Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 13 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
13
Dung lượng
457,29 KB
Nội dung
TRƢỜNG ĐẠI HỌC MỞ THÀNH PHỐ HỒ CHÍ MINH BAN CƠ BẢN TÀI LIỆU HƢỚNG DẪN ÔN TẬP VÀ KIỂM TRA MƠN: TỐN CAO CẤP Mục đích Tài liệu nhằm hỗ trợ cho học viên hình thức giáo dục từ xa nắm vững nội dung ôn tập làm kiểm tra hết môn hiệu Tài liệu cần sử dụng với tài liệu học tập môn học giảng giảng viên ôn tập tập trung theo chương trình đào tạo Nội dung hƣớng dẫn Nội dung tài liệu bao gồm nội dung sau: Phần 1: Các nội dung trọng tâm môn học Bao gồm nội dung trọng tâm môn học xác định dựa mục tiêu học tập, nghĩa kiến thức kỹ cốt lõi mà người học cần có hồn thành môn học Phần 2: Cách thức ôn tập Mô tả cách thức để hệ thống hóa kiến thức luyện tập kỹ để đạt nội dung trọng tâm Phần 3: Hướng dẫn làm kiểm tra Mơ tả hình thức kiểm tra đề thi, hướng dẫn cách làm trình bày làm lưu ý sai sót thường gặp, nỗ lực đánh giá cao làm Phần 4: Đề thi mẫu đáp án Cung cấp đề thi mẫu đáp án, có tính chất minh hoạ nhằm giúp học viên hình dung yêu cầu kiểm tra cách thức làm thi -1- PHẦN CÁC NỘI DUNG TRỌNG TÂM Chƣơng 1: Phép tính vi phân hàm biến 1.1 Đạo hàm vi phân 1.2 Ứng dụng đạo hàm tìm cực trị 1.3 Phân tích số tốn kinh tế Chƣơng 2: Phép tính vi phân hàm nhiều biến 2.1 Đạo hàm riêng, vi phân toàn phần 2.2 Cực trị địa phương, cưc trị có điều kiện 2.3 Ứng dụng vào toán kinh tế Chƣơng 3: Ma trận 3.1 Định nghĩa phép toán 3.2 Các phép biến đổi sơ cấp dòng 3.3 Tìm ma trận nghịch đảo Chƣơng 4: Định thức 4.1 Định nghĩa, phương pháp tính tính chất 4.2 Tìm ma trận nghịch đảo định thức Chƣơng 5: Hệ phƣơng trình tuyến tính 5.1 Định nghĩa phương pháp Gauss-Jordan 5.2 Hệ phương pháp Cramer 5.3 Mơ hình cân tuyến tính 5.4 Mơ hình Input-Output -2- PHẦN CÁCH THỨC ƠN TẬP Chƣơng 1: Phép tính vi phân hàm biến o Đạo hàm vi phân : Các khái niệm kỹ cần nắm vững : đạo hàm, vi phân - Nắm vững quy tắc tính đạo hàm vi phân - Nhớ bảng đạo hàm bản, biết cách vận dụng để tính đạo hàm vi phân hàm đa thức , mũ , logarit,… Đọc TLHT trang 51- 60, xem kỹ ví dụ TLHT Làm tập 1,8 trang 104,105 o Ứng dụng đạo hàm tìm cực trị Khái niệm kỹ cần thiết: - Nắm phuơng pháp tìm cực trị hàm số, đặc biệt phải biết cách xét dấu biểu thức Đọc TLHT trang 78, 79 , xem kỹ ví dụ TLHT Làm tập 14 trang 107 o Phân tích số toán kinh tế Kiến thức kỹ cần thiết : - Nhớ biểu thức toán học biên tế, hệ số co giãn, giải toán lợi nhuận cực đại - Áp dụng xác cơng thức để tính đại lượng kinh tế Đọc TLHT trang 90 – 95 Làm tập 18 trang 109 Chƣơng 2: Phép tính vi phân hàm nhiều biến o Đạo hàm riêng, vi phân toàn phần Khái niệm kỹ cần nắm vững : đạo hàm riêng, vi phân tồn phần - Cơng thức tính vi phân tồn phần cấp 1, cấp - Cần ghi nhớ : hàm z f x, y có hai biến x, y , tính đạo hàm riêng theo biến x ( z x ) ta coi y số, ngược lại tính đạo hàm riêng theo biến y, coi x số Khi đó, việc tính đạo hàm riêng giống tính đạo hàm hàm biến -Xem kỹ ví dụ trình bày TLHT Đọc TLHT trang 113 – 118 Làm tập 2, 3,7,8,9 trang 133,134, 135 o Cực trị địa phương, cưc trị có điều kiện -3- Khái niệm