NGUYỄN TẤN TÀI THPT LAI VUNG I – ĐỒNG THÁP Chương I: PHƯƠNG TRÌNH LƯỢNGGIÁC A. CƠ SỞ LÝ THUYẾT 1. Cung liên kết a) Cung đối: ( ) ( ) cos cos ; sin sin ; x x x x− = − = − b) Cung bù: ( ) ( ) cos cos ; sin sin ; x x x x π π − = − − = c) Cung phụ: cos sin ; sin cos ; tan( ) cot ; cot tan 2 2 2 2 x x x x x x x x π π π π − = − = − = − = ÷ ÷ ÷ d) Cung hơn kém π : ( ) ( ) cos cos ; sin sin ; x x x x π π + = − + = − e) Cung hơn kém 2 π : cos sin ; sin cos ; 2 2 x x x x π π + = − + = ÷ ÷ 2. Công thức lượnggiác a) Công thức cộng: b) Công thức nhân đôi ( ) cos cos cos sin sin sin( ) sin cos cos sin tan tan tan( ) 1 tan tan cota cot 1 cot( ) cota cot a b a b a b a b a b a b a b a b a b b a b b + = − + = + + + = − − + = + 2 2 2 2 2 sin 2 2sin .cos cos2 cos sin 2cos 1 1 2sin 2tan tan 2 1 tan a a a a a a a a a a a = = − = − = − = − c) Công thức nhân ba d) Công thức hạ bậc 3 3 sin3 3sin 4sin cos3 4cos 3cos a a a a a a = − = − 2 2 3 3 1 cos2 1 cos2 sin ; cos 2 2 3sin sin3 3cos cos3 sin ; cos 4 4 a a a a a a a a a a − + = = − + = = e) Công thức tích thành tổng f) Công thức tổng thành tích [ ] [ ] [ ] 1 cos cos cos( ) cos( ) 2 1 sin sin cos( ) cos( ) 2 1 sin cos sin( ) sin( ) 2 a b a b a b a b a b a b a b a b a b = + + − − = + − − = + + − cos cos 2cos cos 2 2 cos cos 2sin sin 2 2 sin sin 2sin cos 2 2 sin sin 2cos sin 2 2 a b a b a b a b a b a b a b a b a b a b a b a b + − + = + − − = − + − + = + − − = 3. Hằng đẳng thức thường dùng ( ) 2 2 4 4 2 6 6 2 2 2 2 2 2 1 3 sin cos 1 sin cos 1 sin 2a sin cos 1 sin 2 2 4 1 1 1 tan 1+cot 1 sin 2 sin cos cos sin a a a a a a a a a a a a a a + = + = − + = − + = = ± = ± 4. Phương trình lượnggiác cơ bản anhchanghieuhoc95@yahoo.com Trang 1 NGUYỄN TẤN TÀI THPT LAI VUNG I – ĐỒNG THÁP khi 1 2 sin ( ) ; sin sin ( ) arcsin 2 2 khi 1 ( ) arcsin 2 VN m x k f x m x f x m k x k m f x m k α π α π π α π π π > = + = ⇔ = ⇔ = + = − + ≤ = − + khi 1 2 cos ( ) ; cos cos ( ) arccos 2 2 khi 1 ( ) arccos 2 VN m x k f x m x f x m k x k m f x m k α π α π α π π > = + = ⇔ = ⇔ = + = − + ≤ = − + tan ( ) ( ) arctan ; tan tanf x m f x m k x x k π α α π = ⇔ = + = ⇔ = + cot ( ) ( ) arccot ; cot cotf x m f x m k x x k π α α π = ⇔ = + = ⇔ = + 5. Phương trình thường gặp a. Phương trình bậc 2 2 2 2 2 2 2 2 2 .sin ( ) .cos ( ) 0 sin ( ) 1 cos ( ) .cos ( ) .sin ( ) 0 ( ) 1 sin ( ) cos2 ( ) cos ( ) 0 