BÀI GIẢNG TOÁN 11 HÀM SỐ LIÊN TỤC HÀM SỐ LIÊN TỤC I Hàm số liên tục điểm a) Định nghĩa1: Cho h/s y=f(x) x/đ khoảng k x 0k H/s y= f(x) đgl liên tục điểm x : lim x � x0 f ( x ) f ( x0 ) Nếu y= f(x) khơng liên tục điểm x gọi gián đoạn x b) Ví dụ: Ví dụ Ví dụ Ví dụ II Hàm số liên tục khoảng a) Định nghĩa 2: Hs y= f(x) x/đ (a;b) gọi liên tục khoảng đó, liên tục điểm khoảng Hs y= f(x) x/đ [a;b] gọi liên tục đọan đó, liên tục (a;b) lim f ( x) f (a ) va�lim f ( x) f (b) x �a x �b b) Nhận xét : Đt hs: y=f(x) l/tục khoảng đường liền khoảng Hướng dẫn nhà: -Học thuộc k/n hàm số liên tục điểm, khoảng, đoạn -Đọc trước phần III -BTVN:1,2(140_141) Sơ đồ Củng cố x2 Ví dụ 1: Xét tính liên tục hs: y=f(x)= x 0=1 x 3 Giải: D= R/{3} Ta có : f (1) x2 lim f ( x ) lim x �1 x x �1 � lim f ( x) f (1) x �1 Vậy hs : y=f(x) liên tục x0=1 Ví dụ 2: Xét tính liên tục hs: �x ne� u x �1 � f ( x) �x � -2 ne� u x1 � Giải: D= R ta có : f (1) 2 x2 1 ( x 1)( x 1) lim f ( x) lim lim lim( x 1) x �1 x �1 x x �1 x �1 x 1 lim f ( x) x �1 f (1) Kết luận: hs f(x) cho gián đoạn x0=1 Tại x0=1 Ví dụ 3: Xét tính liên tục hs: � x ne� u x0 f ( x) � x ne� u x �0 � Giải: D= R Ta có: và: f(0)=0 lim f ( x) lim x x �0 x �0 lim f ( x) lim ( x 1) x �0 � x �0 không tồn lim f ( x ) x �0 Theo định nghĩa ta suy ra: f(x) gián đoạn x0=0 Tại x0=0 Ví dụ 4: Cho hàm số: � 2x x � f ( x) � x2 � a � ne� u x �2 Tìm a để hàm số f(x) liên tục x0=2 ne� u x Giải: Ta có: f(2)=a 2x x ( x x 7)( x x 7) lim f ( x) lim lim x �2 x �2 x �2 x2 ( x 2)( x x 7) (2 x 5) ( x 7) x2 lim lim x �2 ( x 2)( x x 7) x �2 ( x 2)( x x 7) 1 lim x �2 2x x Để f(x) liên tục x0 ta phải chọn a= Bắt đầu Sơ đồ xét tính liên tục hs y= f(x) điểm x f(x0) f ( x) xlim �x x � x0 lim f ( x) f ( x0 ) y= f(x) lt x0 y= f(x) gđ x0 Kết thúc HÀM SỐ LIÊN TỤC I Hàm số liên tục điểm a) Định nghĩa1: Cho h/s y=f(x) x/đ khoảng k x 0k H/s y= f(x) đgl liên tục điểm x : lim x � x0 f ( x ) f ( x0 ) Nếu y= f(x) không liên tục điểm x gọi gián đoạn x b) Ví dụ: Ví dụ Ví dụ Ví dụ II Hàm số liên tục khoảng a) Định nghĩa 2: Hs y= f(x) x/đ (a;b) gọi liên tục khoảng đó, liên tục điểm khoảng Hs y= f(x) x/đ [a;b] gọi liên tục đọan đó, liên tục (a;b) lim f ( x) f (a ) va�lim f ( x) f (b) x �a x �b b) Nhận xét : Đt hs: y=f(x) l/tục khoảng đường liền khoảng Hướng dẫn nhà: -Học thuộc k/n hàm số liên tục điểm, khoảng, đoạn -Đọc trước phần III -BTVN:1,2(140_141) Sơ đồ Củng cố ...HÀM SỐ LIÊN TỤC I Hàm số liên tục điểm a) Định nghĩa1: Cho h/s y=f(x) x/đ khoảng k x 0k H/s y= f(x) đgl liên tục điểm x : lim x � x0 f ( x ) f ( x0 ) Nếu y= f(x) không liên tục điểm... dụ Ví dụ Ví dụ II Hàm số liên tục khoảng a) Định nghĩa 2: Hs y= f(x) x/đ (a;b) gọi liên tục khoảng đó, liên tục điểm khoảng Hs y= f(x) x/đ [a;b] gọi liên tục đọan đó, liên tục (a;b) lim f ( x)... dụ Ví dụ Ví dụ II Hàm số liên tục khoảng a) Định nghĩa 2: Hs y= f(x) x/đ (a;b) gọi liên tục khoảng đó, liên tục điểm khoảng Hs y= f(x) x/đ [a;b] gọi liên tục đọan đó, liên tục (a;b) lim f ( x)