kỹ cần nắm vững : - Cực đại cực tiểu địa phương , cực đại cực tiểu có điều kiện - Các bước tìm cực trị địa phương - Biết dùng phương pháp nhân tử Lagrange để tìm cực trị có điều kiện Chú ý : Nếu từ điều kiện x, y ta tính y theo x : y x x vào z ta xem z hàm biến Khi có cách thay y thể tìm cực trị hàm z hàm theo biến x ( làm tương tự tính x theo y) Đọc TLHT trang 119 – 123 Làm tập 10,11 trang 135 o Ứng dụng vào toán kinh tế Khái niệm kỹ cần thiết : - Ứng dụng tìm cực trị địa phuơng để giải tốn tìm sản luợng để lợi nhuận cực đại điều kiện cạnh tranh hoàn hảo, điều kiện sản xuất độc quyền - Ứng dụng cực trị có điều kiện để giải toán người tiêu dùng Đọc TLHT trang 127 – 132 Làm tập 12,13,14 trang 135,136 Chƣơng 3: Ma trận o Định nghĩa phép toán Khái niệm kỹ cần nắm vững: -Nhận dạng loại ma trận , sử dụng phép toán ma trận - Đặc biệt phép nhân hai ma trận, cần nắm vững điều kiện nhân quy tắc nhân hai ma trận Đọc TLHT trang 292 – 299 Làm tập trang 319 o Các phép biến đổi sơ cấp dòng Khái niệm kỹ cần nắm vững: - Ba phép biến đổi sơ cấp dòng, ma trận bậc thang, hạng ma trận - Biết cách sử dụng phép biến đổi sơ cấp dòng đưa ma trận ma trận bậc thang tương đương - Biết cách tìm hạng ma trận Đọc TLHT trang 299 – 306 Đọc kỹ ví dụ trang 301, 303 o Tìm ma trận nghịch đảo Khái niệm kỹ cần nắm vững : Ma trận khả nghịch, -4- - Biết cách tìm ma trận nghịch đảo cách dùng phép biến đổi sơ cấp dòng - Biết giải phương trình ma trận Chú ý phép nhân hai ma trận khơng có tính chất giao hốn nên ý thứ tự A X : Nếu tồn A A X B X A 1.B X A B X B.A Đọc TLHT trang 306 – 309 Làm tập trang 320 Chƣơng 4: Định thức o Định nghĩa, phương pháp tính định thức tính chất Các khái niệm kỹ cần thiết : - Hiểu định nghĩa tính định thức - Biết vận dụng tính chất định thức để tính định thức - Khi tính định thức phép biến đổi áp dụng cho dòng cột - Đặc biệt, biết sử dụng quy tắc Sarrus để tính định thức cấp - Lỗi sai thuờng gặp tính định thức : khơng đổi dấu định thức đổi chỗ hai dòng ( hai cột ) Đọc TLHT trang 323 – 334 Làm tập 1,2, trang 344, 345 o Tìm ma trận nghịch đảo định thức Các khái niệm kỹ cần nắm vững : - Tìm điều kiện tồn ma trận nghịch đảo - Hiểu rõ khái niệm ma trận đồng thừa (phần phụ đại số), ma trận phó - Cơng thức tính ma trận nghịch đảo Đọc TLHT trang 334 – 338 Làm tập trang 346 Chƣơng 5: Hệ phƣơng trình tuyến tính o Định nghĩa phương pháp Gauss-Jordan Khái niệm kỹ cần thiết : Hệ phương trình tuyến tính, phương pháp Gauss – Jordan - Kỹ sử dụng phép biến đổi dòng ma trận để tìm ma trận bậc thang tương đương Nắm vững định lý Kronecker – Capelli - Lỗi hay mắc : không xác định hạng ma trận hệ số hạng ma trận mở rộng từ khơng kết luận đuợc nghiệm hệ phương trình tuyến tính trường hợp Đọc TLHT trang 334 – 338 -5- Làm tập trang 346 o Hệ phương pháp Cramer Các khái niệm kỹ cần thiết : Quy tắc Cramer - Tính thành thạo định thức Áp dụng cơng thức nghiệm hệ Cramer Đọc TLHT trang 339 – 343 Làm tập trang 347 o Mơ hình cân tuyến tính: Các khái niệm kỹ cần thiết: - Hiểu mơ hình cân tuyến tính - Biết áp dụng quy tắc Cramer để tìm đơn giá thời điểm cân thị