cos2 ( ) 2cos ( ) 1 cos2 ( ) sin ( ) 0 cos2 ( ) 1 2sin ( ) .t a f x b f x c Thay f x f x a f x b f x c Thay f x f x a f x b f x c Thay f x f x a f x b f x c Thay f x f x a + + = ⇒ = − + + = ⇒ = − + + = ⇒ = − + + = ⇒ = − cos 1 an ( ) cot ( ) 0 cot ( ) tan ( ) f x b f x c Thay f x f x + + = ⇒ = b. Phương trình dạng sin ( ) cos ( )a f x b f x c+ = Điều kiện có nghiệm: 2 2 2 a b c+ ≥ Chia 2 vế cho 2 2 a b+ , dùng công thức cộng chuyển về dạng cơ bản theo sin hoặc cos. c. Phương trình đẳng cấp Dạng 2 2 .sin .sin cos .cosa x b x x c x d+ + = Xét cosx = 0 có thỏa mãn phương trình hay không. Xét cosx ≠ 0, chia 2 vế cho cos 2 x để được phương trình bậc 2 theo tanx. Có thể thay vì xét cosx, ta có thể thay bằng việc xét sinx. Dạng 3 2 2 3 .sin .sin cos .sin .cos .cos 0a x b x x c x x d x+ + + = Xét cosx = 0 có thỏa mãn phương trình hay không. Xét cosx ≠ 0, chia 2 vế cho cos 3 x để được phương trình bậc 3 theo tanx. Có thể thay vì xét cosx, ta có thể thay bằng việc xét sinx. d. Phương trình đối xứng loại 1: (sin cos ) .sin cosa x x b x x c± + = Đặt t = sinx ± cosx, điều kiện 2t ≤ Thay vào phương trình ta được phương trình bậc 2 theo t. e. Phương trình đối xứng loại 2 : ( ) tan cot ) (tan cot 0 n n a x x b x x + + ± = Đặt t = tanx - cotx thì t ∈ R ; Đặt t = tanx + cotx thì 2t ≥ . Chuyển về phương trình theo ẩn t. f. Các phương pháp giải phương trình lượnggiác tổng quát Phương pháp biến đổi tương đương đưa về dạng cơ bản Phương pháp biến đổi phương trình đã cho về dạng tích. Phương pháp đặt ẩn phụ. Phương pháp đối lập. Phương pháp tổng bình phương. B. BÀI TẬP LUYỆN TẬP Dạng 1 : Phương trình lượnggiác cơ bản. anhchanghieuhoc95@yahoo.com Trang 2 NGUYỄN TẤN TÀI THPT LAI VUNG I – ĐỒNG THÁP Bài 1 : Giải các phương trình lượnggiác sau : 1. cos sin 2 0 3 x x π + + = ÷ 2. cos cos 1 3 3 x x π π + + − = ÷ ÷ 3. tan 2 .tan 1x x = − 4. 2 2 2 sin sin .tan 3x x x+ = 5. 2 2 5cos sin 4x x+ = 3. 1 3sin cos cos x x x + = 7. 4 4 cos 2 sin3 sin 2x x x= − 8. tan 1 tan 4 x x π − = − ÷ 9. 3 3 1 sin cos cos sin 4 x x x x= + 10. 4 4 sin cos cos4x x x+ = 11. cos7x - sin5x = ( cos5x - sin7x) 12. sin + cos = 13. 2 2 sin 5 cos 3 1x x+ = 14. 2 cos cos2 cos4 16 x x x − = 15. ( ) sin sin 1x π = 16. 2 2 cos sin 1 sin 1 cos x x x x = − − 17. 1 1 2 cos sin 2 sin 4x x x + = 18. 