắn không cho nước từ BXCT bắn ra ngoài. Hầm xả 5 có nhiệm vụ dẫn nước về hạ lưu. Hình dáng BXC ồng sóc. Dòng nước t vòi phun tác dụng vào các cánh phía trên (nhận khoảng chừng 80% năng lượng của hất, xong lại đi vào khoảng trống giữa BXCT rồi lại tác dụng lầư ậy có thể chế tạo turbine với đường kính bé để có vòng quay lớn, do vậy giảm giá thành chế tạo turbine và tổ máy thủy lực. I. 2. 3 Turbine xung kích phun xiên Turbine xung gáo chỉ khác T turbine xung kích hai lần gần giống l ừdòng nước) đẩy BXCT lần thứ nn thứ hai vào cánh trước khi ra khỏi bánh xe công tác (nhận thêm 20÷30% phần năng lượng còn lại). Cũng chính vì thế ta gọi nó là turbine xung kích hai lần. Hiệu suất của loại turbine này tùy thuộc vào số cánh của BXCT và vào khoảng 80÷85%. Ưu điểm cơ bản của turbine xung kích hai lần là có thể chọn đường kính BXCT và số vòng quay turbine trong một phạm vi rộng mà không phụ thuộc vào lưu lượng, bởi vì lưu lượng không chỉ phụ thuộc vào đường kính mà còn phụ thuộc vào chiều rộng BXCT nữa. Nhvkích phun xiên (hình 1-5) có hình dạng giống turbineở kết cấu BXCT và hướng của tia nước vào BXCT. Tia nước bắn vào BXCT không trực giao với cánh mà làm với cánh một góc α, nhờ thế có thể làm vành ghép mép ngoài của BXCT nên đơn giản hóa được cách ghép cánh vào đĩa. Hình dạng cánh loại này cũng dễ chế tạo hơn. Nó cho phép gia công hàng loạt bằng cách đập. Turbine tia nghiêng ít được sử dụng rộng rãi, nó chỉ được sử dụng ở TTĐ nhỏ có cột nước vào khoảng H = 30÷400m. 7 Hình 1-5. Turbine xung kích phun xiên I . 3. TURBINE PHẢN KÍCH Turbine phản kích là loại sử dụng phần thế năng và một phần động năng của dòng nước. Bánh xe công tác của nó làm việc trong môi trường chất lỏng liên tục và áp lực nước ở phía trước bánh xe công tác lớn hơn phía sau của nó. Khi chảy qua rãnh tạo bởi bề mặt cong của các cánh, dòng nước sẽ thay đổi hướng tác dụng lên cánh và làm quay BXCT. Dựa vào hướng của dòng nước ở cửa vào và cửa ra BXCT người ta chia turbine làm các hệ: tâm trục, hướng trục, cánh chéo, turbine dòng, thuận nghịch. Hình 1-6. Các bộ phận chính của turbine phản kích. Xét về mặt cấu tạo, bất cứ hệ turbine phản kích nào cũng gồm các bộ phận chính sau: buồng turbine 1, vòng bệ 2, cơ cấu hướng dòng 3, BXCT 4, buồng BXCT 5, ống xả 6, trục và ổ trục 7 và các thiết bị phụ của chúng (hình 1-6). Sáu bộ phận đầu hình thành bộ phận qua nước của turbine, còn ổ trục và trục là bộ phận kết cấu có nhiệm vụ tiếp nhận và truyền mô men quay từ BXCT đến rôto của 8 9 máy ph I. 3. 