trường Đọc TLHT trang 416 – 418 Làm tập 1,2 trang 424,425 o Mơ hình Input-Output Các khái niệm kỹ cần thiết: - Hiểu mơ hình input – output mở Letiontief : giải thích ý nghĩa hệ số ma trận hệ số đầu vào - Tính sản lượng ngành kinh tế, chi phí nguyên liệu đầu vào nhu cầu ngành kinh tế mở Đọc TLHT trang 418- 424 Làm tập 3, trang 425,426 -6- PHẦN HƢỚNG DẪN LÀM BÀI KIỂM TRA a/ Hình thức kiểm tra kết cấu đề: Đề kiểm tra theo hình thức tự luận, thời gian 90 phút Sinh viên phép sử dụng tài liệu giấy Đề gồm có bài, điểm nội dung phân phối sau: o Bài (2 điểm): bao gồm kiến thức chương (Phép tính vi phân hàm biến): Tính đạo hàm, tìm cực trị hàm số biến Ứng dụng cực trị hàm biến kinh tế: Bài toán lập kế hoạch sản xuất để đạt lợi nhuận cực đại o Bài (2 điểm): bao gồm kiến thức chương (Phép tính vi phân hàm nhiều biến), đó: Tìm đạo hàm riêng vi phân tồn phần cấp cấp hàm số biến Tìm cực trị( cục bộ) hàm hai biến Ứng dụng kinh tế: Bài toán lập kế hoạch sản xuất để đạt lợi nhuận cực đại( điều kiện kinh doanh hoàn hảo độc quyền) o Bài (2 điểm): bao gồm kiến thức chương (Ma trận), tập trung vào tìm dạng nghịch đảo ( có) ma trận vng cấp o Bài (2 điểm):bao gồm kiến thức chương (Định thức)trong tập trung vào phương pháp tính định thức ma trận vuông( đến cấp 4) o Bài (2 điểm):bao gồm kiến thức chương (Hệ phƣơng trình tuyến tính) đó: Giải hệ phương trình tuyến tính (có ẩn ) u cầu phải trình bày bước giải , khơng dùng máy tính để tìm nghiêm Ứng dụng kinh tế: Mơ hình cân tuyến tính( hay tìm điểm cân thị trường) Lƣu ý: hai 2, phải có ứng dụng kinh tế b/ Hƣớng dẫn làm phần tự luận: Yêu cầu chung : o Trước hết phải đọc thật kỹ đề để làm vừa đủ theo yêu cầu Làm thừa không phương pháp so với yêu cầu không tính điểm o Khơng cần làm theo thứ tự Câu dễ làm trước o Các u cầu tính tốn cần làm cẩn thận để tránh bỏ sót o Bài làm phải thật chi tiết, khơng viết tắt, kí hiệu toán học phải viết rõ ràng thống -7- Hƣớng dẫn cụ thể o Chƣơng : Khi tìm cực trị , trước hết phải tìm miền xác định hàm số Tìm điểm dừng thuộc miền xác định, Sau dùng hai cách sau để tìm cực trị : 1) Lập bảng xét dấu y’, suy cực trị 2) Tính giá trị y’’ điểm dừng suy cực trị Trong toán kinh tế, sau tính tốn xong phải kiểm chứng tính đắn( phải dương) đại lượng chi phí, doanh thu, hàm cung, hàm cầu, o Chƣơng 2: Lưu ý kĩ yêu cầu đề bài: tính đạo hàm riêng hay vi phân toàn phần, cấp hay cấp Đối với vi phân toàn phần cấp 2, nhớ nhân vào Z”xy o Chƣơng : Trước tìm ma trận nghịch đảo cần kiểm tra điều kiện khả nghịch ma trận Tìm ma trận nghịch đảo ma trận vuông cấp hai cách 1) Dùng phương pháp Gauss : cần ghi rõ phép biến đổi sơ cấp dòng adjA det A Trình bày cụ thể bước tính định thức ma trận phó ( adj A ) 2) Dùng định thức : Cần nhớ xác công thức A Khi giải xong cần thử lại ngồi giấy nháp (nhân ma trận tìm với ma trận ban đầu phải ma trận đơn vị I để kiểm tra) o Chƣơng : Tính định thức : - Chú ý tính định thức biến đổi dòng cột - Nhớ đổi dấu định thức đổi chỗ hai dòng hai cột - Khi tính định thức cần lưu ý dấu định thức o Chƣơng : Giải hệ phương trình tuyến tính hai cách 1) Phương pháp