1. Trang chủ
  2. » Giáo án - Bài giảng

pp giải phương trình, bpt mũ và logarit

17 596 2

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 17
Dung lượng 918,55 KB

Nội dung

http://ebooktoan.com/forum/index.php 1 SỞ GIÁO DỤC ĐÀO TẠO TỈNH ĐỒNG NAI TRƢỜNG THPT NGÔ QUYỀN Mã số: CHUYÊN ĐỀ Người thực hiện: BÙI THỊ THANH HÀ Lĩnh vực nghiên cứu: Quản lý giáo dục  Phương pháp dạy học bộ môn Toán  Phương pháp giáo dục  Lĩnh vực khác  Có đính kèm:  Mô hình  Phần mềm  Phim ảnh  Hiện vật khác Năm học: 2011 - 2012 http://ebooktoan.com/forum/index.php 2 A. SƠ LƢỢC LÝ LỊCH KHOA HỌC I. THÔNG TIN CHUNG VỀ CÁ NHÂN 1. Họ tên: BÙI THỊ THANH HÀ. 2. Ngày tháng năm sinh: 11- 10 - 1969. 3. Giới tính: Nữ. 4. Địa chỉ: C 2 /9, Kp6, P.Trung Dũng, Tp Biên Hoà. 5. Điện thoại: 0613 946 783. 6. Chức vụ: Giáo viên - Chủ tịch công đoàn 7. Đơn vị công tác: Trường THPT Ngô Quyền. II. TRÌNH ĐỘ ĐÀO TẠO 1. Trình độ chuyên môn: Cử nhân khoa học. 2. Năm nhận bằng: 1991. 3. Chuyên ngành đào tạo: Toán học. III. KINH NGHIỆM KHOA HỌC 1. Lĩnh vực chuyên môn có kinh nghiệm: Giảng dạy toán. 2. Số năm kinh nghiệm: 20 năm. http://ebooktoan.com/forum/index.php 3 B. Đề tài MỘT SỐ PHƢƠNG PHÁP GIẢI PHƢƠNG TRÌNH- BẤT PHƢƠNG TRÌNH LÔGARIT I. LÝ DO CHỌN ĐỀ TÀI Trong chương trình Toán phổ thông trung học: Phƣơng trình- Bất phƣơng trình- lôgarit là một chủ đề nằm trong chương II của lớp 12, bài tập phần này rất đa dạng đòi hỏi học sinh cần phải có các kiến thức, kỹ năng giải các phương trình- bất phương trình đã được học ở lớp dưới cùng với các kiến thức được trang bị thêm trong chương này. Làm tốt các bài tập của chủ đề này sẽ giúp học sinh tự tin hơn trong việc giải các loại phương trình - bất phương trình nói chung. Đối với học sinh các lớp ban A của trường THPT Ngô Quyền thì việc trang bị thêm các dạng bài tập ở mỗi chương sẽ tạo hứng thú cho các em học tập. Chuyên đề được chia thành 3 phần:  Phần thứ nhất: Giới thiệu các kiến thức cơ bản về loogarit, cách giải các phương trình, bất phương trình lôgarit thường gặp.  Phần thứ hai: Trên cơ sở lý thuyết đưa ra một số bài tập tham khảo để học sinh luyện tập.  Phần thứ ba: Đưa vào một số bài toán có cách giải liên hệ với các dạng toán khác để thấy được sự đa dạng trong cách giải phương trình - bất phương trình và lôgarit, nhằm bồi dưỡng học sinh khá, giỏi yêu thích môn toán. (phần này còn tùy theo trình độ học sinh từng lớp mà đưa ra , khi đưa ra phần này giáo viên cần hướng dẫn sơ bộ để học sinh có hướng giải quyết) Chắc chắn rằng chuyên đề không thể tránh khỏi những thiếu sót, xin quý thầy (cô) đóng góp ý kiến để nội dung chuyên đề được hoàn thiện hơn. Tôi xin chân thành cảm ơn. Ngƣời viết chuyên đề Bùi Thị Thanh Hà http://ebooktoan.com/forum/index.php 4 II. NỘI DUNG CHUYÊN ĐỀ: A) LÝ THUYẾT VỀ LÔGARIT: I. Lũy thừa: 1/ Với a, b * R   , m,n R ta có: • a m .a n = a m+n • (a m ) n = a m.n • (a.b) n =a n .b n • n n n aa bb     • m mn n a a a   • a x > 0, xR 2/ Với a >0 , m, n Z , n > 1 , ta có: • 1 n n aa • m n m n aa • 21 2 n n a khi n k a a khi n k         , k  Z 3/ Với a  0, n N ta có: • a 0 =1 • a -1 = 1 a • -n 1 a n a  4/ Với số a dương m, n  R ta có: • Khi a >1 thì : a m < a n  m < n • Khi 0 < a < 1 thì : a m < a n  m > n II. Lôgarit: 1/ • log a b = c  a c = b. • log a b có nghĩa  01 0 a b      • log a b>0  ;1 0 , 1 ab ab      2/ Với 0<a  1; b>0 ta có: • log 1 a =0 • log a a =1 • a c = b  c= log a b • log a b a = b 3/ Với 0<a  1; b tùy ý ta có: log b a ab 4/ Với 0 <a  1, b, c > 0 ta có: • log ( . ) log log a a a bc b c • log a b c = log a b - log a c • log a b    log a b • log a b  = 1  log a b • log n m a b = m n log a b • log n m a m b n  log a b 5/ Với 0<a, b  1, c>0 ta có: • log a b . log b c = log a c • 1 log log a b b a  • log log log b a b c c a  http://ebooktoan.com/forum/index.php 5 6/ Với 0 <a  1, b, c > 0 ta có: • Khi a > 1 thì : log a b > log a c  b > c . • Khi a > 1 thì : log a b > log a c  b > c . 7/ Lôgarit cơ số 10 được gọi là lôgarit thập phân, kí hiệu: log 10 a = loga. Lôgarit cơ số e được gọi là lôgarit tự nhiên, kí hiệu: log e a= lna. III. Đạo hàm của các hàm số hàm số lôgarit: - Với mọi x ta có: • (e x )' = e x • (a x )' = a x .lna - Với mọi x > 0 ta có: • (lnx)' = 1 x • (log a x)' = 1 lnxa - Với u = u(x) ta có: • (a u )' = u'.a u .lna • (e u )' = u'.e u - Với u = u(x) u > 0 ta có: • (lnu)' = 'u u • (log a u)' = ' .ln u ua IV. Phƣơng trình mũ: có các cách giải sau 1/ Đƣa về cùng cơ số: Với 0 <a  1 ta có: a f(x) = a g(x)  f(x) = g(x). 2/ Đặt ẩn phụ: tìm một lũy thừa chung f(x) Đặt t = a f(x) , t >0 ta có: a 2f(x) = t 2 , a 3f(x) = t 3 . 3/ Lôgarit hóa 2 vế: dùng trong trường hợp 2 vế phương trình là tích của nhiều lũy thừa là một số dương. Cơ số của lôgarit được chọn là cơ số của lũy thừa có số phức tạp nhất. 4/ Sử dụng tính đơn điệu: Dự đoán chứng minh phương trình có nghiệm duy nhất. * Chú ý: - Nếu hàm số y=f(x)luôn đồng biến (hoặc nghịch biến) liên tục trên khoảng K thì số nghiệm của phương trình f(x)=m trên K không nhiều hơn một f(u)=f(v)  u=v - Các hàm số y = a x với x  R y = log a x với x >0 dồng biến khi a > 1 nghịch biến khi 0 < a < 1. V. Bất phƣơng trình mũ: có các cách giải sau 1/ Đƣa về cùng cơ số : áp dụng tính chất Với a > 1 thì: a f(x) > a g(x)  f(x) > g(x). Với 0 < a <1 thì: a f(x)  a g(x)  f(x)  g(x). 2/ Đặt ẩn phụ: tìm một lũy thừa chung f(x) Đặt t = a f(x) , t >0 ta có: a 2f(x) = t 2 , a 3f(x) = t 3 . VI. Phƣơng trình lôgarit: có các cách giải sau 1/ Đƣa về cùng cơ số: log a f(x) = log a g(x)  f(x) = g(x) >0 với 0 <a  1. 2/ Đặt ẩn phụ : với f(x) > 0. Đặt t = log a f(x) thì log n a f(x) = t n 3/ Sử dụng tính đơn điệu: Dự đoán chứng minh phương trình có nghiệm duy nhất. http://ebooktoan.com/forum/index.php 6 VII. Bất Phƣơng trình lôgarit: có các cách giải sau 1/ Đƣa về cùng cơ số: áp dụng tính chất: Với a > 1 thì log a f(x) > log a g(x)  f(x) > g(x) >0. Với 0<a<1 thì log a f(x)  log a g(x)  0 < f(x)  g(x). 2/ Đặt ẩn phụ: với f(x) > 0. Đặt t = log a f(x) thì log a n f(x) = t n B) CÁC BÀI TẬP CƠ BẢN: (GV cho học sinh làm các bài tập này tiến hành sửa trên lớp) Bài 1/.Giải các phƣơng trình a) 2 3 1 .0,2 25 0,04 xx x   . Đáp số : x = 0; x = 5/2 b) 2 3 2.3 15 0 xx    Đáp số : x= log 3 5 c) 13 5 5 26 0 xx    Đáp số : x = 1; x = 3 d) 022.72.72 xx21x3   Đáp số : x = 0; x= -1; x = 1 e) 3.4 2.10 25 0 x x x    Đáp số : x = 0 Bài 2/.Giải các phƣơng trình a)     2 3 2 3 4 xx     . Đáp số : x = 2; x = -2 Hướng dẫn:     2 3 . 2 3 1   , đặt t=   23 x  thì   1 23 x t  b)     12 21 10 3 10 3 xx xx      . Đáp số : 5 x= 2  Hướng dẫn:    10 3 10 3 1   c)     2 11 7 4 3 2 3 xx xx    Đáp số : x = 0 ; x = -2 Hướng dẫn: 2 7 4 3 (2 3)   (2 3).(2 3) 1   d) 2 2 11 . x x x x e e e     Đáp số : x = 0; x = - 3/4 e) 2 3 (2 9).3 9.2 0 x x x x     Nhận xét: ta xem đây là phương trình bậc 2 ẩn 3 x 2 x là tham số , khi đó pt 3 9 2 0 32 x xx x x           Bài 3/.Giải các phƣơng trình a)     4 3 2 2 log 2log 1 log (1 3log ) 1x   Đáp số : x = 2 85 b) 2 21 2 log ( 1) log ( 1)xx   ĐK: x >1 Đáp số : 1+ 5 x= 2 (x =0 ; 1- 5 x= 2 : loại) c) 1 log (3 5) 3 x x   ĐK: 1 0 x x      Đáp số : x = 1 (x = -2: loại) d) 1 log 10 1 log3 log( 1) 2 xx     ĐK: x > 1 Đáp số : x= 26 (x = -35: loại) Hướng dẫn: pt  log 10 log 1 log3 log10xx     http://ebooktoan.com/forum/index.php 7 e) 22 2 2 2 log ( 3 2) log ( 7 12) 3 log 3x x x x       ĐK: 32 4 1 x x x            Đáp số : x =0; x= -5 Bài 4/.Giải các phƣơng trình a) 2 22 log log 1 1xx   ĐK: 1 2 x  Hướng dẫn: Đặt t= 2 log 1x  , t  0 ta có: log 2 x = t 2 - 1 pt  t 4 - 2t 2 +t = 0 ĐS: 15 2 1 ; 1; 2 2 x x x     b) 22 log (5 1).log (2.5 2) 2 xx    Hướng dẫn: Lưu ý 2 2 2 log (2.5 2) log 2.(5 1) 1 log (5 1) x x x       Đáp số : x = log 5 3 ; x= log 5 (5/4) c) 42 2x 1 11 log (x 1) log x 2 log 4 2       Đáp số : x= 5/2 (x = -1 : loại) Hướng dẫn: ĐK: x > 1, đưa về cùng cơ số 2 pt  log 2 (x -1) + log 2 (2x +1) = 1 + log 2 (x+2) d) 32 1 log( 8) log( 4 4) log(58 ) 2 x x x x      ĐK: x > -2 Đáp số: x= 9 (x= -2, x= -6: loại) e) 1 3 .8 36 x x x  Đáp số : x=2; 3 x= log 2 1 Hướng dẫn: Lấy lôgarit cơ số 2 hai vế ta được phương trình: (x -2)log 2 3 = 2 1 x x   Bài 5/. Giải các bất phƣơng trình a) 1 21 25 0,2 .625 x x x  Đáp số : x > 1 b) 2 4 2 2 2 3 0,1 0,1 x x x    Đáp số : x 1 2  c) 22 3.7 37.140 26.20 x x x  Đáp số : 20 7 3 log 2 x  d) 7 1 1 7 10 6.10 5 0 xx    Đáp số : log2 1 log3 1 77 x   e) 2 2 2 2 6 3 3 1 2 6 3 2 6 3 x x x x x x       Đáp số : 3 5 3 5 22 x   Bài 6/. Giải các bất phƣơng trình a) 7 2 log 0 3 x x    Đáp số : x < 2 b)   2 1 2 log 1 0xx   Đáp số : -1 < x < 0 c) 2 log 3logx + 3 1 log 1 x x    Đáp số : 0 < x < 10 Hướng dẫn: Đặt t = logx d) 41 4 3 1 3 log (3 1).log 16 4 x x   Đáp số : x     0;1 2;   http://ebooktoan.com/forum/index.php 8 Hướng dẫn: ĐK: x >0, đặt t= 4 log (3 1) x  , bpt trở thành: t(t - 2) 3 4  e) 2 2 log 64 log 16 3 x x  Đáp số : 3 11 2 2 14 x x        Hướng dẫn: ĐK: 0 1 1; 2 x xx        . Đưa về log 2 x đặt t= log 2 x C) CÁC BÀI TẬP TỰ LUYỆN NÂNG CAO: (Học sinh tự làm theo tổ ở nhà dưới sự hướng dẫn của GV) Bài 1/. Giải các phƣơng trình sau: a) b) c) d) e) + 45. - 9. = 0 f) Bài 2/. Giải các phƣơng trình sau: a) b) c) d) e) f) Bài 3/. Giải các phƣơng trình sau: a) b) c) d) e) f) Bài 4/ .Giải các phƣơng trình a) 1 5 .8 100 x x x  b) 2 3 3 5 5 xx    http://ebooktoan.com/forum/index.php 9 c)       2 33 3 log 2 4 2 log ( 2) 16 0x x x x       d) 2 2 2 2 3 6 log ( 1).log ( 1) log 1x x x x x x       e) 3 4 12 log log logx x x Bài 5/ .Giải các phƣơng trình a) 2 3 6 log log logx x x b) 23 48 2 log ( 1) 2 log 4 log ( 4)x x x      c) 2 22 log ( 4).log 3 0x x x x     . d) 2 2 2 1 ( 1) 4 2 2 1 x x x x      e) 2 2 2 3 2 3 log log log log .log 0x x x x x    Bài 6/.Giải các bất phƣơng trình a)     31 13 10 3 10 3 xx xx      b) 2 4 4 3 8.3 9.9 0 x x x x      c) 2 3 3 2 0 42 x x x     d) 2 33 3 log ( 2) log 1 2 x x       e) 2 3 2 3 log log 1 log .logx x x x   Bài 7/. Giải các phƣơng trình sau: a) b) c) d) Bài 8/. Giải các phƣơng trình sau: a) b) . c) d) Bài 9/. Giải các phƣơng trình sau: a) 32 2 8x-14 x x     b) 6 log 26 log ( 3 ) log x xx c) 2 2 3 2 3 log 7x 21x+14 2x 4x+5 xx   Bài 10/. Tìm m để mỗi phƣơng trình sau có nghiệm: a) b) c) 22 1 1 1 1 9 ( 2).3 2 1 0 xx mm          Bài 11/. Tìm m để phương trình :     3 2 2 3 2 2 4 0 xx m     (1) có nghiệm x  0 http://ebooktoan.com/forum/index.php 10 Bài 12/. Tìm m để mỗi phƣơng trình sau có nghiệm duy nhất: a) 4 2x +2 + 4 x - 1 - 5m = 0 b) Bài 13/. a) Tìm m để p.trình : 2 2x+1 -2 x+3 -2m =0 (1) có 2 nghiệm phân biệt b) Chứng minh rằng phương trình 3 3x + a.3 2x+b + b.3 x+a - 1 = 0 (1) có ít nhất 1 nghiệm với mọi a, b. Bài 14/. Tìm m để phương trình a) 22 33 log log 1 2 1 0x x m     có ít nhất một nghiệm thuộc đoạn 3 1;3   b)   2 21 2 4 log log 0x x m   có nghiệm thuộc khoảng (0; 1) HƢỚNG DẪN GIẢI PHẦN C) Bài 1/. a) Đáp án: x = 5. b) Đáp án: x = . c) Đáp án: x = -5, x = . d) Đáp án: x = e) Chia cả hai vế cho , rồi đặt t = (với t > 0) dẫn đến phương trình = 0 = > x = -2. f) Đặt với Khi đó: , dẫn đến phương trình Giải phương trình ẩn t này, ta tìm được t = 2 Với t = 2 thì Với t = thì . Bài 2/. a) Điều kiện x > 1. Đặt , dẫn đến phương trình . - Đáp án: . b) Điều kiện Ta có : Đặt ta có phương trình [...]... 2012 Tên chuyên đề: MỘT SỐ PHƢƠNG PHÁP GIẢI PHƢƠNG TRÌNH- BẤT PHƢƠNG TRÌNH LÔGARIT Họ tên tác giả: Bùi Thị Thanh Hà Tổ: Toán - Tin Lĩnh vực: Quản lý giáo dục Phương pháp dạy học bộ môn Toán Phương pháp giáo dục Lĩnh vực khác     1 Tính mới: - Có giải pháp hoàn toàn mới - Có giải pháp cải tiến, đổi mới phương pháp đã có   2 Hiệu quả - Hoàn toàn mới đã triển khai áp dụng trong toàn ngành... log2x, v = log3x , bpt trở thành: u + v < 1 + uv Đáp số: 0 0, đặt t = log6x  x = 6t , khi đó phương trình trở thành: 6t + 3t = 2t t t 3 3  3t     1 (*), Xét f(t) = 3t    , ta chứng minh được f(t) đồng biến trên R 2 2 f(-1) = 1 nên t = -1 là nghiệm duy nhất của phương trình (*) Vậy x= 6-1 là nghiệm duy nhất của phương trình đã cho c) Vì x2 +x +3 > 0 x 2x2 + 4x + 5 > 0 x nên phương trình xác định x Ta có pt  log3 ( x2 ...http://ebooktoan.com/forum/index.php Quy đồng mẫu số rút gọn dẫn đến Phương trình này có hai nghiệm Đối chiếu với điều kiện các giá trị tìm được đều thỏa mãn Dẫn đến c) Đặt dẫn đến phương trình - Đáp án x = 3 x = 81 d) Đặt ta có: Với t = 0 thì Với t = -5 thì e) Nhận xét ( với f) Đặt , đặt t = ) dẫn đến phương trình ( với ) dẫn đến phương trình  Bài 3/ a) Chia cả hai vế cho , ta được rồi... mới từ những giải pháp đã có đã triển khai áp dụng trong toàn ngành có hiệu quả  - Hoàn toàn mới đã triển khai áp dụng tại đơn vị có hiệu quả  - Có tính cải tiến hoặc đổi mới từ những giải pháp đã có đã triển khai áp dụng tại đơn vị có hiệu quả  3 Khả năng áp dụng: - Cung cấp được các luận cứ khoa học cho việc hoạch định đường lối, chính sách: Tốt  Khá  Đạt  - Đưa ra các giải pháp khuyến... tự ta có Vậy phương trình có nghiệm duy nhất c) Chia cả hai vế cho  d) Đặt biến trên R ; ; Dễ thấy đồng nghịch biến trên R 11 http://ebooktoan.com/forum/index.php Với ta có ; Với ta có Vậy phương trình có nghiệm duy nhất khi e) Biến đổi đưa về lôgarit cơ số 2  f) Biến đổi phương trình về dạng tích  Bài 4/ a) Đáp số: x =2 ; x= - 1- log52 v 2  u  5  b) Đặt u= 3  5 , u >0 v= 3 Ta có... Bài 10/ a) Đặt ( với t > 0 ) Bài toán trở thành: Tìm m để phương trình có ít nhất một nghiệm dương Điều kiện để (1) có nghiệm là Gọi các nghiệm của (1) là t1 t2 (t1 t2 ), theo hệ thức Vi-ét Vậy với thì phương trình (1) có ít nhất nghiệm t2 > 0 suy ra t2 > 0 suy ra phương trình đã cho có nghiệm b) Đặt (với t > 0) Bài toán trở thành: Tìm m để phương trình Điều kiện để (2) có nghiệm là có ít nhất một... http://ebooktoan.com/forum/index.php b) Cách 1: bpt  32 x  3x x4  9.3x x4  9.9 x4  0 Đặt u= 3x , v = 3 x 4  u +v >0 Bpt trở thành: u2 + uv - 9uv - 9v2 > 0  (u+v).(u - 9v )> 0 Cách 2: Chia 2 vế của phương trình cho 32x ta được: 1  8.3 x4  x  9.32( x4  x)  0 Đáp số: x > 5 c) Tìm nghiệm của tử ( x =2), nghiệm của mẫu (x = 1/2) , lập bảng xét dấu Đáp số: 1 x2 2 3 x 2 d) bpt   2  1  x  2   x2... của (2) là , theo hệ thức Vi-ét:  Với  Với  Với Vậy với thì phương trình (2) có ít nhất nghiệm , suy ra phương trình đã cho có nghiệm c) Đặt t= 31 1 x 2  3  t  9 , khi đó phương trình trở thành: t2 - (a -2).t + 2a +1 =0 (1) 14 http://ebooktoan.com/forum/index.php vì t  3 nên (1)  t 2  2t  1 m t 2 Bài toán trở thành tìm m để phương trình Xét f(t) = t 2  2t  1  m có nghiệm 3  t  9 (2) . 3 phần:  Phần thứ nhất: Giới thiệu các kiến thức cơ bản về mũ và loogarit, cách giải các phương trình, bất phương trình mũ và lôgarit thường gặp.  Phần thứ hai: Trên cơ sở lý thuyết đưa. tập.  Phần thứ ba: Đưa vào một số bài toán có cách giải liên hệ với các dạng toán khác để thấy được sự đa dạng trong cách giải phương trình - bất phương trình mũ và lôgarit, nhằm bồi dưỡng. PHƢƠNG PHÁP GIẢI PHƢƠNG TRÌNH- BẤT PHƢƠNG TRÌNH MŨ VÀ LÔGARIT Họ và tên tác giả: Bùi Thị Thanh Hà Tổ: Toán - Tin Lĩnh vực: Quản lý giáo dục  Phương pháp dạy học bộ môn Toán  Phương pháp

Ngày đăng: 08/04/2014, 10:10

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w