3 2 4sin 2 6sin 3x x+ = Bài 2 : Cho phương trình ( ) ( ) tan cos cot sinx x π π = 1. Tìm điều kiện xác định của phương trình. 2. Tìm tất cả các nghiệm thuộc đoạn [ ] 3 ; π π − của phương trình. Bài 3 : Cho phương trình sin 6 x + cos 6 x = m. 1. Xác định m để phương trình có nghiệm. 2. Xác định m để phương trình có đúng 2 nghiệm trong khoảng ( ) 0; π Bài 4: Giải và biện luận phương trình ( ) 2 2 1 cos2 2 sin 3 2 0m x m x m− + + − = Dạng 2 : Phương trình bậc nhất, bậc hai. Bài 1 : Giải các phương trình lượnggiác sau : 1. 2 2cos 5sin 4 0 3 3 x x π π + + + − = ÷ ÷ 2. 5 cos2 4cos 0 2 x x− + = 3. 4 4 sin cos cos2x x x+ = 4. 4 4 1 cos sin sin 2 2 x x x+ = − 5. ( ) 2 2 2 cos 3 2 2 cos3 1 0x x− + + = 6. 4 4 cos sin 2sin 1 2 2 x x x+ + = 7. ( ) 6 6 4 sin cos cos 2 0 2 x x x π + − − = ÷ 8. 2tan 3cot 4x x+ = 9. 4 2 1 cos sin 4 x x= − 10. 2 2 6 6 cos sin 4cot 2 sin cos x x x x x − = + 11. 1 2tan cot 2sin 2 sin 2 x x x x + = + 12. 8 8 2 17 sin cos cos 2 16 x x x+ = 13. 4cos cos4 1 2cos2x x x− = + 14. 5 5 2 4sin cos 4cos sin cos 4 1x x x x x− = + 15. 2 2 cos4 cos 3 cos 1x x x= − + 16. sin3 cos2 1 2sin cos2x x x x+ = + Bài 2 : Cho phương trình sin3 cos2 ( 1)sin 0x m x m x m− − + + = 1. Giải phương trình khi m = 2. 2. Xác định m để phương trình có đúng 4 nghiệm thuộc khoảng ( ) 0;2 π Dạng 3 : Phương trình bậc nhất theo sinx, cosx. Bài 1 : Giải các phương trình lượnggiác sau : 1. 3sin cos 2 0x x− + = 2. 3 3sin 1 4sin 3cos3x x x− = + anhchanghieuhoc95@yahoo.com Trang 3 NGUYỄN TẤN TÀI THPT LAI VUNG I – ĐỒNG THÁP 3. 4 4 sin cos 1 4 x x π + + = ÷ 4. ( ) 4 4 2 cos sin 3sin 4 2x x x+ + = 5. 2sin 2 2sin 4 0x x+ = 6. 3sin 2 2cos2 3x x+ = 7. 9 3cos 2 3sin 2 x x+ = 8. 4cos3 3sin3 5 0x x− + = 9. 2 sin cos sin cos2x x x x− = 10. ( ) tan 3cot 4 sin 3 cosx x x x− = + 11. 2sin3 3cos7 sin7 0x x x+ + = 12. ( ) cos5 sin3 3 cos3 sin5x x x x− = − 13. ( ) ( ) 2 2sin cos 1 cos sinx x x x− + = 14. 1 cos sin3 cos3 sin 2 sinx x x x x+ + = − − 15. 3 3sin 1 4sin 3cos3x x x− = + 16. 3sin cos 2cos 2 3 x x x π + + − = ÷ Bài 2 : Cho phương trình ( ) 3 sin 2 1 cos 3 1m x m x m+ − = + 1. Giải phương trình khi m = 1. 2. Xác định m để phương trình có nghiệm. Bài 3 : Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số 1. cos sin 1 sin 2cos 4 x x y x x − + = + − 2. cos3 sin3 1 cos3 2 x x y x + + = + 3. 1 3sin 2cos 2 sin cos x x y x x − + = + + 4. 