1. theo hướng dọc trục. Do vậy gọi là turbine tâm trục. Turbine này do kỹ sư người i là turbine Franxis. át điện. Trong các bộ phận qua nước thì BXCT là bộ phận trực tiếp biến đổi thủy năng thành cơ năng chuyển động quay. Bộ phận cơ cấu hướng nước có tác dụng thayđổi trị số lưu lượng và hướng dòng chảy trước khi đi vào BXCT, còn ống xả được dùng để tháo nước từ BXCT về hạ lưu. Sau đây chúng ta lần lượt xem xét các bộ phận của turbine phản kích, các hệ turbine khác nhau chủ yếu là bánh xe công tác còn các bộ phận khác nhìn chung giống nhau. Việc phân loại TB phản kích dựa vào hướng dòng nước đi vào và ra khỏi BXCT. Bánh xe công tác của turbine tâm trục (turbine Franxis ) Turbine tâm trục (xem hình 1-7) là một trong những hệ TB phản kích được sử dụng rộng rãi nhất. Chất lỏng từ buồng 4 qua cánh hướng dòng 3 vào cửa vào cánh 1 BXCT theo hướng xuyên tâm rồi chuyển chuyển hướng 900 và ra khỏi BXCT để vào ống xảPháp tên là Franxis hoàn chỉnh năm 1849 nên còn gọ Hình 1-7. Bánh xe công tác của turbine tâm trục BXCT của turbine tâm trục gồm có vành trên 14 và vành dưới 13, các cánh 1 có dạng cong không gian ba chiều gắn chặt vào hai vành. Số cánh từ 12 đến 22 cánh, thường là 14 đến 18 cánh. Thường BXCT được đúc liền thành một khối, trường hợp bị điều kiện vận chuyển hạn chế có thể chế tạo BXCT thành từng phần, khi lắp ráp sẽ dùng các bulông ghép vành trên và đai ghép nóng ở vành dưới của các phần đó lại hoặc hàn [...]... về mặt thủy lực ống xả hình nón cụt là loại ống xả tốt hơn cả so với các loại ống xả kể trên và nó cũng là loại có cấu tạo đơn giản Tuy nhiên nó chỉ được dùng trong turbine phản kích trục đứng cở nhỏ và trung bình và turbine dòng Nó thuộc loại ống mở rộng dạng chóp cụt với góc loe θ (hình 2-14,a) Loại ống này có tổn thất thủy lực nhỏ nhất nên hiệu suất cao, có thể đạt tới 85% Tổn thất thủy lực tùy... turbine) là phần nối công trình dẫn nước của trạm thủy điện với turbine và hình thành lượng chảy vòng tại cửa vào CCHD Buồng turbine cần bảo đảm những yêu cầu chính sau: - Dẫn nước đều đặn lên chu vi các cánh hướng dòng để tạo nên dòng chảy đối xứng với trục quay của turbine - Tổn thất thủy lực trong buồng và đặc biệt là trong CCHD nhỏ nhất - Dễ nối tiếp với đường dẫn của trạm thủy điện - Buồng có kích... điều kiện thủy lực trong buồng sẽ kém và khó bố trí động cơ tiếp lực, nếu quá lớn thì tăng khoảng cách trục tổ máy Kiến nghị dùng như sau: δ = 20÷350 và thường lấy 300 Nói chung, khi m ≤ n thì γ = 20÷350 còn khi m > n thì γ = 10÷200; khi n = 0, γ = 10÷150 Các giá trị khác kiến nghị chọn như sau: khi m = 0 hoặc n = 0, b/a = 1,5÷1,85 Khi m và n ≠ 0 thì b / a không quá 2÷2,2 Theo quan điểm thủy lực thì... cánh BXCT hướng trục chịu tác dụng áp lực nước ở dạng sơ đồ chịu lực kiểu dầm côngxôn do không có vành dưới, tại nơi tiếp giáp cánh với bầu chịu mômen uốn lớn nhất Người ta đã đo được áp lực nước tác dụng lên một cánh có thể đạt tới 240 tấn Do vậy phải sử dụng động cơ tiếp lực dầu cao áp mới quay được cánh Bộ phận quay cánh gồm trục cánh 6 (hình 1-10,b), động cơ tiếp lực 4, hệ thống thanh truyền 7 Tay... tiết diện ở cửa vào D3 Nếu tiết diện cửa vào bằng hoặc lớn cửa ra thì dẫn tới hiệu suất âm - Giảm tổn thất thủy lực h3-5 trong ống xả Hai khả năng trên có liên quan trực tiếp lẫn nhau, mở rộng tiết diện cửa ra càng lớn với mong muốn thu hồi động năng càng nhiều thì lại làm tăng tổn thất thủy lực trong ống xả và ngược lại Do vậy cần lựa chọn hợp lý về tiết diện và chiều dài, góc côn của ống xả, đồng... hưởng mấy đến điều kiện thủy lực Khi n = 0 (tức trần bằng) hoặc m > n thì có thể giảm thể tích khối bê tông phần dưới nước của nhà máy và dễ bố trí động cơ tiếp lực và có thể rút ngắn khoảng cách giữa các trục tổ máy Tiết diện chữ T phát triển lên trên so với trục CCHN chỉ nên dùng khi ở phía dưới buồng xoắn có bố trí đường hầm xả nước của TTĐ xả lũ kết hợp và nếu động cơ tiếp lực đặt ngay trên nắp turbin... động cơ tiếp lực 4, hệ thống thanh truyền 7 Tay quay 8 được nối với trục cánh 6, còn thanh truyền có chốt nối liền 11 píttông 5 của động cơ tiếp lực với tay quay Pittông 5 chia xi lanh của động cơ tiếp lực làm hai ngăn: trên và dưới Dầu có áp từ thiết bị dầu áp lực qua hai ống dẫn đồng tâm lồng vào nhau nằm bên trong trục tổ máy Khi dầu có áp vào một ngăn nào đó của xi lanh còn ở ngăn kia dầu thông với... viết phương trình năng lượng cho 3 trường hợp: không có ống xả, ống xả trụ tròn và ống xả hình nón cụt (hình 2-12) rồi so sánh Hình 2-12 Các sơ đồ tính toán so sánh vai trò ống xả Viết phương trình Becnuly cho trường hợp a) không có ống xả cho hai mặt cắt ở mặt thoáng 1-1 và mặt cắt cửa ra BXCT 3-3, lấy mực nước ở kênh tháo 0-0 làm chuẩn nếu bỏ qua tôn thất cột nước trong buồng hở và vì áp lực ở mặt... đoạn nằm ngang Tổn thất ở đây phụ thuộc vào sự phân bố dòng chảy ở tiết diện vào của khuỷu và hình dạng của nó Lực li tâm sinh ra khi dòng nước chảy vòng trong đoạn khuỷu sẽ gây nên sự tách dòng và tăng thêm tổn thất Bán kính chuyển động xoay của dòng nước càng lớn thì lực li tâm và građiên áp lực trong dòng chảy càng nhỏ Yếu tố thứ hai ảnh hưởng đến tổn thất năng lượng trong đoạn khuỷu là tỷ số giữa... nước tĩnh Z3 ký hiệu là Hs gọi là ” độ chân không tĩnh ”, thành phần thứ hai bao gồm hai phần còn lại, gọi là “độ chân không 31 động” Thành phần thứ nhất có liên quan đến thiết kế công trình, cụ thể là việc chọn cao trình đặt turbine, thành phần thứ hai gắn liền với cấu tạo của ống xả Hiệu suất ống xả được biểu thị qua hiệu quả thu hồi động năng ở cửa ra BXCT sau: 2 2 α 3 V3 − α 5 V5 η ox = 2g − h . biên soạn giáo trình "Turbine thuỷ lực - các thiết bị thuỷ lực và Công trình trạm Thuỷ điện" (là giáo trình môn học Thuỷ điện 2). Giáo trình này. thiết bị thủy lực có liên quan . Chương I. KHÁI NIỆM CHUNG VỀ TURBINE THỦY LỰC I. 1. PHÂN LOẠI TURBINE THỦY LỰC CỦA TRẠM THỦY ĐIỆN Trong quá trình đấu