1. Trang chủ
  2. » Giáo án - Bài giảng

Tiet 20. Bai 11: Hinh thoi

36 519 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 36
Dung lượng 7,39 MB

Nội dung

TRƯỜNG TRUNG HỌC CƠ SỞ LÂM GIANG Người thực hiện: Trần Phi Hùng Năm học 2009 - 2010  1. §Þnh nghÜa. Tø gi¸c ABCD lµ h×nh thoi AB = BC = CD = DA H×nh thoi lµ tø gi¸c cã bèn c¹nh b»ng nhau B A A D C C ⇒ ⇐ ⇔ TiÕt 20: §11. H×NH thoi Các thanh cửa xếp tạo thành những tứ giác có bốn cạnh bằng nhau. Mỗi tứ giác đó là một hình thoi. 1. Định nghĩa. Tứ giác ABCD là hình thoi AB = BC = CD = DA Hình thoi cũng là hình bình hành Hình thoi là tứ giác có bốn cạnh bằng nhau B A A D C C ?1. Chứng minh rằng tứ giác ABCD (hình vẽ trên) cũng là một hình bình hành. Tiết 20: Đ11. HìNH thoi Tứ giác ABCD có: AB = CD DA = BC Tứ giác ABCD là hình bình hành ( Các cạnh đối bằng nhau ) 2. Tính chất. Hình thoi có tất cả các tính chất của hình bình hành. Cạnh Góc Đường chéo Caực yeỏu toỏ Tính chất hình thoiTính chất hình bình hành 2. Tính chất. Hình thoi có tất cả các tính chất của hình bình hành. - Các cạnh bằng nhau - Các cạnh đối song song - Caực caùnh ủoỏi baống nhau - Các góc đối bằng nhau. - Hai đường chéo cắt nhau tại trung điểm của mỗi đường Hoạt động nhóm 1) - Cho một tấm bìa hình thoi ABCD. - Vẽ 2 đường chéo. - Gấp hình theo 2 đường chéo. 2) Nhận xét: - Góc tạo bởi hai đường chéo AC và BD. - Mối quan hệ giữa hai đường chéo với các góc của hình thoi. A B D C A B C D A B C D A B C D O A B C D O [...]... chÐo vu«ng gãc víi nhau lµ h×nh thoi 4 H×nh b×nh hµnh cã mét ®­êng chÐo lµ ph©n gi¸c cđa mét gãc lµ h×nh thoi 1 2 C Bµi tËp : 73 (SGK – tr105) T×m c¸c h×nh thoi trong c¸c h×nh sau A B F E I K D C G H a) b) Lµ h×nh thoi H×nh thoi theo dÊu hiƯu 1 N M c) Lµ h×nh thoi (DH3) A Q R P D C B S d) Kh«ng lµ h×nh thoi (A vµ B lµ t©m c¸c ®­êng trßn) Lµ h×nh thoi (DH1) e) Cách dựng hình thoi C¸ch 1 D A B o C R C¸ch... 1 2 D C §11 H×NH thoi 1 §Þnh nghÜa H×nh thoi lµ tø gi¸c cã bèn c¹nh b»ng nhau B A C D Tø gi¸c ABCD lµ h×nh thoi ⇔ AB = BC = CD = DA H×nh thoi còng lµ h×nh b×nh hµnh 2 TÝnh chÊt H×nh thoi cã tÊt c¶ c¸c tÝnh chÊt cđa h×nh b×nh hµnh  §Þnh lÝ: Trong h×nh thoi: a) Hai ®­êng chÐo vu«ng gãc víi nhau b) Hai ®­êng chÐo lµ c¸c ®­êng ph©n gi¸c cđa c¸c gãc cđa h×nh thoi C¸c u tè TÝnh chÊt h×nh thoi C¹nh - C¸c... nhËn biÕt h×nh thoi * Bµi tËp: 75,76,77 (SGK) §11 H×NH thoi A B 1 §Þnh nghÜa H×nh thoi lµ tø gi¸c cã A 2 1 bèn c¹nh b»ng nhau 2 1 O 1 2 B 4 O 1 2 C Bµi tËp 74/106 - SGK C 5 D D Tø gi¸c ABCD lµ h×nh thoi ⇔ AB = BC = CD = DA H×nh thoi còng lµ h×nh b×nh hµnh 2 TÝnh chÊt H×nh thoi cã tÊt c¶ c¸c tÝnh chÊt cđa h×nh b×nh hµnh §Þnh lÝ Hai ®­êng chÐo cđa mét h×nh thoi b»ng 8cm vµ 10cm C¹nh cđa h×nh thoi b»ng gi¸... lµ h×nh thoi ⇔ AB = BC = CD = DA B A H×nh thoi còng lµ h×nh b×nh hµnh 2 1 2 1 O 1 2 D 2 TÝnh chÊt H×nh thoi cã tÊt c¶ c¸c tÝnh chÊt cđa h×nh b×nh hµnh §Þnh lÝ Trong h×nh thoi: a) Hai ®­êng chÐo vu«ng gãc víi nhau b) Hai ®­êng chÐo lµ c¸c ®­êng ph©n gi¸c cđa c¸c gãc cđa hiƯu nhËn 3 DÊu h×nh thoi biÕt 1 Tø gi¸c cã 4 c¹nh b»ng nhau lµ h×nh thoi 2 H×nh b×nh hµnh cã hai c¹nh kỊ b»ng nhau lµ h×nh thoi 3 H×nh... gãc B H×nh thoi H×nh b×nh hµnh A A 3 DÊu hiƯu nhËn biÕt A 1 Tø gi¸c cã 4 c¹nh b»ng nhau lµ h×nh thoi B D B D D A C C 2 H×nh b×nh hµnh cã hai c¹nh kỊ b»ng nhau lµ h×nh thoi B C A B D D C C A 3 H×nh b×nh hµnh cã hai ®­êng chÐo vu«ng gãc víi nhau lµ h×nh thoi A B B D O C D B C A A B 4 H×nh b×nh hµnh cã mét ®­êng chÐo lµ ph©n gi¸c cđa mét gãc lµ h×nh thoi B D D C C §11 H×NH thoi 1 §Þnh nghÜa H×nh thoi lµ... lµ h×nh thoi ⇔ AB = BC = CD = DA B A H×nh thoi còng lµ h×nh b×nh hµnh 2 1 2 1 O 1 2 D 2 TÝnh chÊt H×nh thoi cã tÊt c¶ c¸c tÝnh chÊt cđa h×nh b×nh hµnh §Þnh lÝ Trong h×nh thoi: a) Hai ®­êng chÐo vu«ng gãc víi nhau b) Hai ®­êng chÐo lµ c¸c ®­êng ph©n gi¸c cđa c¸c gãc cđa hiƯu nhËn 3 DÊu h×nh thoi biÕt 1 Tø gi¸c cã 4 c¹nh b»ng nhau lµ h×nh thoi 2 H×nh b×nh hµnh cã hai c¹nh kỊ b»ng nhau lµ h×nh thoi 3 H×nh... h×nh thoi 4 H×nh b×nh hµnh cã mét ®­êng chÐo lµ ph©n gi¸c cđa mét gãc lµ h×nh thoi 1 2 C ?3 Chøng minh dÊu hiƯu 3 B ABCD lµ h×nh b×nh hµnh GT AC ⊥ BD KL A ABCD lµ h×nh thoi Chøng minh: O C D Xét ∆ABC có OA = OC (t/c cđa h.b.h ) => BO là là đường trung tuyến BD ⊥ AC ( g t ) => BO là đường cao => AB = BC mà ABCD là h.b.h (gt) => ABCD lµ h×nh thoi => ∆ABC cân tại B §11 H×NH thoi 1 §Þnh nghÜa H×nh thoi. .. ®­êng chÐo lµ c¸c ®­êng ph©n gi¸c cđa c¸c gãc cđa h×nh thoi GT B ABCD lµ h×nh thoi A AC ⊥ BD KL BD lµ ®­êng ph©n gi¸c cđa gãc B AC lµ ®­ êng ph©n gi¸c cđa gãc A, CA lµ ®­êng ph©n gi¸c cđa gãc C, DB lµ ®­êng ph©n gi¸c cđa gãc D 2 1 2 o 1 1 2 C D Chøng minh: ∆ ABC cã: => ∆ ABC c©n t¹i B AB = = OC (T/c ®­êng chÐo hbh) => Mµ AOBC (c¸c c¹nh cđa h×nh thoi) BO lµ ®­êng trung tun VËy:- BD ⊥ AC - BD lµ ph©n... ®­êng chÐo cđa mét h×nh thoi b»ng 8cm vµ 10cm C¹nh cđa h×nh thoi b»ng gi¸ trÞ nµo trong c¸c gi¸ trÞ sau: A 6 cm B 41 cm Trong h×nh thoi: a) Hai ®­êng chÐo vu«ng gãc víi nhau b) Hai ®­êng chÐo lµ c¸c ®­êng ph©n gi¸c cđa c¸c gãc cđa h×nh thoi C 164 cm D 9 cm Gỵi ý: - Cho h×nh thoi ABCD - Gäi O lµ giao ®iĨm cđa AC vµ BD - TÝnh OB vµ OC (t/c ®­êng chÐo) - TÝnh BC (®Þnh lÝ Pytago) . Năm học 200 9 - 201 0  1. §Þnh nghÜa. Tø gi¸c ABCD lµ h×nh thoi AB = BC = CD = DA H×nh thoi lµ tø gi¸c cã bèn c¹nh b»ng nhau B A A D C C ⇒ ⇐ ⇔ TiÕt 20: §11 H×NH thoi Các thanh cửa xếp tạo thành những tứ giác có bốn cạnh bằng nhau. Mỗi tứ giác đó là một hình thoi. 1. Định nghĩa. Tứ giác ABCD là hình thoi

