1. Trang chủ
  2. » Luận Văn - Báo Cáo

Cấu trúc môđun trên vành giao hoán

72 40 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 72
Dung lượng 542,52 KB

Nội dung

❚❘×❮◆● ✣❸■ ❍➴❈ ❙× P❍❸▼ ❍⑨ ◆❐■ ✷ ❑❍❖❆ ❚❖⑩◆ ✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯ ◆●➷ ❚❍➚ ◆❍❯◆● ❈❻❯ ❚❘Ó❈ ▼➷✣❯◆ ❚❘➊◆ ❱⑨◆❍ ●■❆❖ ❍❖⑩◆ ❑❍➶❆ ▲❯❾◆ ❚➮❚ ◆●❍■➏P ✣❸■ ❍➴❈ ❈❤✉②➯♥ ♥❣➔♥❤✿ ✣↕✐ sè ❍➔ ◆ë✐ ✕ ◆➠♠ ✷✵✶✽ ❚❘×❮◆● ✣❸■ ❍➴❈ ❙× P❍❸▼ ❍⑨ ◆❐■ ✷ ❑❍❖❆ ❚❖⑩◆ ✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯ ◆●➷ ❚❍➚ ◆❍❯◆● ❈❻❯ ❚❘Ó❈ ▼➷✣❯◆ ❚❘➊◆ ❱⑨◆❍ ●■❆❖ ❍❖⑩◆ ❑❍➶❆ ▲❯❾◆ ❚➮❚ P số ữớ ữợ ❦❤♦❛ ❤å❝✿ ❚✳❙ ◆●❯❨➍◆ ❚❍➚ ❑■➋❯ ◆●❆ ❍➔ ◆ë✐ ✕ ◆➠♠ ✷✵✶✽ ▼ö❝ ❧ö❝ ✶ ❑✐➳♥ t❤ù❝ ❝❤✉➞♥ ❜à ✶✳✶ ▼ỉ✤✉♥✱ ♠ỉ✤✉♥ ❝♦♥✱ ♠ỉ✤✉♥ t❤÷ì♥❣ ✳ ✳ ✶✳✶✳✶ ▼ỉ✤✉♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✳✶✳✷ ▼æ✤✉♥ ❝♦♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✳✶✳✸ ▼ỉ✤✉♥ t❤÷ì♥❣ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✳✷ ❚ê♥❣ trü❝ t✐➳♣✱ t➼❝❤ trü❝ t✐➳♣ ❝→❝ ♠æ✤✉♥ ✶✳✷✳✶ ❚➼❝❤ trü❝ t✐➳♣ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✳✷✳✷ ❚ê♥❣ trü❝ t✐➳♣ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ỗ ổ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✳✸✳✶ ✣à♥❤ ♥❣❤➽❛ ✈➔ ✈➼ ❞ö ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✳✸✳✷ ❚➼♥❤ ❝❤➜t ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✳✹ ❉➣② ❦❤ỵ♣ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✳✹✳✶ ❉➣② ❦❤ỵ♣✱ ❞➣② ❦❤ỵ♣ ♥❣➢♥ ✳ ✳ ✳ ✳ ✶✳✹✳✷ ❉➣② ❦❤ỵ♣ ❝❤➫ r❛ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✳✺ ❍➔♠ tû✱ ❤➔♠ tû ❍♦♠✱ ❤➔♠ tû ❦❤ỵ♣ ✳ ✳ ✳ ✶✳✺✳✶ ❍➔♠ tû ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✳✺✳✷ ❍➔♠ tû ❍♦♠ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✳✺✳✸ ❍➔♠ tû ❦❤ỵ♣ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✐ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✺ ✺ ✺ ✼ ✾ ✶✵ ✶✵ ✶✵ ✶✷ ✶✷ ✶✹ ✶✼ ✶✼ ✶✾ ✷✶ ✷✶ ✷✷ ✷✸ ◆❣æ ❚❤à ◆❤✉♥❣ ❑❤â❛ ❧✉➟♥ tèt ♥❣❤✐➺♣ ✣↕✐ ❤å❝ ✷ ❈➜✉ tró❝ ♠ỉ✤✉♥ tr➯♥ ✈➔♥❤ ❣✐❛♦ ❤♦→♥ ✷✳✶ ▼æ✤✉♥ ◆♦❡t❤❡r ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✳✶✳✶ ✣✐♥❤ ♥❣❤➽❛ ✈➔ ✤✐➲✉ ❦✐➺♥ t÷ì♥❣ ✤÷ì♥❣ ỵ ỡ s rt ✳ ✳ ✳ ✳ ✳ ✷✳✶✳✸ ❚➼♥❤ ❝❤➜t ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✳✷ ▼æ✤✉♥ ❆rt✐♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✳✷✳✶ ✣à♥❤ ♥❣❤➽❛ ✈➔ ✤✐➲✉ ❦✐➺♥ t÷ì♥❣ ✤÷ì♥❣ ✷✳✷✳✷ ❚➼♥❤ ❝❤➜t ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✳✸ ▼æ✤✉♥ tü ❞♦ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✳✸✳✶ ✣à♥❤ ♥❣❤➽❛ ✈➔ ✈➼ ❞ö ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✳✸✳✷ ❚➼♥❤ ❝❤➜t ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✳✹ ▼æ✤✉♥ ♥ë✐ ①↕ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✳✹✳✶ ✣à♥❤ ♥❣❤➽❛ ✈➔ ✈➼ ❞ö ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✳✹✳✷ ✣✐➲✉ ❦✐➺♥ t÷ì♥❣ ✤÷ì♥❣ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✳✹✳✸ ❚➼♥❤ ❝❤➜t ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✳✺ ▼æ✤✉♥ ①↕ ↔♥❤ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✳✺✳✶ ✣à♥❤ ♥❣❤➽❛ ✈➔ ✈➼ ❞ö ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✳✺✳✷ ❚➼♥❤ ❝❤➜t ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✳✻ ❇➔✐ t➟♣ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ❚➔✐ ❧✐➺✉ t❤❛♠ ❦❤↔♦ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✹ ✷✹ ✷✹ ✷✼ ✸✵ ✸✹ ✸✹ ✸✻ ✹✶ ✹✶ ✹✷ ✹✻ ✹✻ ✹✼ ✹✾ ✺✸ ✺✹ ✺✺ ✻✵ ✻✼ ✐✐ ◆❣æ ❚❤à ◆❤✉♥❣ ❑❤â❛ ❧✉➟♥ tèt ♥❣❤✐➺♣ ✣↕✐ ❤å❝ ▲í✐ ❝↔♠ ì♥ ❚r♦♥❣ q✉→ tr➻♥❤ ♥❣❤✐➯♥ ❝ù✉ ✈➔ t❤ü❝ ❤✐➺♥ ✤➲ t➔✐ ✧ ❈➜✉ tró❝ ♠ỉ✤✉♥ tr➯♥ ✈➔♥❤ ❣✐❛♦ ❤♦→♥✧✱ ♥❣♦➔✐ sü ❝è ❣➢♥❣ ❝õ❛ ❜↔♥ t ỏ ữủ sỹ ữợ t➟♥ t➻♥❤ ❝õ❛ ❝æ ❣✐→♦✱ ❚✳❙ ◆❣✉②➵♥ ❚❤à ❑✐➲✉ ◆❣❛ ✈➔ sü õ♥❣ ❤ë✱ ❣✐ó♣ ✤ï ❝õ❛ t❤➛② ❝ỉ ❝ơ♥❣ ♥❤÷ ❝→❝ ❜↕♥ s✐♥❤ ✈✐➯♥ tr♦♥❣ ❦❤♦❛ ❚♦→♥✳ ❊♠ ①✐♥ ữủ tọ ỏ t ỡ ợ ổ ❣✐→♦✱ ❚✳❙ ◆❣✉②➵♥ ❚❤à ❑✐➲✉ ◆❣❛ ✲ ♥❣÷í✐ ✤➣ trü❝ t ữợ ự t ổ ✤➣ ❝❤➾ ❞↕② ❡♠ r➜t ♥❤✐➲✉ ❦✐➳♥ t❤ù❝ ✈➔ ❦✐♥❤ qỵ ự ụ ①✐♥ ❝↔♠ ì♥ ❝→❝ t❤➛② ❝ỉ ✈➔ ❝→❝ ❜↕♥ s✐♥❤ ✈✐➯♥ ❦❤♦❛ ❚♦→♥ tr÷í♥❣ ✣↕✐ ❤å❝ s÷ ♣❤↕♠ ❍➔ ◆ë✐ ✷✳ ❉♦ ♥❤ú♥❣ ❤↕♥ ❝❤➳ ✈➲ t❤í✐ ❣✐❛♥ ✈➔ ♥➠♥❣ ❧ü❝ ❝õ❛ ❜↔♥ t❤➙♥ ♥➯♥ ❦❤â❛ ❧✉➟♥ ✈➝♥ ❝á♥ ♥❤✐➲✉ t❤✐➳✉ sât✳ ❊♠ ❦➼♥❤ ♠♦♥❣ ♥❤➟♥ ✤÷đ❝ sü q✉❛♥ t➙♠✱ õ ỵ t ổ õ ❧✉➟♥ ❝õ❛ ❡♠ ✤÷đ❝ ❤♦➔♥ t❤✐➺♥ ❤ì♥✳ ❊♠ ①✐♥ ❝❤➙♥ t❤➔♥❤ ❝↔♠ ì♥✦ ❍➔ ◆ë✐✱ t❤→♥❣ ✺ ♥➠♠ ✷✵✶✽ ❙✐♥❤ ✈✐➯♥ ◆❣æ ❚❤à ◆❤✉♥❣ ✶ ◆❣æ ❚❤à ◆❤✉♥❣ ❑❤â❛ ❧✉➟♥ tèt ♥❣❤✐➺♣ ✣↕✐ ❤å❝ ▲í✐ ❝❛♠ ✤♦❛♥ ❊♠ ①✐♥ ❝❛♠ ✤♦❛♥ ❦❤â❛ ❧✉➟♥✿ ✧ ❈➜✉ tró❝ ♠ỉ✤✉♥ tr➯♥ ✈➔♥❤ ❣✐❛♦ ❤♦→♥✧ ❧➔ ❦➳t q✉↔ ❡♠ tü ♥❣❤✐➯♥ ❝ù✉ ✈➔ ❤♦➔♥ t ợ sỹ ữợ ổ ❚❤à ❑✐➲✉ ◆❣❛✱ ❝â t❤❛♠ ❦❤↔♦ ♠ët sè t➔✐ ❧✐➺✉ ð ♠ö❝ ✧❚➔✐ ❧✐➺✉ t❤❛♠ ❦❤↔♦✧✳ ❑❤â❛ ❧✉➟♥ ❝õ❛ ❡♠ ❦❤ỉ♥❣ trò♥❣ ✈ỵ✐ ❦➳t q✉↔ ♥❣❤✐➯♥ ❝ù✉ ❝õ❛ ❜➜t ❦➻ t→❝ ❣✐↔ ♥➔♦✳ ❊♠ ①✐♥ ❤♦➔♥ t♦➔♥ ❝❤à✉ tr→❝❤ ♥❤✐➺♠✳ ❍➔ ◆ë✐✱ t❤→♥❣ ✺ ♥➠♠ ✷✵✶✽ ❙✐♥❤ ✈✐➯♥ ◆❣æ ❚❤à ◆❤✉♥❣ ✷ ◆❣æ ❚❤à ◆❤✉♥❣ ❑❤â❛ ❧✉➟♥ tèt ♥❣❤✐➺♣ ✣↕✐ ❤å❝ ▲í✐ ♠ð ✤➛✉ ✣↕✐ sè ❧➔ ♠ët ♥❣➔♥❤ ✤â♥❣ ✈❛✐ trá q✉❛♥ trå♥❣ tr♦♥❣ t♦→♥ ❤å❝✳ ◆❣➔② ♥❛②✱ ♥❤✉ ❝➛✉ ♥❣❤✐➯♥ ❝ù✉ ✤↕✐ sè ❝õ❛ ❝♦♥ ♥❣÷í✐ ♥❣➔② ❝➔♥❣ t➠♥❣ ✈➔ ✤➸ ✤✐ s➙✉ ✈➔♦ ♥❣❤✐➯♥ ❝ù✉ ♠æ♥ ✣↕✐ sè t❤➻ ❝❤ó♥❣ t❛ ❝➛♥ tr❛♥❣ ❜à ❝❤♦ ♠➻♥❤ sü ❤✐➸✉ ❜✐➳t ♠ët ❝→❝❤ s➙✉ s➢❝ ✈➲ ❝➜✉ tró❝ ✤↕✐ sè✳▼ỉ✤✉♥ ❧➔ ♠ët tr♦♥❣ ♥❤ú♥❣ ✤è✐ t÷đ♥❣ ❝❤õ ②➳✉ ❝õ❛ ❝➜✉ tró❝ ✤↕✐ sè ✈➔ ❧➔ ✤è✐ t÷đ♥❣ q✉❛♥ trå♥❣ ♥❤➜t ❝õ❛ ✣↕✐ sè ❤✐➺♥ ✤↕✐✳ ❱➻ ❧➼ ❞♦ ✤â✱ ũ ợ ố ữủ s t rã ❤ì♥ ♥❤ú♥❣ ♥❣➔♥❤ ❤✐➺♥ ✤↕✐ ❝õ❛ ✤↕✐ sè ♥❤÷ số ỗ số ♠↕♥❤ ❞↕♥ ❝❤å♥ ✤➲ t➔✐✿ ✧❈➜✉ tró❝ ♠ỉ✤✉♥ tr➯♥ ✈➔♥❤ ❣✐❛♦ ❤♦→♥✧ ❧➔♠ ✤➲ t➔✐ ♥❣❤✐➯♥ ❝ù✉ ❦❤â❛ ❧✉➟♥ ❝õ❛ ♠➻♥❤✳ ❑❤â❛ ❧✉➟♥ ❝õ❛ ❡♠ tr➻♥❤ ❜➔② ♥❤ú♥❣ ❝ì sð ✈➲ ❝➜✉ tró❝ ❝õ❛ ♠ët sè ❧ỵ♣ ♠ỉ✤✉♥ q✉❛♥ trå♥❣ tr♦♥❣ ✤↕✐ sè ♥❤÷ ♠ỉ✤✉♥ ◆♦❡t❤❡r✱ ♠ỉ✤✉♥ ❆rt✐♥✱ ♠ỉ✤✉♥ tü ❞♦✱ ♠æ✤✉♥ ♥ë✐ ①↕ ✈➔ ♠æ✤✉♥ ①↕ ↔♥❤✳ ◆ë✐ ❞✉♥❣ õ ỗ ữỡ ữỡ tự ❜à✳ ❈❤÷ì♥❣ ♥➔② tr➻♥❤ ✈➔② ♥❤ú♥❣ ❦❤→✐ ♥✐➺♠ ✈➔ t➼♥❤ ❝❤➜t ❝ì ❜↔♥ ❝➛♥ ❝❤✉➞♥ ❜à ✈➲ ♠ỉ✤✉♥ ♥❤÷✿ ♠ỉ✤✉♥ ❝♦♥✱ ♠ỉ✤✉♥ t❤÷ì♥❣✱ tê♥❣ trü❝ t✐➳♣✱ t➼❝❤ trü❝ t✐➳♣ ❝õ❛ ổ ỗ ổ ợ ữ ❦❤ỵ♣✱ ❞➣② ❦❤ỵ♣ ♥❣➢♥✱ ❞➣② ❦❤ỵ♣ ❝❤➫ r❛❀ ✈➲ ❤➔♠ tỷ ữ tỷ tỷ tỷ ợ ❈❤÷ì♥❣ ✷✿ ❈➜✉ tró❝ ♠ỉ✤✉♥ tr➯♥ ✈➔♥❤ ❣✐❛♦ ❤♦→♥✳ ◆ë✐ ❞✉♥❣ ❝❤÷ì♥❣ ♥➔② ♥â✐ ✈➲ ♥❤ú♥❣ ❦❤→✐ ♥✐➺♠ ✈➔ t➼♥❤ ❝❤➜t ❝ì ❜↔♥ ❝õ❛ ♠ỉ✤✉♥ ◆♦❡t❤❡r✱ ♠ỉ✤✉♥ ❆rt✐♥✱ ♠ỉ✤✉♥ tü ❞♦✱ ♠æ✤✉♥ ♥ë✐ ①↕ ✈➔ ♠æ✤✉♥ ①↕ ↔♥❤ ✈➔ ♠ët sè ❜➔✐ t➟♣ ù♥❣ ❞ư♥❣✳ ✸ ◆❣ỉ ❚❤à ◆❤✉♥❣ ❑❤â❛ ❧✉➟♥ tèt ♥❣❤✐➺♣ ✣↕✐ ❤å❝ ❉♦ t❤í✐ ❣✐❛♥ ❝â ❤↕♥ ✈➔ ♥➠♥❣ ❧ü❝ ♥❣❤✐➯♥ ❝ù✉ ❝õ❛ ❜↔♥ t❤➙♥ ❝á♥ ❤↕♥ ❝❤➳ ♥➯♥ ❦❤â❛ ❧✉➟♥ ❦❤æ♥❣ tr→♥❤ ❦❤ä✐ ♥❤ú♥❣ t❤✐➳✉ sât✳ ữủ sỹ õ ỵ t ổ ✈➔ ❝→❝ ❜↕♥ ✤➸ ❦❤â❛ ❧✉➟♥ ❝õ❛ ❡♠ ✤÷đ❝ ❤♦➔♥ t❤✐➺♥ ❤ì♥✳ ❊♠ ①✐♥ ❝❤➙♥ t❤➔♥❤ ❝↔♠ ì♥✦ ✹ ❈❤÷ì♥❣ ✶ ❑✐➳♥ t❤ù❝ ❝❤✉➞♥ ❜à ✶✳✶ ▼æ✤✉♥✱ ♠æ✤✉♥ ❝♦♥✱ ♠æ✤✉♥ t❤÷ì♥❣ ✶✳✶✳✶ ▼ỉ✤✉♥ ❛✮ ✣à♥❤ ♥❣❤➽❛ ❈❤♦ R ❧➔ ✈➔♥❤ ❝â ✤ì♥ ✈à 1✳ ▼ët ♠ỉ✤✉♥ tr→✐ tr➯♥ R ✭R✲♠ỉ✤✉♥ tr→✐✮ ❧➔ ♠ët ♥❤â♠ ❝ë♥❣ ❆❜❡❧ M ❝ò♥❣ ✈ỵ✐ →♥❤ RìM M (, x) x ữủ t ổ ữợ s s tọ ♠➣♥✳ ∀α, β ∈ R, ∀x, y ∈ M • (αβ)x = α(βx) • α(x + y) = αx + αy (α + β)x = αx + βx • 1x = x ✺ ◆❣æ ❚❤à ◆❤✉♥❣ ❑❤â❛ ❧✉➟♥ tèt ♥❣❤✐➺♣ ✣↕✐ ❤å❝ ❚÷ì♥❣ tü✱ t❛ ✤à♥❤ ♥❣❤➽❛ R✲♠ỉ✤✉♥ ♣❤↔✐ ❧➔ ♠ët ♥❤â♠ ❝ë♥❣ ❆❜❡❧ M ❝ò♥❣ ✈ỵ✐ →♥❤ ①↕✿ M ×R→M (x, α) → xα t❤ä❛ ♠➣♥ ❝→❝ ✤✐➲✉ ❦✐➺♥ t÷ì♥❣ tü ♥❤÷ tr➯♥ ♥❤÷♥❣ ❝→❝ ♣❤➛♥ tû ❝õ❛ R ✈✐➳t ð ❜➯♥ ♣❤↔✐✳ ◆➳✉ R ❧➔ ✈➔♥❤ ❣✐❛♦ ❤♦→♥ t❤➻ ♠ỉ✤✉♥ tr→✐ ✈➔ ♠ỉ✤✉♥ ♣❤↔✐ ❧➔ ♥❤÷ ♥❤❛✉✳ ❙❛✉ ✤➙②✱ ❝❤➾ ①➨t ❝→❝ R✲♠ỉ✤✉♥ tr→✐✱ ✈➔ ❣å✐ ❝❤ó♥❣ ❧➔ ❝→❝ R✲♠ỉ✤✉♥✳ ❜✮ ❱➼ ❞ư ❱➼ ❞ư ✶✳✶✳ ▼é✐ ♥❤â♠ ❆❜❡❧ ❝ë♥❣ M ❧➔ ♠ët Z ♠ỉ✤✉♥✳ ❱➼ ❞ư ✶✳✷✳ ❈❤♦ ❘✲✈➔♥❤ ❝â ✤ì♥ ✈à t❤➻ R ❧➔ R✲♠ỉ✤✉♥✳ ❘✲✈➔♥❤ ❝â ✤ì♥ ✈à 1✱ Rn = {(a1; ; an)|ai ∈ R tr➯♥ Rn ①→❝ ✤à♥❤ ❤❛✐ ♣❤➨♣ t♦→♥✿ ❱➼ ❞ư ✶✳✸✳ ∀i = 1, n} • P❤➨♣ ❝ë♥❣✿ (a1, , an) + (b1, , bn) = (a1 + b1, , an + bn) P ổ ữợ (a1, , an) = (αa1, , αan)✱ ∀α ∈ R t❤➻ Rn ❧➔ R✲♠ỉ✤✉♥✳ ❱➼ ❞ư ✶✳✹✳ ▼é✐ ✐✤➯❛♥ tr→✐ ❝õ❛ R ❧➔ ♠ët R✲♠æ✤✉♥✳ ✣➦❝ ❜✐➺t✱ ♠é✐ ✐✤➯❛♥ ❝õ❛ ✈➔♥❤ R ❧➔ ♠ët R✲♠ỉ✤✉♥✳ ❱➼ ❞ư ✶✳✺✳ ▼é✐ ❦❤ỉ♥❣ ❣✐❛♥ ✈➨❝tì tr➯♥ tr÷í♥❣ K ❧➔ ♠ët ❑✲♠ỉ✤✉♥✳ ❈❤♦ ❘✲✈➔♥❤✱ M ❧➔ R✲♠æ✤✉♥✱ ❳ ❧➔ t➟♣ ❦❤→❝ ré♥❣ ❜➜t ❦➻✳ ✣➦t A = {f : X −→ M }✱ tr➯♥ ❆ ①→❝ ✤à♥❤ ❤❛✐ ♣❤➨♣ t♦→♥✿ ❱➼ ❞ư ✶✳✻✳ ✻ ◆❣ỉ ❚❤à ◆❤✉♥❣ ❑❤â❛ ❧✉➟♥ tèt ♥❣❤✐➺♣ ✣↕✐ ❤å❝ ◆❤➻♥ tø ❦❤➼❛ ❝↕♥❤ ♣❤↕♠ trò✱ ❦❤✐ ✤➣ ❝â ❦❤→✐ ♥✐➺♠ ♠ỉ✤✉♥ ♥ë✐ ①↕ t❤➻ ❝ơ♥❣ s➩ ❝â ❦❤→✐ ♥✐➺♠ t÷ì♥❣ tü ♥❤÷ t❤➳ tr♦♥❣ ♣❤↕♠ trò ✤è✐ ♥❣➝✉ ❝õ❛ ♣❤↕♠ trò MR ❝→❝ R✲♠ỉ✤✉♥✳ ❚✉② ♥❤✐➯♥ ♠➣✐ ✤➳♥ ♥➠♠ ✶✾✺✻ ♥❣÷í✐ t ợ ữ r ố õ ♥â ✤÷đ❝ ❣å✐ ❧➔ ♠ỉ✤✉♥ ①↕ ↔♥❤✳ ✷✳✺✳✶ ✣à♥❤ ♥❣❤➽❛ ✈➔ ✈➼ ❞ư ❛✮ ✣à♥❤ ♥❣❤➽❛ ♠ỉ✤✉♥ M ✤÷đ❝ ❣å✐ ổ ợ Rỗ g : P −→ N ✈➔ ♠å✐ R✲t♦➔♥ ❝➜✉ f : M N Rổ s tỗ t ỗ ❝➜✉ h : P −→ M s❛♦ ❝❤♦ g = f.h tự ỗ s R õ ỗ ữủ ❝õ❛ ❣ t❤❡♦ ❢✳ ❜✮ ❱➼ ❞ư ▼é✐ ♠ỉ✤✉♥ tü ❞♦ ❧➔ ♠ët ♠æ✤✉♥ ①↕ ↔♥❤✳ ❚❤➟t ✈➟②✱ ❣✐↔ ①û P ❧➔ ♠æ✤✉♥ tü ❞♦✳ ❈❤♦ f : M −→ N ❧➔ t♦➔♥ ❝➜✉ ✈➔ g : P −→ N ỗ ự tỗ t ỗ ❝➜✉ h : P −→ N s❛♦ ❝❤♦ g = f.h✳ ●å✐ A ⊂ P ❧➔ ❝ì sð ❝õ❛ ♠ỉ✤✉♥ tü ❞♦ P ✳ ❱➻ f ❧➔ t♦➔♥ ❝➜✉ ♥➯♥ ợ a A tỗ t h(a) f −1 (g(a)) = ∅✳ ◆❤÷ ✈➟② t❛ ❝â →♥❤ ①↕ h : A → M ✱ ✺✹ ◆❣æ ❚❤à ◆❤✉♥❣ ❑❤â❛ ❧✉➟♥ tèt ♥❣❤✐➺♣ ✣↕✐ ❤å❝ →♥❤ ①↕ ♥➔② ❝â t rở tợ ỗ tr P t❤✉➟♥ t✐➺♥ t❛ ❝ô♥❣ ❦➼ ❤✐➺✉ h : P → B ✳ ✣➸ ❝❤ù♥❣ ♠✐♥❤ g = f.h t❛ ❝❤➾ ❝➛♥ ❦✐➸♠ tr❛ ✤➥♥❣ t❤ù❝ ✤ó♥❣ tr➯♥ ❤➺ s✐♥❤ A ❝õ❛ P ✳ ❍✐➸♥ ♥❤✐➯♥ ❧➔ ✈ỵ✐ ♠å✐ a ∈ A✱ ❞♦ h(a) ∈ f −1(g(a)) ♥➯♥ (f.h)(a) = g(a)✳ ❱➟② P ❧➔ ♠æ✤✉♥ ①↕ ↔♥❤✳ ✷✳✺✳✷ ❚➼♥❤ ❝❤➜t ❚➼♥❤ ❝❤➜t ✷✳✷✹✳ ✭✣✐➲✉ ❦✐➺♥ t÷ì♥❣ ✤÷ì♥❣✮ ❈❤♦ R✲♠ỉ✤✉♥ P ✳ ❈→❝ ✤✐➲✉ ❦✐➺♥ s❛✉ t÷ì♥❣ ✤÷ì♥❣ (i) P (ii) ❧➔ R✲♠ỉ✤✉♥ ①↕ ↔♥❤✳ ▼å✐ ❞➣② ❦❤ỵ♣ ♥❣➢♥ −→ N −→ M −→ P −→ ❝→❝ R✲♠æ✤✉♥ ✤➲✉ ❝❤➫ r❛✳ (iii) R✲♠ỉ✤✉♥ P tü ❞♦✳ ✤➥♥❣ ❝➜✉ ✈ỵ✐ ♠ët ❤↕♥❣ tû trü❝ t✐➳♣ ❝õ❛ ♠ët R✲♠æ✤✉♥ ❈❤ù♥❣ ♠✐♥❤✳ (i) =⇒ (ii)✮ ❈❤♦ P ❞➣② ❦❤ỵ♣ ♥❣➢♥ ❝→❝ R✲♠ỉ✤✉♥✳ f ❧➔ R✲♠æ✤✉♥ ①↕ ↔♥❤✳ ❑❤✐ ✤â t❛ ❝â g −→ N → − M→ − P −→ ❳➨t ỗ ổ õ tốt ✣↕✐ ❤å❝ ✈ỵ✐ i = idP ✳ ❚❤❡♦ ✤à♥❤ ♥❣❤➽❛ ổ tỗ t ởt Rỗ ổ h : P −→ M s❛♦ ❝❤♦ i = g.h✳ ❱➻ ✈➟② ❞➣② ❦❤ỵ♣ ♥❣➢♥ ✤➣ ❝❤➫ r❛✳ (ii) =⇒ (iii)✮ sỷ t õ ii õ tỗ t ởt R✲♠æ✤✉♥ tü ❞♦ E ✈➔ ♠ët R✲t♦➔♥ ❝➜✉ ♠æ✤✉♥ g : E −→ P ✳ ✣➦t Kerg = N ✈➔ f : N E Rỗ ú ✤â t❛ ❝â ❞➣② ❦❤ỵ♣ ♥❣➢♥ ❝→❝ R✲♠ỉ✤✉♥✳ f g −→ N → − E→ − P −→ ợ r t ii õ tỗ t ởt Rỗ ổ h : P E t❤ä❛ ♠➣♥ g.h = idP ✈➔ E = Imh ⊕ Kerg ✳ ❘ã r➔♥❣ h ❧➔ ♠ët ✤ì♥ ❝➜✉✳ ❉♦ ✤â P ∼ = Imh ❧➔ ♠ët ❤↕♥❣ tû trü❝ t✐➳♣ ❝õ❛ ❊✳ ✭iii✮ =⇒ ✭i✮✮ ❚❛ ❝❤➾ r❛ r➡♥❣ ♠é✐ ❤↕♥❣ tû trü❝ t✐➳♣ P ❝õ❛ ♠ët ♠æ✤✉♥ ①↕ ↔♥❤ Q ❧↕✐ ❧➔ ①↕ ↔♥❤✳ ❚❤➟t ✈➟②✱ ❦➼ ❤✐➺✉ j : P −→ Q ❧➔ t➔♥ ❝➜✉ tü ♥❤✐➯♥ ✈➔ p : Q −→ P ❧➔ ✤ì♥ ❝➜✉ tü õ p.j = idP t ỗ ✺✻ ◆❣æ ❚❤à ◆❤✉♥❣ ❑❤â❛ ❧✉➟♥ tèt ♥❣❤✐➺♣ ✣↕✐ ❤å❝ ợ ỏ ữợ ợ Q ổ tỗ t h : Q M ❝õ❛ →♥❤ ①↕ g.p : Q −→ N t❤❡♦ f : M −→ N ✱ tù❝ f.h = g.p✳ ❚❛ ✤à♥❤ ♥❣❤➽❛ →♥❤ ①↕ h : P −→ M ✈ỵ✐ h = h j ✳ ❙✉② r❛ f.h = f.h j = g.p.j = g.idP = g ❉♦ ✤â P ❧➔ ①↕ ↔♥❤✳ ❚➼♥❤ ❝❤➜t ✷✳✷✺✳ ❈❤♦ ❤å ❝→❝ R✲♠æ✤✉♥ (Pi )i∈I ✳ ❚ê♥❣ trü❝ t✐➳♣ ⊕i∈I Pi ❧➔ ♠æ✤✉♥ ①↕ ↔♥❤ ♥➳✉ ✈➔ ❝❤➾ ♥➳✉ Pi ❧➔ ♠æ✤✉♥ ①↕ ↔♥❤ ✈ỵ✐ ∀i ∈ I ✳ ❈❤ù♥❣ ♠✐♥❤✳ =⇒✮ ✣➦t P = ⊕i∈I Pi✱ qi : P −→ Pi ❧➔ ✤ì♥ ❝➜✉ ❝❤➼♥❤ ❧➔ t♦➔♥ ❝➜✉ ❝❤➼♥❤ t➢❝✱ ✈ỵ✐ ♠å✐ i ∈ I ✱ ①→❝ ✤à♥❤ ❜ð✐ t➢❝ ✈➔ ji : Pi −→ P tê♥❣ trü❝ t✐➳♣ P ✳ ●✐↔ sû P ❧➔ ♠æ✤✉♥ ①↕ ↔♥❤✱ t❛ s➩ ❝❤➾ r❛ Pi✱ ∀i ∈ I ❧➔ ❝→❝ ♠æ✤✉♥ ①↕ ↔♥❤✳ ❚❤➟t ✈➟②✱ ❝❤♦ f : N −→ M ❧➔ R✲✤ì♥ g : N Pi Rỗ ❱➻ P ❧➔ ♠æ✤✉♥ ①↕ ↔♥❤ ✈➔ j.g : N P Rỗ tỗ t ởt rë♥❣ h : M −→ P ❝õ❛ j.g ✤➸ ji.g = h.f ✳ ❚❛ ✤➦t k = qi.h : M Pi ởt Rỗ õ qi.ji = idP ✱ ❞♦ ✤â k.f = qi h.f = qi ji g = g ❙✉② r❛ Pi✱ ∀i ∈ I ❧➔ ❝→❝ R✲♠æ✤✉♥ ①↕ ↔♥❤✳ ⇐=✮ ●✐↔ sû Pi ✱ ∀i ∈ I ❧➔ ❝→❝ R✲♠æ✤✉♥ ①↕ ↔♥❤✳ ❈❤♦ f : N −→ M ❧➔ t♦➔♥ ❝➜✉ ✈➔ ϕ : N P ỗ ỗ t rở i : M Pi ỗ qi. : N Pi ỹ ỗ : M −→ P ✱ ψ(x) = (ψi(x))i∈I ✱ ∀x ∈ M ✳ ❘ã ✺✼ ◆❣æ ❚❤à ◆❤✉♥❣ ❑❤â❛ ❧✉➟♥ tèt r ỗ ợ ♠å✐ z ∈ N t❛ ❝â✿ ψ.f (z) = (ψi (f (z)))i∈I = (qi (ϕ(z)))i∈I = ϕ(z) ❱➟② P ❧➔ ♠ỉ✤✉♥ ①↕ ↔♥❤✳ ❚➼♥❤ ❝❤➜t ✷✳✷✻✳ ✣à♥❤ ❧➼ ❝ì sð ✤è✐ ♥❣➝✉✳ ▼ët ❘✲♠æ✤✉♥ P ❧➔ ❘✲♠æ✤✉♥ ①↕ ↔♥❤ ♥➳✉ tỗ t ỳ (ai )iI ∈ P ✱ i ∈ I ✈➔ (fi )i∈I tr♦♥❣ HomR (P, R) s❛♦ ❝❤♦ t❤ä❛ ♠➣♥ ❤❛✐ ✤✐➲✉ ❦✐➺♥ s❛✉ ✤➙②✿ ✭✐✮ ◆➳✉ a ∈ P t❤➻ fi(a) = ❤➛✉ ❤➳t ✈ỵ✐ ♠å✐ i ∈ I ✳ ✭✐✐✮ a = i∈I fi (a)ai ✱ ∀a ∈ P ✳ ❈❤ù♥❣ ♠✐♥❤✳ ⇒✮ ❈❤♦ R✲♠æ✤✉♥ ①↕ ↔♥❤ P ✈➔ g : E −→ P ❧➔ ♠ët R✲t♦➔♥ ❝➜✉✱ tr♦♥❣ ✤â E ❧➔ R✲♠ỉ✤✉♥ tü ❞♦ ✈ỵ✐ ❝ì sð (ei )i∈I ✳ ❚❛ ❝â ❞➣② ❦❤ỵ♣ ♥❣➢♥✿ g −→ Kerg −→ E → − P −→ ❧➔ ❝❤➫ r r tỗ t Rỗ f : P −→ E t❤ä❛ ♠➣♥ g.f = idP ✳ ❱ỵ✐ ♠å✐ a ∈ P t❤➻ f (a) ∈ E ❧✉æ♥ ❝â ❞✉② ♥❤➜t ♠ët ❦❤❛✐ tr✐➸♥ ❤ú✉ ❤↕♥✿ f (a) = fi(a) ei , i∈I tù❝ ❧➔ ❝❤➾ ❝â ❤ú✉ ❤↕♥ ♣❤➛♥ tû i ∈ I ✤➸ fi(a) = 0✳ ❑❤✐ ✤â rã r➔♥❣ ♣❤➨♣ t÷ì♥❣ ù♥❣ fi : P −→ R, fi(a) = fi(a), a P Rỗ t❤ä❛ ♠➣♥ ✤✐➲✉ ❦✐➺♥ ✭i✮ ✈ỵ✐ ♠å✐ i ∈ I ✳ ✺✽ ◆❣æ ❚❤à ◆❤✉♥❣ ❑❤â❛ ❧✉➟♥ tèt ♥❣❤✐➺♣ ✣↕✐ ❤å❝ ✣➦t = g(ei), ∀i ∈ I t❤➻ a = (g.f )(a) = g( fi(a) ei ) = i∈I fi(a) g(ei ) = i∈I fi (a)ai i∈I ❑❤✐ ✤â ❤å (ai)i∈I , ∈ P t❤ä❛ ♠➣♥ ✤✐➲✉ ii ) sỷ tỗ t ỳ (ai )i∈I , ∈ P ✈➔ (fi )i∈I tr♦♥❣ HomR (P, R) t❤ä❛ ♠➣♥ ❝→❝ ✤❦ ✭i✮ ✈➔ ✭ii✮✳ ❳➨t t➟♣ U = (ei)i∈I ✈➔ →♥❤ ①↕ h : U −→ P, h(ei ) = , ∀i ∈ I ✳ ❈❤♦ E ❧➔ ♠ët R✲♠æ✤✉♥ tü ❞♦ tr➯♥ t➟♣ U ✳ ❑❤✐ ✤â✱ t❤❡♦ t➼♥❤ ♣❤ê ❞ư♥❣ ❝õ❛ ♠ỉ✤✉♥ tỹ tỗ t Rỗ g : E P ♠ð rë♥❣ ❝õ❛ h✱ tù❝ ❧➔ s❛♦ ❝❤♦ g(ei) = ai, ∀i ∈ I ✳ ❚❛ ✤à♥❤ ♥❣❤➽❛ →♥❤ ①↕ f : P −→ E, f (a) = i∈I fi(a)ei✱ ✈➻ tê♥❣ ♥➔② ❤ú✉ ❤↕♥ ♥➯♥ f ❤♦➔♥ t♦➔♥ ởt ỗ r (g.f )(a) = g( fi (a)ei ) = i∈I fi (a).ai = a, ∀a ∈ P fi (a).g(ei ) = i∈I i∈I tù❝ ❧➔ g.f = idP ✳ ❉♦ ✤â ❞➣② ❦❤ỵ♣ ♥❣➢♥ g −→ kerg −→ F → − P ←→ ❝❤➫ r❛✳ ◆❤÷ ✈➟② P ✤➥♥❣ ❝➜✉ ✈ỵ✐ ♠ët ❤↕♥❣ tû trü❝ t✐➳♣ ❝õ❛ R✲♠ỉ✤✉♥ tü ❞♦ E ✳ ❙✉② r❛ P ❧➔ R✲♠æ✤✉♥ ①↕ ↔♥❤✳ ❈❤♦ R ởt ợ M trữớ t❤÷ì♥❣ ❝õ❛ R ✈➔ = A ❧➔ ♠ët ✐✤➯❛♥ ❝õ❛ R✳ ❈→❝ ♠➺♥❤ ✤➲ s❛✉ ❧➔ t÷ì♥❣ ✤÷ì♥❣✿ ❚➼♥❤ ❝❤➜t ✷✳✷✼✳ (i) A ❧➔ ♠æ✤✉♥ ①↕ ↔♥❤ ✺✾ ◆❣æ õ tốt (ii) ỗ t↕✐ ❤ú✉ ❤↕♥ ❝→❝ ♣❤➛♥ tû a1, , an ∈ A ✈➔ m1, , mn ∈ M s❛♦ ❝❤♦ miA ⊆ R, ∀i = 1, , n ✈➔ ni=1 aimi = 1✳ ■✤➯❛♥ A t❤ä❛ ♠➣♥ ✤✐➲✉ ❦✐➺♥ (ii) ✤÷đ❝ ❣å✐ ❧➔ ✐✤➯❛♥ ❦❤↔ ♥❣❤à❝❤✳ ❈❤ù♥❣ ♠✐♥❤✳ (i) ⇒ (ii)✮ ●✐↔ sû A ❧➔ R✲ ♠æ✤✉♥ ①↕ ↔♥❤✳ ❙✉② r❛ tỗ t ỳ (fi)iI tr HomR(A, R) s ❝❤♦ ✈ỵ✐ ♠å✐ a ∈ A, fi (a) = ❤➛✉ ❤➳t ✈ỵ✐ ♠å✐ i ∈ I ✈➔ a = i∈I fi (a)ai ✳ ❈❤å♥ = b ∈ A✳ õ tỗ t số i1, , in ♣❤➙♥ ❜✐➺t tr♦♥❣ A ✤➸ b = nk=1 fk (b)aik ✳ ✣➦t ak = aik , mk = fk (b)/b, k = 1, , n ❙✉② r❛ = nk=1 ak mk tũ ỵ x J t (ai )i∈I , ∈ A, i ∈ I xmk = x(fk (b)/b) = (xfk (b))/b = (bfk (x))/b = fk (x) ∈ R; ∀k = 1, , n ❙✉② r❛ mk A ∈ R, ∀k = 1, , n✱ tù❝ ❧➔ A ❧➔ ✐✤➯❛♥ ❦❤↔ ♥❣❤à❝❤✳ (ii) ⇒ (i)✮ ●✐↔ sû A t❤ä❛ ♠➣♥ ✤✐➲✉ ❦✐➺♥ ✭ii✮✳ ❚❛ ①→❝ ✤à♥❤ ❤å →♥❤ ①↕ fk : A −→ R, k = 1, , n, fk (x) = mk x, x ∈ A ❱➻ x ∈ A ♥➯♥ mk x ∈ R✱ tø ✤â ❝→❝ fk ❤♦➔♥ t♦➔♥ ✤÷đ❝ ①→❝ ✤à♥❤ ú ỏ Rỗ õ ợ tỷ tũ ỵ x J t õ x = nk=1 ak mk x = nk=1 ak fk (x) ❙✉② r❛ A ❧➔ ♠æ✤✉♥ ①↕ ↔♥❤✳ ✷✳✻ ❇➔✐ t➟♣ ❇➔✐ ✶✳✿ ❈❤♦ M ❧➔ ♠ët R✲♠æ✤✉♥✳ ❈❤ù♥❣ ♠✐♥❤ ♥➳✉ M1 ✈➔ M2 ❧➔ ❝→❝ ♠æ✤✉♥ ❝♦♥ ❝õ❛ ♠æ✤✉♥ M s❛♦ ❝❤♦ M/M1, M/M2 ❧➔ ❝→❝ ♠æ✤✉♥ ✻✵ ◆❣æ ❚❤à ◆❤✉♥❣ ❑❤â❛ ❧✉➟♥ tèt ♥❣❤✐➺♣ ✣↕✐ ❤å❝ ❆rt✐♥✭◆♦❡t❤❡r✮ t❤➻ M/(M1 M2) ụ ổ rttr t ỗ ❝➜✉ f :M → M/M1 × M/M2 x → (x + M1 , x + M2 ) ❑❤✐ ✤â f (M ) ∼ = M/Kerf ✳ ✰✮ ●✐↔ sû M/M1✱M/M2 ❧➔ ❝→❝ ♠æ✤✉♥ ◆♦❡t❤❡r✳ ❚❛ ❝â f ❧➔ t♦➔♥ ❝➜✉✱ s✉② r❛ M/M1 × M/M2 ∼ = M/Kerf ✳ ❱➻ M/M1 ✱M/M2 ❧➔ ❝→❝ ♠æ✤✉♥ ◆♦❡t❤❡r ♥➯♥ M/Kerf ❧➔ ♠æ✤✉♥ ◆♦❡t❤❡r✳ ▲↕✐ ❝â    x∈M      = x∈M   Kerf = : :   x + M1 = M1 ,     x + M2 = M2     x ∈ M1 ,     x ∈ M2   = M1 ∩ M2 s✉② r❛ M/(M1 ∩ M2) ❧➔ ♠æ✤✉♥ ◆♦❡t❤❡r✳ ✰✮ ●✐↔ sû M/M1✱M/M2❧➔ ❝→❝ ♠æ✤✉♥ ❆rt✐♥✳ ❑❤✐ ✤â f (M ) ∼ = M/Kerg ✳ ▼➔ M/M1✱M/M2 ❧➔ ❝→❝ ♠æ✤✉♥ ❆rt✐♥ s✉② r❛ M/Kerf ❧➔ ♠ỉ✤✉♥ ❆rt✐♥✳ ❚÷ì♥❣ tü t❛ ❝â Kerf = M1 ∩ M2✳ ❙✉② r❛ M/(M1 ∩ M2) ❧➔ ♠æ✤✉♥ ❆rt✐♥✳ m ❇➔✐ ✷✳✿ ❈❤♦ p ❧➔ sè ♥❣✉②➯♥ tè✳ ✣➦t Qp = { i /m ∈ Z, ∀i ∈ N}✳ ❈❤ù♥❣ p ✻✶ ◆❣æ ❚❤à ◆❤✉♥❣ ❑❤â❛ ❧✉➟♥ tèt ♥❣❤✐➺♣ ✣↕✐ ❤å❝ ♠✐♥❤ Z✲♠æ✤✉♥ Qp/Z = { m + Z : m ∈ Z, ∀i ∈ N} ❧➔ ♠ỉ✤✉♥ ❆rt✐♥ pi ♥❤÷♥❣ ❦❤ỉ♥❣ ❧➔ ♠ỉ✤✉♥ ◆♦❡t❤❡r✳ ●✐↔✐ ✰✮ ❈❤ù♥❣ ♠✐♥❤ Qp/Z ❦❤æ♥❣ ❧➔ ♠æ✤✉♥ ◆♦❡t❤❡r✳ 0⊂ +Z p ⊂ +Z p2 ⊂ ⊂ +Z pn ⊂ ✭✷✳✷✮ ❧➔ ❞➣② t➠♥❣ ❦❤æ♥❣ ❞ø♥❣ ❝→❝ ♠æ✤✉♥ ❝♦♥ ❝õ❛ Qp/Z✳ ❚❤➟t ✈➟②✱ t❛ ❝â ∀x ∈ + Z t❤➻ p ap a + Z = + Z = ap + Z ∈ p p p s✉② r❛ p1 + Z ⊆ p12 + Z ✳ ▼➔ p1i − ♥➯♥ p1i + Z = pi+1 +Z ✳ x= + Z ✱ a ∈ Z ✭❞♦ ap ∈ Z✮ p2 p−1 = ∈ /Z pi+1 pi + ❱➟② ❞➣② ✭✷✳✷✮ ❧➔ ❞➣② t➠♥❣ ❦❤æ♥❣ ❞ø♥❣✳ ❉♦ ✤â Qp/Z ❦❤æ♥❣ ❧➔ ổ tr ự Qp/Z ổ rt rữợ ❤➳t t❛ ❝❤ù♥❣ ♠✐♥❤ r➡♥❣ ♥➳✉ (a, p) = 1✱ a ∈ Z t❤➻ a +Z pi = +Z pi ❚❤➟t ✈➟② ✈➻ (a, p) = ♥➯♥ (a, pi) = ỗ t am am m, n ∈ Z ✤➸ am + pi n = 1✳ ❙✉② r❛ n = = − ∈ Z✳ pi pi pi ❙✉② r❛ p1i + Z = am + Z✳ pi ❱ỵ✐ ♠å✐ x ∈ a +Z pi t❤➻ ✻✷ ◆❣æ ❚❤à ◆❤✉♥❣ ❑❤â❛ ❧✉➟♥ tèt ♥❣❤✐➺♣ ✣↕✐ ❤å❝ ka 1 + Z = ka + Z ∈ + Z ✱ k ∈ Z ✭❞♦ pi pi pi a ka ∈ Z✮ s✉② r❛ + Z +Z pi pi ữủ ợ z p1i + Z t❛ ❝â am a a z = l i +Z = l + Z = lm i + Z ∈ +Z ✱ l ∈ Z i p p p pi ✭❞♦ lm ∈ Z✮✳ ❙✉② r❛ p1i + Z ⊂ pai + Z ❱➟② pai + Z = p1i + Z ✳ ❈❤ù♥❣ ♠✐♥❤ ♠å✐ ♠æ✤✉♥ ❝♦♥ t❤ü❝ sü tr♦♥❣ Qp/Z ❧➔ ♠ët tr♦♥❣ ❝→❝ x=k a +Z pi = ♠æ✤✉♥ ❝♦♥ tr♦♥❣ ❞➣② ✭✷✳✷✮✳ ●✐↔ sû M ❧➔ ♠ët ♠æ✤✉♥ ❝♦♥ t❤ü❝ sü ❝õ❛ Qp/Z (0 = M = Qp/Z) t❤➻ a + Z ✱ i ∈ N ✳ ❚❤➟t ✈➟②✱ ✈ỵ✐ ♠å✐ x ∈ M t❤➻ x = + Z✳ M= pi pi ∗ ◆➳✉ Z ∈ (a, p) = 1 +Z pi t❤➻ a +Z pi ✳ ❙✉② r❛ M ⊂ = +Z pi +Z pi ✳ ❙✉② r❛ x = a + pi ✳ ❚❤❡♦ ❝❤ù♥❣ ♠✐♥❤ tr➯♥ t❤➻ 1 + Z ⊂ M ✳ ❱➟② M = +Z pi pi ✳ ∗ ◆➳✉ (a, p) = t❤➻ (a, p) = p ✭❞♦ p ♥❣✉②➯♥ tè✮✳ ❙✉② r❛ a✳p t↕✐ a1 ∈ Z, a = a1p✳ ❑❤✐ ✤â pai + Z = ap1ip + Z = pai−11 = Z ❚❛ ①➨t a1✳ a1 ∗ ◆➳✉ (a1 , p) = t❤➻ + Z = + Z✳ pi−1 pi−1 ✳ ∗ ◆➳✉ (a1 , p) = t a1 p tỗ t a2 Z a1 = a2 p õ tỗ t a2 tữỡ tỹ ữ a1 ự t tử ữ ố ợ a3, a4, , an ỳ ữợ t õ (an , p) = 1✳ ❉♦ ✈➟② M = + Z ✱ n ∈ N✳ ❙✉② r❛ ♠å✐ ❞➣② ❣✐↔♠ ❝→❝ pn ♠æ✤✉♥ ❝♦♥ ❝õ❛ Qp/Z ✤➲✉ ❞ø♥❣✳ ❱➟② Qp/Z ❧➔ ♠æ✤✉♥ ❆rt✐♥✳ ✻✸ ◆❣æ ❚❤à ◆❤✉♥❣ ❑❤â❛ ❧✉➟♥ tèt ♥❣❤✐➺♣ ✣↕✐ ❤å❝ ❇➔✐ ✸✳ ❈❤ù♥❣ ♠✐♥❤ r➡♥❣ ❞➣② ❦❤ỵ♣ ❝→❝ R✲♠ỉ✤✉♥ −→ M −→ M −→ M −→ ❧➔ ❞➣② ❦❤ỵ♣ ❝❤➫ r❛ ♥➳✉ M ❧➔ ♠✤✉♥ tü ❞♦✳ ●✐↔✐ ●✐↔ sû t❛ ❝â ❞➣② ❦❤ỵ♣ ♥❣➢♥ f g −→ M → − M→ − M −→ tr♦♥❣ ✤â M ❧➔ ♠æ✤✉♥ tü ❞♦ ợ ỡ s (xi)iI õ tỗ t yi ∈ M ✤➸ g(yi) = xi✱ i ∈ I ✳ t Rỗ h M M h(xi) = yi✳ ❉♦ M ❧➔ ♠ỉ✤✉♥ tü ❞♦ ♥➯♥ ✈ỵ✐ ♠å✐ x ∈ M ✱ ri xi , ri ∈ R, i = 1, n x= i∈I t❛ ❝â gh(x) = ri gh(xi ) = i∈I ri g(yi ) = i∈I ri xi = x i∈I ❉♦ ✤â gh = idM ✳ ❱➟② ❞➣② ❦❤ỵ♣ ✤➣ ❝❤♦ ❝❤➫ r❛ ✭t❤❡♦ t➼♥❤ ❝❤➜t ✶✳✶✷ ❝❤÷ì♥❣ ✶✮ ❇➔✐ ✹✳ ❈❤♦ m, n ∈ N∗ , (m, n) = 1✳ ❈❤ù♥❣ ♠✐♥❤ r➡♥❣ Zm ❧➔ ♠ët Zmn ✲♠ỉ✤✉♥ ①↕ ↔♥❤ ♥❤÷♥❣ ❦❤ỉ♥❣ ❧➔ ♠ỉ✤✉♥ tü ❞♦✳ ●✐↔✐ ✰ ❱➻ (m, n) = ♥➯♥ t❛ ❝â Zmn ∼ = Zm ⊕ Zn ✳ ❚❤➟t ✈➟②✱ ①➨t t÷ì♥❣ ✻✹ ◆❣ỉ ❚❤à ◆❤✉♥❣ ❑❤â❛ ❧✉➟♥ tèt ♥❣❤✐➺♣ ✣↕✐ ❤å❝ ù♥❣✿ f : Zm ⊕ Zn → Zmn (x, y) → mx + ny ❉➵ t❤➜② f ởt ỗ sỷ f (x, y) = 0✳ ❑❤✐ ✤â (mx + ny)✳✳mn✳ ❙✉② r❛ (mx + ny)✳✳m✱ (mx + ny)✳✳n✳ ❉♦ ✤â mx✳✳n✱ ny✳✳m✳ ❱➟② (x, y) = 0✱ ❤❛② f ❧➔ ✤ì♥ ❝➜✉✳ ▲➜② z ∈ Zmn✳ ❱➻ (m, n) = ♥➯♥ ♣❤÷ì♥❣ tr➻♥❤ mx + ny = ❝â ♥❣❤✐➺♠ ♥❣✉②➯♥ (x0, y0)✳ ❑❤✐ ✤â f (zx0, zy0) = z✳ ❱➟② f ❧➔ t♦➔♥ ❝➜✉✳ ❙✉② r❛ f ❧➔ ✤➥♥❣ ❝➜✉✳ ✰ ❚ø Zmn ∼ = Zm ⊕ Zn s✉② r❛ Zm ✤➥♥❣ ❝➜✉ ✈ỵ✐ ♠ët ❤↕♥❣ tû trü❝ t✐➳♣ ❝õ❛ Zmn✲♠ỉ✤✉♥ tü ❞♦ Zmn✳ ❙✉② r❛ Zm ❧➔ ♠ët Zmn✲♠æ✤✉♥ ①↕ ↔♥❤✳ ✰ ❱➻ m.a = ma = 0, ∀a ∈ Zm ♥➯♥ ♠å✐ ♣❤➛♥ t❤û ❝õ❛ Zm ✤➲✉ ♣❤ö t❤✉ë❝ t✉②➳♥ t➼♥❤✳ ❉♦ ✤â Zm ❧➔ ♠ët Zmn✲♠ỉ✤✉♥ ①↕ ↔♥❤ ♥❤÷♥❣ ❦❤æ♥❣ ❧➔ ♠æ✤✉♥ tü ❞♦✳ ❇➔✐ ✺✳ ❈❤ù♥❣ ♠✐♥❤ r➡♥❣ ♠ët ♥❤â♠ ❆❜❡❧ B ❧➔ ❝❤✐❛ ✤÷đ❝ ❦❤✐ ✈➔ ❝❤➾ ❦❤✐ B ❧➔ ♠ët Z✲♠æ✤✉♥ ♥ë✐ ①↕✳ ●✐↔✐ ⇒✮ ❈❤♦ B ❧➔ ♠ët ♥❤â♠ ❆❜❡❧ ❝❤✐❛ ✤÷đ❝✳ ⑩♣ ❞ư♥❣ t✐➯✉ ❝❤✉➞♥ ❇❡❛r t❛ s➩ ❝❤ù♥❣ ♠✐♥❤ B ❧➔ ♠ët Z✲♠æ✤✉♥ ♥ë✐ ①↕✳ ❚❤➟t ✈➟t✱ ❣å✐ J ❧➔ ♠ët ✐❞❡❛❧ ❝õ❛ Z t❤➻ J = nZ, n ∈ Z✳ ●✐↔ sû õ ỗ g : nZ B ỹ ỗ f : Z B ❧➔ ♠ð rë♥❣ ❝õ❛ g✳ ◆➳✉ n = t❤➻ t õ g ỗ ổ õ f ỗ ổ t ró r f ỗ rở g sỷ n = 0✳ ❱➻ g(n) ∈ B ✈➔ B ❝❤✐❛ ✤÷đ❝ ♥➯♥ tỗ t c B : g(n) = nc ✤➦t f (a) = ac, a ∈ Z t❤➻ f : Z B ỗ ổ ◆❤✉♥❣ ❑❤â❛ ❧✉➟♥ tèt ♥❣❤✐➺♣ ✣↕✐ ❤å❝ ❉♦ f (na) = (na)c = a(nc) = ag(n) = g(na), ∀a ∈ Z ♥➯♥ f ❧➔ ♠ð rë♥❣ ❝õ❛ g✱ tù❝ ❧➔ ỗ s B ởt Zổ ♥ë✐ ①↕✳ ⇐✮ ●✐↔ sû B ❧➔ ♠ët Z✲♠æ✤✉♥ ♥ë✐ ①↕ ✈➔ b ∈ B ✳ ❱ỵ✐ ❜➜t ❦➻ = n ∈ Z✱ ①➨t ✤ì♥ ❝➜✉ ❝❤➼♥❤ t➢❝ i : nZ Z ỗ g : nZ −→ B ①→❝ ✤à♥❤ ❜ð✐ g(n) = b ✭tù❝ ❧➔ g(nm) = mb, m ∈ Z✮✳ ❉♦ B ♥ë✐ ①↕ tỗ t ỗ f : Z B ❧➔ ♠ð rë♥❣ ❝õ❛ g ✳ ❚❛ ❝â b = g(n) = f (n) = nf (1)✳ ✣➦t d = f (1) ∈ B t❛ ✤÷đ❝ b = nd✳ ❱➟② B ❧➔ ♠ët ♥❤â♠ ❆❜❡❧ ❝❤✐❛ ✤÷đ❝✳ ❇➔✐ ✻✳ ❈❤ù♥❣ ♠✐♥❤ r➡♥❣ ♠ët R✲♠ỉ✤✉♥ M ❝â ❞➣② ❤đ♣ t❤➔♥❤ ♥➳✉ ✈➔ ❝❤➾ ♥➳✉ M ❧➔ R✲♠ỉ✤✉♥ ◆♦❡t❤❡r ✈➔ ❝ơ♥❣ ❧➔ R✲♠æ✤✉♥ ❆rt✐♥✳ ❇➔✐ ✼✳ ❈❤ù♥❣ ♠✐♥❤ r➡♥❣ tê♥❣ ❤♦➦❝ t➼❝❤ trü❝ t✐➳♣ ❝õ❛ ♠ët ❤å ❝→❝ R✲♠ỉ✤✉♥ ❝❤✐❛ ✤÷đ❝ ❧↕✐ ❧➔ R✲♠ỉ✤✉♥ ❝❤✐❛ ✤÷đ❝✳ ❇➔✐ ✽✳ ❈❤♦ R✲♠ỉ✤✉♥ ①↕ ↔♥❤ P ự r ổ tỗ t R ổ tü ❞♦ M t❤ä❛ ♠➣♥ M ∼ M =P ✻✻ ◆❣æ ❚❤à ◆❤✉♥❣ ❑❤â❛ ❧✉➟♥ tèt ♥❣❤✐➺♣ ✣↕✐ ❤å❝ ❑➳t ▲✉➟♥ ▲➼ t❤✉②➳t ♠æ✤✉♥ ❧➔ ♠ët ❧➼ t❤✉②➳t r➜t q✉❛♥ trå♥❣ tr♦♥❣ ✣↕✐ sè ❤✐➺♥ ✤↕✐✳ ❱✐➺❝ ♥❣❤✐➯♥ ❝ù✉ ✈➲ ❧➼ t❤✉②➳t ♠ỉ✤✉♥ ❝✉♥❣ ❝➜♣ ❝❤♦ ❝❤ó♥❣ t❛ ❝→✐ ♥❤➻♥ tê♥❣ q✉→t ✈➲ ❝➜✉ tró❝ ✤↕✐ sè✳ ❇➯♥ ❝↕♥❤ ✤â✱ ♠ët sè ❦➳t q✉↔ ❝õ❛ ♣❤➛♥ ♥➔② ❝❤♦ ❝❤ó♥❣ t❛ ♥❤✐➲✉ ù♥❣ ❞ö♥❣ tr♦♥❣ ❝→❝ ♥❣➔♥❤ ❦❤→❝ ❝õ❛ t♦→♥ ❤å❝✳ ❑❤â❛ ❧✉➟♥ ❝õ❛ ❡♠ t➟♣ tr✉♥❣ ♥❣❤✐➯♥ ❝ù✉ ♥❤ú♥❣ ❝ì sð ✈➲ ❝➜✉ tró❝ ❝õ❛ ♠ët sè ❧ỵ♣ ♠ỉ✤✉♥ q✉❛♥ trå♥❣ tr➯♥ ✈➔♥❤ ❣✐❛♦ ❤♦→♥ ♥❤÷ ♠ỉ✤✉♥ ◆♦❡t❤❡r✱ ♠ỉ✤✉♥ ❆rt✐♥✱ ♠æ✤✉♥ tü ❞♦✱ ♠æ✤✉♥ ♥ë✐ ①↕ ✈➔ ♠æ✤✉♥ ①↕ ↔♥❤✳ ❱➻ t❤í✐ ❣✐❛♥ ❝❤✉➞♥ ❜à ❝❤÷❛ ♥❤✐➲✉ ✈➔ ♥➠♥❣ ❧ü❝ ❜↔♥ t❤➙♥ ❝á♥ ❤↕♥ ❝❤➳ ♥➯♥ ❦❤â❛ ❧✉➟♥ ❦❤æ♥❣ tr→♥❤ ❦❤ä✐ ♥❤ú♥❣ t❤✐➳✉ sât✳ ❡♠ ❦➼♥❤ ♠♦♥❣ ♥❤➟♥ ✤÷đ❝ sü q t õ ỵ t ổ ✤➸ ❦❤♦→ ❧✉➟♥ ✤÷đ❝ ❤♦➔♥ t❤✐➺♥ ❤ì♥✳ ❊♠ ①✐♥ ❝❤➙♥ t❤➔♥❤ ❝↔♠ ì♥✦ ❍➔ ◆ë✐✱ t❤→♥❣ ✺ ♥➠♠ ✷✵✶✽ ❙✐♥❤ ✈✐➯♥ ◆❣æ ❚❤à ◆❤✉♥❣ ✻✼ ❚➔✐ ❧✐➺✉ t❤❛♠ ❦❤↔♦ ❬✶❪ ◆❣✉②➵♥ ❚ü ❈÷í♥❣✱ ●✐→♦ tr➻♥❤ ✣↕✐ sè ❤✐➺♥ ✤↕✐✱ ◆❳❇ ✣↕✐ ❤å❝ ◗✉è❝ ❣✐❛ ❍➔ ◆ë✐✱ ✷✵✵✸✳ ❬✷❪ ❉÷ì♥❣ ◗✉è❝ ❱✐➺t✱ ❈ì sð ✣↕✐ sè ❤✐➺♥ ✤↕✐✱ ◆❳❇ ✣↕✐ ❤å❝ ❙÷ ♣❤↕♠✳ ❬✸❪ ❉÷ì♥❣ ◗✉è❝ ❱✐➺t✱ ❈ì sð ▲➼ t❤✉②➳t ♠ỉ✤✉♥✱ ◆❳❇ ✣↕✐ ❤å❝ ❙÷ ♣❤↕♠✱ ✷✵✵✽✳ ❬✹❪ ❘✳❏✳❙❤❛r♣✱ ❙t❡♣ ✐♥ ❈♦♠♠✉t❛t✐✈❡ ❆❧❣❡❜r❛✱ ❙❡❝♦♥❞ ❡❞✐✲t✐♦♥✱ ❈❛♠❜✳❯♥✐✈✳Pr❡ss✳ ✷✵✵✵✳ ✻✽

Ngày đăng: 25/09/2019, 10:46

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w