ph¬ng tr×nh l«garit A. sö dông tÝnh ®¬n ®iÖu: B. §a vÒ cïng c¬ sè: C. pt cã 2 c¬ sè: D. pt cã 3 c¬ sè: E. pt cã Èn ë c¬ sè: F. pt cã tham sè: G. pt cã trÞ tuyÖt ®èi: 1. §HYHN99: 255 9 3 53 log.loglog x =+ x 5 log 2. §HXD 88: )X(log.XlogX 112 95 −+= 2 5 2log 3. §HQGHCM 96: 2 1 213 2 3 =+−− + )xx(log x 4. §HQGHN 98: 3312723 2 2 2 2 2 log)xx(log)xx(log +=+++++ 5. §HSPHN2 98: 15515 1 255 =−− + )(log).(log xx 6. §HBK2000: 3 8 2 2 4 4421 )x(logxlog)x(log ++−=++ 7. HVQH 2000: )xx(log)xx(log)xx(log)xx(log 1111 24 2 24 2 2 2 2 2 +−+++=+−+++ 8. §HNN 2000: 2 4224 =+ )x(loglog)x(loglog 9. HVCTQGHCM 2001: 2 9 3 32 27 3 2 1 2 1 65 )x(log x log)xx(log −+ − =+− 10. §HNTH¦¥NG 95: )x(loglog)x(loglog 3223 = 11. HVKT 99: )xx(log)xx(log).xx(log 111 2 6 2 3 2 2 −−=−+−− 12. §HY 99: 2253 9535 log.logxlogxlog =+ 13. §H QGHN B-2000: )x(logxlog 2 75 += 14. HVNH 2001: Xlog.Xlogxlogxlog 7272 22 +=+ 15. §HSP VINH 2001: )xx(log)xx(log).xx(log 111 2 20 2 5 2 4 −−=−+−− 16. . 24 2 2 2 2 2 + ++ + =+ ++ + 8. §HNN 2000: 2 4224 =+ )x(loglog)x(loglog 9. HVCTQGHCM 2001: 2 9 3 32 27 3 2 1 2 1 65 )x(log x log)xx(log + − =+ 10. §HNTH¦¥NG. 2 2 log)xx(log)xx(log += ++ + ++ 5. §HSPHN2 98: 15515 1 255 =−− + )(log).(log xx 6. §HBK2000: 3 8 2 2 4 4421 )x(logxlog)x(log ++ − =++ 7. HVQH 2000: )xx(log)xx(log)xx(log)xx(log