Ngày đăng: 29/09/2013, 14:10

HÌNH ẢNH LIÊN QUAN

Tứ giác ABCD là hình thoi AB = BC = CD = DA - Tiet 20. Bai 11: Hinh thoi
gi ác ABCD là hình thoi AB = BC = CD = DA (Trang 2)
Caực yeỏu toỏ Tính chất hình bình hành Tính chất hình thoi - Tiet 20. Bai 11: Hinh thoi
a ực yeỏu toỏ Tính chất hình bình hành Tính chất hình thoi (Trang 5)
1) - Cho một tấm bìa hình thoi ABCD.     - Vẽ 2 đường chéo. - Tiet 20. Bai 11: Hinh thoi
1 - Cho một tấm bìa hình thoi ABCD. - Vẽ 2 đường chéo (Trang 6)
Tính chất hình thoi - Các cạnh bằng nhau - Tiet 20. Bai 11: Hinh thoi
nh chất hình thoi - Các cạnh bằng nhau (Trang 26)
2. Hình bình hành có hai cạnh kề bằng nhau là hình thoi    - Tiet 20. Bai 11: Hinh thoi
2. Hình bình hành có hai cạnh kề bằng nhau là hình thoi (Trang 28)
Bài tập: 73 (SGK – tr105) Tìm các hình thoi trong các hình sau - Tiet 20. Bai 11: Hinh thoi
i tập: 73 (SGK – tr105) Tìm các hình thoi trong các hình sau (Trang 32)
Đ11. HìNH thoi - Tiet 20. Bai 11: Hinh thoi
11. HìNH thoi (Trang 35)

TỪ KHÓA LIÊN QUAN

w