2 sin cos cos sin cos 1 x x x y x x + = + Dạng 4 : Phương trình đẳng cấp Bài 1 : Giải các phương trình lượnggiác sau : 1. 2 2 2sin sin cos 3cos 0x x x x+ − = 2. 2 2sin 2 3cos 5sin cos 2 0x x x x− + − = 3. 2 2 sin sin 2 2cos 0,5x x x+ − = 4. 2 sin 2 2sin 2cos2x x x− = 5. 2sin 2 x + 3sinx.cosx - 3cos 2 x = 1 6. 2 2 1 4 3 3 2 2 2 os sin sin x x c x+ + = 7. ( ) 2 2 3sin 4sin 2 8 3 9 cos 0+ + − =x x x 8. 3 3 2cos 3cos 8sin 0x x x+ − = 9. 3 3 8 3cos 5sin 7sin cos 0 3 x x x x− + − = 10. 3 5sin 4 cos 6sin 2cos 2cos2 x x x x x − = 11. 2 sin 2 sin 4 x x π + = ÷ 12. 3 2 cos sin cos3 3 2sin sin 2x x x x x− = + 13. 2 2 3sin 2sin 2 cos 0x x x− + = 14. 3 12 sin 2 sin 4 x x π − = ÷ Bài 2 : Cho phương trình ( ) ( ) 2 2 sin 3 sin2 2 cos 0m x m x m x− − + − = 1. Xác định m để phương trình có nghiệm. 2. Xác định m để phương trình có nghiệm duy nhất thuộc khoảng 0, 4 π ÷ . Dạng 5 : Phương trình đối xứng loại 1 Bài 1 : Giải các phương trình lượnggiác sau : anhchanghieuhoc95@yahoo.com Trang 4 NGUYỄN TẤN TÀI THPT LAI VUNG I – ĐỒNG THÁP 1. ( ) 2 sin cos sin2 1 0x x x+ + + = 2. ( ) sin cos 6 sin cos 1x x x x= − − 3. sin 2 2sin 1 4 x x π + − = ÷ 4. tan 2 2 sin 1x x− = 5. 3 3 sin cos 1x x+ = 6. ( ) ( ) 1 sin 1 cos 2+ + =x x 7. 2sin tan cot 4 + = + ÷ x x x p 8. ( ) 3 sin cos sin cos 1 0x x x x+ + − = 9. ( ) 4 sin cos 3sin 2 1 0x x x+ − − = 10. 3 3 cos sin cos2x x x− = 11. ( ) 3 3 sin cos 2 sin cos 3sin 2 0x x x x x+ + + − = 12. ( ) 3 sin cos 1 sin cosx x x x− = + 13. 1 1 sin cos 2 tan cot 0 sin cos x x x x x x + + + + + + = 14. ( ) ( ) 1 sin 2 sin cos cos2x x x x− + = Bài 2 : Cho phương trình 3 3 cos sinx x m− = . Xác định m để phương trình có nghiệm. Dạng 5 : Phương trình đối xứng loại 2 Bài 1 : Giải các phương trình lượnggiác sau : 1. ( ) ( ) 2 2 3 tan cot 2 tan cot 2 0x x x x+ − + − = 2. 7 7 tan cot tan cotx x x x+ = + 3. 2 3 2 3 tan tan tan cot cot cot 6x x x x x x+ + + + + = 4. ( ) ( ) 4 2 2 9 tan cot 48 tan cot 96x x x x + = + + 5. ( ) 2 2 3 tan cot tan cot 6x x x x− + + = 6. ( ) ( ) 4 2 2 3 tan cot 8 tan cot 21+ − + =x x x x Bài 2 : Cho phương trình ( ) ( ) 2 2 2 tan cot 2 2 tan cotx x m x x m m+ + + + = − . Xác định m để phương trình có nghiệm. Dạng 6 : Biến đổi tương đương dưa về dạng cơ bản Giải các phương trình lượnggiác sau : 1. 3 3 3 sin cos sin cos 8 x x x x− = 2. 2 2 2 2 cos cos 2 cos 3 cos 4 2x x x x+ + + = 3. ( ) 3 3 5 5 sin cos 2 in cosx x s x x + = + 4. ( ) 8 8 10 10 5 sin cos 2 sin cos cos2 4 x x x x x + = + + 5. sin cot5 1 cot x x x = 6. 6tan 5cot3 tan 2 + = x x x Dạng 7 : Biến đổi biến đổi tích bằng 0 1/ cos2x- cos8x+ cos4x=1 2/sinx+2cosx+cos2x-2sinxcosx=0 3/sin2x-cos2x=3sinx+cosx-2 4/sin 3 x+2cosx-2+sin 2 x=0 5/ 3sinx+2cosx=2+3tanx 6/ 3 2 sin2x+ 2 cos 2 x+ 6 cosx=0 7/ 2sin2x-cos2x=7sinx+2cosx-4 8/ sin3 sin 5 3 5 x x = 9/ 2cos2x-8cosx+7= 1 cos x 10/ cos 8 x+sin 8 x=2(cos 10 x+sin 10 x)+ 5 4 cos2x 11/ 1+ sinx+ cos3x= cosx+ sin2x+ cos2x 12/ 1+sinx+cosx+sin2x+cos2x=0 13/ sin 2 x(tanx+1)=3sinx(cosx-sinx)+3 14/ 2sin3x- 1 sin x =2cos3x+ 1 cos x 15/cos 3 x+cos 2 x+2sinx-2=0 16/cos2x-2cos 3 x+sinx=0 anhchanghieuhoc95@yahoo.com Trang 5 NGUYỄN TẤN TÀI THPT LAI VUNG I – ĐỒNG THÁP 17/ tanx–sin2x-cos2x+2(2cosx- 1 cos x )=0 18/sin2x=1+ 2 cosx+cos2x Dạng 7 : Biến đổi biến đổi tích thành tổng, hoặc tổng thành tích Bài 1 : Giải các phương trình lượnggiác sau : 1. sinx + sin2x + sin3x = cosx + cos 2x + cos3x 2. sin 2 x + sin 2 2x = sin 2 3x + sin 2 4x 3. sin 2 x + sin 2 2x + sin 2 3x + sin 2 4x = 2 4. 2 2 2 3 cos cos 2 cos 3 2 x x x + + = 5. sin5x.cos6x+ sinx = sin7x.cos4x 6. 1 sin sin 3 3 2 x x π π − + = ÷ ÷ 7. 1 sin cos 4 12 2 x x π π + + = ÷ ÷ 8. cosx. cos4x - cos5x=0 9. sin6x.sin2x = sin5x.sin3x 10. 2 + sinx.sin3x = 2 cos 2x Bài 2 : Giải các phương trình lượnggiác sau : 1/ sin 2 x+sin 2 3x=cos 2 2x+cos 2 4x 2/ cos 2 x+cos 2 2x+cos 2 3x+cos 2 4x=3/2 3/sin 2 x+ sin 2 3x-3 cos 2 2x=0 4/ cos3x+ sin7x=2sin 2 ( 5 4 2 x π + )-2cos 2 9 2 x 5/ sin 2 4 x+ sin 2 3x= cos 2 2x+ cos 2 x 6/sin 2 4x-cos 2 6x=sin( 10,5 10x π + ) 7/ cos 4 x-5sin 4 x=1 8/4sin 3 x-1=3- 3 cos3x 9/ sin 2 2x+ sin 2 4x= sin 2 6x 10/ sin 2 x= cos 2 2x+ cos 2 3x 11/ 4sin 3 xcos3x+4cos 3 x sin3x+3 3 cos4x=3 12/ 2cos 2 2x+ cos2x=4 sin 2 2xcos 2 x Dạng 8 : Đặt ẩn phụ Giải các phương trình lượnggiác sau : 1. tan 2 2tan sin 2 0x x x− + = 2. 2 2 cos 2 cos cos 2 cos 3x x x x+ − + − = 3. 5 3sin cos 3 3sin cos 3 x x x x + + = + + 4. 2 cos 2 2 cos 2x x + + = Dạng 9 : Phương pháp đối lập Giải các phương trình lượnggiác sau : 1. 3 4 sin cos 1x x+ = 2. 2010 2010 sin cos 1x x+ = 3. 2 2 3cos 1 sin 7x x+ = 4. sin3 .cos4 1x x = 5. 3 3 2 sin cos 2 sin 2x x x+ = − 6. cos2 .cos5 1x x = − Dạng 10 : Phương pháp tổng bình phương Giải các phương trình lượnggiác sau : 1. ( ) 3 cos2 cos6 4 3sin 4sin 1 0x x x x− + − + = 2. 2 3sin 2 2sin 4cos 6 0x x x− − + = 3. 2sin 2 cos2 2 2 sin 4 0x x x+ + − = 4. 2 cos2 3sin 2 4sin 2sin 4 2 3cosx x x x x − + − + = C. BÀI TẬP TỔNG HỢP anhchanghieuhoc95@yahoo.com Trang 6 NGUYỄN TẤN TÀI THPT LAI VUNG I – ĐỒNG THÁP Bài 1 2 2 cos 3 sin 2 1 sinx x x− = + Bài 2 3 3 2 cos 4sin 3cos .sin sin 0x x x x x− − + = Bài 3 Giải phương trình: sin 2 2 tan 3x x + = 3 sin .sin 2 sin 3 6cosx x x x+ = Bài 4 2 cos 2 1 cot 1 sin sin 2 1 tan 2 x x x x x − = + − + Bài 5 sin 3 cos3 2cos 0x x x+ + = Bài 6 3 sin 4sin cos 0x x x− + = Bài 7 2 2 tan .sin 2sin 3(cos2 sin cos )x x x x x x− = + Bài 8 cos3 4cos 2 3cos 4 0x x x − + − = Bài 9 (2cos 1)(2sin cos ) sin 2 sinx x x x x− + = − Bài 10 cos cos 2 cos3 cos4 0x x x x+ + + = Bài 11 2 2 2 2 sin sin 3 cos 2 cos 4x x x x+ = + Bài 12 3 3 3 sin cos3 cos sin 3 sin 4x x x x x+ = Bài 13 3 3 2 4sin 3cos 3sin sin cos 0x x x x x+ − − = Bài 14 Giải phương trình: 2 (2sin 1)(3cos 4 2sin 4) 4cos 3x x x x+ + − + = Bài 15 6 6 8 8 sin cos 2(sin cos )x x x x+ = + Bài 16 1 cos .cos 2 .cos 4 .cos8 16 x x x x = Bài 17 3 8cos cos3 3 x x π + = ÷ Bài 18 Giải phương trình: 2 (2sin 1)(2sin 2 1) 3 4cosx x x− + = − Bài 19 Giải phương trình: cos 2 cos8 cos6 1x x x− + = Bài 20 Giải phương trình: sin 4 4sin 4cos cos 4 1x x x x− + − = Bài 21 Giải phương trình: 3sin 2cos 2 3tanx x x+ = + Bài 22 Giải phương trình: 3 2cos cos2 sin 0x x x+ + = Bài 23 Giải phương trình: 2(tan sin ) 3(cot cos ) 5 0x x x x− + − + = Bài 24 Giải phương trình: 4cos 2cos 2 cos4 1x x x− − = Bài 25 Giải phương trình: sin sin 2 sin3 3 cos cos 2 cos3 x x x x x x + + = + + Bài 26 Giải phương trình: sin .sin 4 2cos 3 cos .sin 4 6 x x x x x π = − − ÷ Bài 27 Giải phương trình: 2 2 1 sin sin cos sin 2 os 2 2 4 2 x x x x x c π + − = − ÷ Bài 28 Giải phương trình: 2cos 2 sin 2 2(sin cos )x x x x− = + Bài 29 Giải phương trình: 1 cos cos 2 cos3 2 x x x− + = Bài 30 Giải phương trình: 3 sin 2 sin 4 x x π + = ÷ Bài 31 Giải phương trình: 1 sin cos sin 2 cos 2 0x x x x + + + + = Bài 32 Giải phương trình: 2 3 2 3 tan tan tan 6x x x cotx cot x cot x+ + + + + = Bài 33 Giải phương trình: 1 sin 3 sin cos 2x x x + = + Bài 34 Giải phương trình: 4 4 7 sin cos cot .cot 8 3 6 x x x x π π + = + − ÷ ÷ Bài 35 Giải phương trình: 2 3 cos 2 2(sin cos ) 3sin 2 3 0x x x x+ + − − = Bài 36 Giải phương trình: 4(sin 3 cos2 ) 5(sin 1)x x x− = − Bài 37 Giải phương trình: 3 sin 4sin cos 0x x x− + = Bài 38 Giải phương trình: 3 cos10 1 cos8 6cos3 .cos cos 8cos .cos 3x x x x x x x + + + = + Bài 39 Giải phương trình: 4 4 1 sin cos 4 4 x x π + + = ÷ Bài 40 Giải phương trình: 3 3 2 cos .cos3 sin .sin 3 4 x x x x+ = Bài 41 Giải phương trình: 3 3 3 3 (sin sin 2 sin 3 ) sin sin 2 sin 3x x x x x x+ + = + + Bài 42 Giải phương trình: 3 1 8sin cos sin x x x = + D. GIỚI THIỆU ĐỀ THI TUYỂN SINH CÁC NĂM anhchanghieuhoc95@yahoo.com Trang 7 NGUYỄN TẤN TÀI THPT LAI VUNG I – ĐỒNG THÁP A02:T×m n o thuéc (0;2π ) cña PT: 5 3 ÷ + + = + + cosx sin3x sinx cos2x 1 2sin2x B02: GPT: 2 2 2 2 sin 3x cos 4x sin 5x cos 6x. − = − D02: T×m n o thuéc [0;14] cña PT: cos3 4cos2 3cos 4 0.x x x − + − = A03: Gi¶i ph¬ng tr×nh: cos2x 1 2 cot x 1 sin x sin 2x. 1 tan x 2 − = + − + B03: Gi¶i ph¬ng tr×nh: 2 cot x tan x 4 sin 2x . sin 2x − + = D03: Gi¶i ph¬ng tr×nh x x 2 2 2 sin tan x cos 0. 2 2 4 π − − = ÷ B04: Gi¶i ph¬ng tr×nh ( ) 2 5 sin x 2 3 1 sin x tan x.− = − D04: Gi¶i ph¬ng tr×nh ( ) ( ) 2cosx 1 2sin x cosx sin 2x sin x.− + = − A-05: GPT: cos 2 3x.cos2x-cos 2 x = 0 A-06: GPT: ( ) 6 6 2 sin cos sin cos 0 2 2sin x x x x x + − = − B-06: GPT: cot sin 1 tan tan 4 2 x x x x + + = ÷ D-06: GPT: cos3x+cos2x-cosx-1=0 2 2 A07: GPT: (1 sin ) cos (1 cos ) sin 1 sin 2 2 B07: GPT: 2sin 2 sin 7 1 sin 2 D07: GPT: sin cos 3 cos 2 2 2 x x x x x x x x x x x + + + = + + − = + + = ÷ A08: GPT 1 1 7 4sin . 3 sin 4 sin 2 x x x π π + = − − ÷ ÷ B08: GPT 3 3 2 2 sin 3 cos sin cos 3 sin cos .x x x x x x − = − D08: GPT 2sin (1 cos 2 ) sin 2 1 2cos .x x x x + + = + A09: GPT (1 2sin )cos 3 (1 2sin )(1 sinx) x x x − = + − . B09: GPT 3 sinx cos sin 2 3 os3 2( os4 sin ).x x c x c x x + + = + D09: GPT 3 os5 2sin 3 cos2 sinx 0.c x x x− − = A10: GPT (1 sinx os2 )sin 1 4 cos . 1 t anx 2 c x x x π + + + ÷ = + B10: GPT (sin 2 os2 )cos 2cos2 sinx 0.x c x x x + + − = D10: GPT sin 2 os2 3sin cos 1 0.x c x x x − + − − = anhchanghieuhoc95@yahoo.com Trang 8 . Phương pháp đối lập. Phương pháp tổng bình phương. B. BÀI TẬP LUYỆN TẬP Dạng 1 : Phương trình lượng giác cơ bản. anhchanghieuhoc95@yahoo.com Trang 2 NGUYỄN. cos 2 3x 11/ 4sin 3 xcos3x+4cos 3 x sin3x+3 3 cos4x=3 12/ 2cos 2 2x+ cos2x=4 sin 2 2xcos 2 x Dạng 8 : Đặt ẩn phụ Giải các phương trình lượng giác sau :