Gauss ( dùng cho loại hệ ) ý thực xác phép biến đổi sơ cấp dòng 2) Quy tắc Cramer cho hệ Cramer Cả hai cách phải trình bày bước giải Tuyệt đối khơng bấm máy tính nghiệm hệ o Chép người khác không tính điểm -8- PHẦN ĐỀ THI MẪU VÀ ĐÁP ÁN TRƢỜNG ĐẠI HỌC MỞ TP.HCM BAN CƠ BẢN ĐỀ THI MƠN : TỐN CAO CẤP NĂM HỌC: LỚP : HỆ : ĐTTX Thời gian làm : 90 phút SV đƣợc sử dụng tài liệu Câu 1(2 điểm):Một công ty sản xuất độc quyền loại sản phẩm Q bán với giá P, biết P hàm tổng chi phí C = C(Q) = Q3 – 77Q2 + 1000Q + 40.000 Hãy xác định mức sản lượng sản phẩm Q để cơng ty có lợi nhuận cao hàm cầu QD = D(P) = 656 Câu 2(2 điểm): Tìm cực trị hàm số hai biến: z Câu 3(2 điểm):Cho ma trận: A 1 x3 y 18 xy -1 Hãy tìm A (nếu có) Câu (2 điểm):Hãy tính định thức ma trận sau: B Câu (2 điểm): Giải hệ phương trình tuyến tính sau: 1 1 1 1 1 x1 x2 x3 x1 x2 x3 x1 x2 x3 x4 x1 x2 x3 x4 -HẾT - -9- x4 x4 ĐÁP ÁN Câu 1: Từ hàm cầu Q 656 P P 1312 2Q 1312 2Q Q 1312Q 2Q Doanh thu: R P.Q Lợi nhuận: L R C L 1312Q 2Q Q 75Q L Q 77Q 1000Q 40000 312Q 40000 Bài toán trở thành tìm Q cho L cực đại Ta có: L' Cho L' 3Q 150Q 312 Q Q 52 Ta loại nghiệm Q = -2 Q sản lượng nên ln dương Ta có: L" L"Q 6Q 150 6.52 150 52 162 => L đạt cực đại Q = 52 với Lmax = 38.416 Khi đó: Doanh thu R = 62.816 Chi phí C = 24.400 Câu 2: Tìm cực trị hàm số hai biến: z ' Ta có Z x 3x 18 y; Z y' x3 y 18 xy y 18 x 3x 18 y x x y 18 x y y => Có điểm dừng M1(0;0) M2(6;6) " Ta có: Z x2 x; Z "y2 y; Z xy" 18 * Tại điểm dừng M1(0;0): - 10 - Z x" 0;0 A 0.6 " Đặt B Z xy 0;0 18 Z "y 0;0 C B2 0.6 AC 18 0.0 324 => Z không đạt cực trị M1(0;0) * Tại điểm dừng M2(6;6): Z x" 6;6 A 6.6 " Đặt B Z xy 6;6 18 Z "y 6;6 C B2 36 6.6 AC 18 36.36 972 972 A 36 Vì => Z đạt cực tiểu M2(6;6) với Zmin = - 216 Câu (2 điểm): Cho ma trận: A 1 -1 Hãy tìm ma trận nghịch đảo A (nếu có) Ta có: A | I3 3 62 2 1 00 10 1 43 31 0 0 1 0 1 1 3 3 - 11 - 10 1 51 3 Câu (2 điểm): Hãy tính định thức ma trận sau: B Ta có: 41 1 1 1 1 1 1 B B 1 1 1 1 1 2 (2) (2) 2(1) (3) (3) (1) (4) (4) (1) 1 1 (4) 0 2 Câu (2 điểm): Giải hệ phương trình tuyến tính sau: x1 x2 x3 x1 x2 x3 A 2 1 1 ,X 1 x1 x2 x3 x4 x1 x2 x3 x4 x1 x2 x3 x4 Đặt : x4 x4 ,B Thì (*) < = > A.X = B Ta có : - 12 - * (4) 1 (2) 1 0 0 A| B (2) (3) 2 2 3 1 0 10 0 (2) (3) 0 0 (2) (2) 2(1) (3) (4) (3) 3(1) (4) 2(1) (3) x3 14 x4 44 73 x4 219 x3 x4 0 10 (4) 53 x2 Thay vào hệ phương trình , ta có : x4 6 14 44 x1 x2 x3 x4 x2 x3 x4 1 x4 Kết luận : Vậy hệ PT có nghiệm : x2 x3 x4 - 13 - 1 0 18 43 0 3 0 0 1 14 44 73 219 ... dụng phép biến đổi dòng ma trận để tìm ma trận bậc thang tương đương Nắm vững định lý Kronecker – Capelli - Lỗi hay mắc : không xác định hạng ma trận hệ số hạng ma trận mở rộng từ khơng kết luận... không tính điểm -8- PHẦN ĐỀ THI MẪU VÀ ĐÁP ÁN TRƢỜNG ĐẠI HỌC MỞ TP.HCM BAN CƠ BẢN ĐỀ THI MƠN : TỐN CAO CẤP NĂM HỌC: LỚP : HỆ : ĐTTX Thời gian làm : 90 phút SV đƣợc sử dụng tài liệu Câu 1(2 điểm):Một... C(Q) = Q3 – 77Q2 + 1000Q + 40.000 Hãy xác định mức sản lượng sản phẩm Q để cơng ty có lợi nhuận cao hàm cầu QD = D(P) = 656 Câu 2(2 điểm): Tìm cực trị hàm số hai biến: z Câu 3(2 điểm):Cho ma trận: