Mời quý thầy cô và các em học sinh tham khảo Đề thi chọn HSG cấp trường môn Toán 8 năm 2018-2019 có đáp án - Trường THCS Quang Trung. Hi vọng tài liệu sẽ là nguồn kiến thức bổ ích giúp các em củng cố lại kiến thức trước khi bước vào kì thi học kì chọn HSG cấp trường sắp tới. Chúc các em ôn tập kiểm tra đạt kết quả cao!
TRƯỜNG THCS QUANG TRUNG TỔ KHOA HỌC – TỰ NHIÊN KHẢO SÁT CHỌN HỌC SINH GIỎI CẤP TRƯỜNG LỚP 8 THCS NĂM HỌC 20182019 MƠN: TỐN Ngày thi: 10/4/2019 Thời gian làm bài: 150 phút Bài 1. (4,0 điểm) Phân tích các đa thức sau thành nhân tử: a. A = x + 2019 x + 2019 x + 2018 b. B = x − x + c. Cho a 5; ab 10 Tìm giá trị nhỏ nhất của biểu thức: P = a + b Bài 2. (6,0 điểm) a. Cho a; b là các số tự nhiên. Chứng minh rằng: M = a + b5 − (a + b)M5 b. Tìm các giá trị x và y thỏa mãn: x + y − x − y + = c. Giải phương trình x − 2015 x + 2007 x + 2006 x − 2018 + = + 2010 2012 2011 2013 d. Giải phương trình bậc 4 sau: x − 11x + x + 21 = Bài 3. (4,0 điểm) a. Chứng minh a + b + c thực a, b, c ab + bc + ca và ( a + b + c ) 3(ab + bc + ca ) với mọi số b. Chứng minh rằng với mọi số ngun x thì biểu thức P một số chính phương. P = ( x+5 ) ( x+7 ) ( x + ) ( x + 11) + 16 Bài 4. (6,0 điểm) Cho tam giác ABC vuông tại A ( AC AB) Vẽ đường cao AH ( H BC ) Trên tia đối của tia BC lấy điểm K sao cho KH = HA. Qua K kẻ đường thẳng song song với AH, cắt đường thẳng AC tại P a) Chứng minh: Tam giác ABC Đồng dạng với tam giác KPC b) Chứng minh: Tam giác AKC đồng dạng với tam giác BPC c) Gọi Q là trung điểm của BP. Chứng minh: QH là đường trung trực của đoạn thẳng AK d) Chứng minh: Tam giác BHQ đồng dạng với tam giác BPC Hết \ TRƯỜNG THCS QUANG TRUNG TỔ KHOA HỌC – TỰ NHIÊN HDC THI CHỌN HỌC SINH GIỎI CẤP TRƯƠNG LỚP 8 THCS NĂM HỌC 20182019 MƠN: TỐN Bài Sơ lược lời giải Bài 1. (4,0 điểm) Phân tích các đa thức sau thành nhân tử: Điêm a. A = x + 2019 x + 2019 x + 2018 b. B = x − x + c. Cho a 5; ab 10 Tìm giá trị nhỏ nhất của biểu thức: P = a + b 1a (1,5) 1b (1,5) A = x + 2019 x + 2019 x + 2018 A = x − + 2019( x + x + 2019) A = (x 1)(x + x + 1) + 2019( x + x + 1) 0,5 A = ( x + x + 1) ( x − + 2019) 0,5 A = (x + x + 1 )(x + 2018) 0,5 B = x − x + B = x − x − x + B = x ( x − 1) − 4( x − 1) B = (x − 1)( x − 4) B = (x 1)(x + 1)(x 2)(x + 2) 0,5 0,5 0,25 0,25 Cho a 5; ab 10 Tìm giá trị nhỏ nhất của biểu thức: P = a + b Ta có: ( x − y ) x2 + y2 xy với mọi x; y 4a 21a Do đó: P = a + b = b + + 25 25 (2a)2 21a 2.b.2a 21a 4ab 21a P = b + + P + = + 25 25 25 Theo đề bài : a 5 a 25 ; và ab 10 4.10 21.25 P + 25 P 29 1c (1) x − xy + y 2 0,25 Vậy giá trị nhỏ nhất của P là 29. Dấu bằng xãy ra khi và chỉ khi a = 5; b = 2 Bài 2. (6,0 điểm) a. Cho a; b là các số tự nhiên. Chứng minh rằng: M = a + b5 − (a + b)M5 b. Tìm các giá trị x và y thỏa mãn: x + y − x − y + = 0,25 0,25 0,25 c. Giải phương trình x − 2015 x + 2007 x + 2006 x − 2018 + = + 2010 2012 2011 2013 d. Giải phương trình bậc bốn sau: x − 11x + x + 21 = Ta có: a + b5 − (a + b) = (a − a ) + (b5 − b) Mặt khác: (a − a ) = a (a − 1) = a( a − 1)(a + 1) = a (a − 1)(a + 1)(a + 1) = a (a − 1)(a + 1)(a − + 5) = a ( a − 1( a + 1) (a − 2)(a + 2) + 5a (a − 1)(a + 1) = (a − 2)(a − 1)a( a + 1)(a + 2) + 5a( a − 1)(a + 1) Do: (a − 2)(a − 1) a(a + 1)( a + 2) là tích của 5 số tự nhiên liên tiếp nên: (a − 2)(a − 1) a(a + 1)( a + 2)M5 và 5a (a − 1)(a + 1) là bội của 5 nên: 5a (a − 1)(a + 1)M5 Do đó: a − aM5 Chứng minh tương tự: b5 − bM5 M M5 2a (1,5) 0,25 0,25 0,25 0,25 0,5 2b (1,5) x2 + y − 4x − y + = ( x − 2) + ( y − 1) = x = và y = ( x − x + 4) + ( y − y + 1) = 0,5 0,5 0,5 x − 2015 x + 2007 x + 2006 x − 2018 + = + 2010 2012 2011 2013 x − 2015 x + 2007 x + 2006 x − 2018 +1+ −1 = −1+ +1 2010 2012 2011 2013 x − 2015 2010 x + 2007 2012 x + 2006 2011 x − 2018 2013 + + − = − + + 2010 2010 2012 2012 2011 2011 2013 2013 x −5 x −5 x −5 x −5 1 1 + = + ( x − 5)( − + − )=0 2010 2012 2011 2013 2010 2011 2012 2013 1 1 x=5 [do: ( − + − ) > 0] 2010 2011 2012 2013 Ta có: 2c (1,5) Vậy nghiệm của phương trình là x = 5 0,5 0,25 0,25 0,25 0,25 2d (1,5) x − 11x + x + 21 = 0,25 x − 10 x + 25 − ( x − x + 4) = ( x − 5) − ( x − 2) = ( x + x − 7)( x − x − 3) = 0,25 ( x + x − 7) = Hoặc ( x − x − 3) = TH 1. ( x + x − 7) = [(2 x + 1) − 29 ] = x= (4 x + x − 28) = (2 x + − 29)(2 x + + 29] = −1 + 29 −1 − 29 Hoặc x = 2 [(2 x) + 2.2 x + 1) − 29 ] = 0,25 TH 2. ( x − x − 3) = (4 x − x − 12) = [(2 x − 1) − 13 ] = x= [(2 x) − 2.2 x + 1) − 13 ] = (2 x − − 13)(2 x − + 13] = 0,25 + 13 − 13 Hoặc x = 2 Vậy tập nghiệm của PT là: S = −1 − 29 −1 + 29 + 13 − 13  ; ; ; � 2 2 0,25 0,25 Bài 3. (4,0 điểm) a. Chứng minh a + b + c với mọi số thực a, b, c ab + bc + ca và ( a + b + c ) 3(ab + bc + ca ) b. Chứng minh rằng với mọi số ngun x thì biểu thức P một số chính phương. P = ( x+5 ) ( x+7 ) ( x + ) ( x + 11) + 16 3a 2.0 a. Chứng minh a + b + c ab + bc + ca và ( a + b + c ) 3(ab + bc + ca) với mọi số thực a, b, c Ta có: a + b 2ab ; b + c 2bc ; c + a 2ac Với mọi a, b, c Cộng vế với vế các bất đẳng thức trên ta được: 2(a + b + c ) 2(ab + bc + ca ) a + b + c ab + bc + ca (ĐPCM) ab + bc + ca a + b + c + 2(ab + bc + ca ) 3( ab + bc + ca ) (a + b + c)2 3(ab + bc + ca ) (ĐPCM) 0,5 0,5 Ta có: (a + b + c 2 3b 2.0 2 Ta có: P = ( x+5 ) ( x+7 ) ( x + ) ( x + 11) + 16 P = ( x + 5)( x + 11)( x + 7)( x + 9) + 16 P = ( x + 16 x + 55)( x + 16 x + 63)+ 16 P = ( x + 16 x + 55) + 8( x + 16 x + 55)+ 16 P = ( x + 16 x + 55) + 2( x + 16 x + 55).4+ 42 P = ( x + 16 x + 59) Vơi x là số ngun thì P là một số CP Bài 4. (6,0 điểm) Cho tam giác ABC vng tại A ( AC AB) Vẽ đường cao AH ( H BC ) Trên tia đối của tia BC lấy điểm K sao cho KH = HA. Qua K kẻ đường thẳng song song với AH, cắt đường thẳng AC tại P 0,5 0,5 0,5 0,5 0,25 0,25 0,5 a. Chứng minh: Tam giác ABC Đồng dạng với tam giác KPC b.Chứng minh: Tam giác AKC đồng dạng với tam giác BPC c.Gọi Q là trung điểm của BP. Chứng minh: QH là đường trung trực của đoạn thẳng AK d Chứng minh: Tam giác BHQ đồng dạng với tam giác BPC 0.5 0.5 I K B H Q P 4.a 1 đ 4b 1.5 S C A Chứng minh: ∆ ABC ∆ KPC ( G.G) Chứng minh: ∆SAKC ∆ BPC Ta có: ∆S ABC ∆ KPC ( Cmt) AC BC = KC PC AC KC ᄋ Và ᄋACB = BCK = BC PC Do đó: ∆S AKC ∆ BPC ( C.G. C) 4c Gọi Q là trung điểm của BP. Chứng minh: QH là đường trung trực của 1.5 Ta có: AQ = KQ = PB (Trung tuyến ứng với nửa cạnh huyền trong tam Lại có: HK = HA (Giả thiết). Do đó: QH là đường trung trực của AK d Chứng minh: Tam giác BHQ đồng dạng với tam giác BPC (1.5) 0.5 đoạn thẳng AK giác vng) 4d 0,75 0,75 S ᄋ Ta có: ∆ AKC ∆ BPC (cmt) BPC = ᄋAKC ᄋ mà ᄋAKC = 450 ( Do tam giác HKC vuông cân tại H) BPC = 450 0,25 ᄋ ᄋ Mặt khác: BHQ = KHQ = 450 (HQ là đường trung trực của đoạn thẳng AK) ᄋ ᄋ BHQ = BPC = 450 Xét : ∆ BHQ và ∆ BPC có ᄋ ᄋ HBQ ( Q = PBC BP; H BC ) ᄋ ᄋ BHQ = BPC = 450 Do đó: ∆SBHQ ∆ BPC ( G.G) S S 0,5 S S 0.5 S 0.25 S ...TRƯỜNG THCS QUANG TRUNG TỔ KHOA HỌC – TỰ NHIÊN HDC THI CHỌN HỌC SINH GIỎI CẤP TRƯƠNG LỚP 8 THCS NĂM HỌC 20 18 2019 MƠN: TỐN Bài Sơ lược lời giải Bài 1. (4,0 điểm) Phân tích các đa thức sau thành nhân tử:... Gọi Q là trung điểm của BP. Chứng minh: QH là đường trung trực của 1.5 Ta có: AQ = KQ = PB (Trung tuyến ứng với nửa cạnh huyền trong tam Lại có: HK = HA (Giả thi t). Do đó: QH là đường trung trực của AK d Chứng minh: Tam giác BHQ đồng dạng với tam giác BPC... Ta có: (a + b + c 2 3b 2.0 2 Ta có: P = ( x+5 ) ( x+7 ) ( x + ) ( x + 11) + 16 P = ( x + 5)( x + 11)( x + 7)( x + 9) + 16 P = ( x + 16 x + 55)( x + 16 x + 63)+ 16 P = ( x + 16 x + 55) + 8(