Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 15 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
15
Dung lượng
209,28 KB
Nội dung
1/1 GV: Nguyễn Hữu Phúc 0888.014.879 PHÒNG GIÁO DỤC VÀ ĐÀO TẠO ĐỀ KIỂM TRA KHẢO SÁT CHẤT LƯỢNG QUẬN LONG BIÊN MƠN: TỐN Ngày kiểm tra: 9/5/2019 ĐỀ CHÍNH THỨC Thời gian làm bài: 120 phút Bài (2,0 điểm) Cho biểu thức: A = a −4 a +2 a B = a a −2 + a −1 a +2 − 5a + a −4 (ĐKXĐ: a > 0, a ≠ ) 1) Tính giá trị biểu thức A a = 16 2) Rút gọn biểu thức B 3) Tìm số hữu tỉ a để biểu thức P = A.B có giá trị nguyên Bài (2,0 điểm) Giải tốn sau cách lập phương trình hệ phương trình: Theo kế hoạch, hai tổ sản xuất giao làm 800 sản phẩm Nhờ tăng suất lao động tổ làm vượt mức 10% tổ làm vượt mức 20% so với kế hoạch tổ nên hai tổ làm 910 sản phẩm Tính số sản phẩm thực tế tổ làm Bài (2,0 điểm) −1 − = x +7 y −6 1) Giải hệ phương trình sau: 11 + = x +7 y −6 2) Cho parabol (P ) : y = x đường thẳng d : y = 2x − + m ( x ẩn, m tham số) a) Xác định m để đường thẳng d cắt parabol (P ) hai điểm phân biệt A B https://chiasefull.com https://youtube.com/nguyenhuuphuc2017 2/1 GV: Nguyễn Hữu Phúc 0888.014.879 b) Gọi y1 y2 tung độ hai điểm A B mặt phẳng tọa độ Oxy Tìm m cho y1 − y2 = Bài (3,5 điểm) Cho tam giác ABC có góc nhọn nội tiếp đường tròn (O; R) , tia phân giác BAC cắt BC D , cắt (O ) E , vẽ DK vng góc với AB K DM vng góc với AC M a) Chứng minh tứ giác AKDM nội tiếp b) Chứng minh: AD.AE = AB.AC c) Chứng minh: MK = AD.sin BAC d) Tính tỉ số diện tích tam giác ABC diện tích tứ giác AKEM Bài (0,5 điểm) Cho hai số thực dương a,b thỏa mãn điều kiện a + b ≥ Tìm giá trị nhỏ biểu thức M = a + b + https://chiasefull.com + 2a b https://youtube.com/nguyenhuuphuc2017 3/1 GV: Nguyễn Hữu Phúc 0888.014.879 HƯỚNG DẪN GIẢI Bài (2,0 điểm) Cho biểu thức: A = a −4 a +2 a B = a a −2 + a −1 a +2 − 5a + a −4 (ĐKXĐ: a > 0, a ≠ ) 1) Tính giá trị biểu thức A a = 16 2) Rút gọn biểu thức B 3) Tìm số hữu tỉ a để biểu thức P = A.B có giá trị ngun Lời giải 1) Tính giá trị biểu thức A a = 16 Thay a = 16 (thỏa mãn điều kiện xác định) vào biểu thức A , ta được: A= a −4 a +2 a A= 12 16 + 2.4 A= 12 16 + A= 12 = 24 = 16 − 16 + 16 https://chiasefull.com https://youtube.com/nguyenhuuphuc2017 4/1 GV: Nguyễn Hữu Phúc 0888.014.879 2) Rút gọn biểu thức B B= B= a a −2 a ( + a −1 a +2 a +2 a −4 )+( − 5a + a −4 a −1 )( a −2 a −4 ) − 5a + a −4 B= 5a + 10 a a − a − a + 5a + + − a −4 a −4 a −4 B= 5a + 10 a a − a + 5a + + − a −4 a −4 a −4 B= 5a + 10 a + a − a + − 5a − a −4 B= a +7 a a −4 https://chiasefull.com https://youtube.com/nguyenhuuphuc2017 5/1 GV: Nguyễn Hữu Phúc 0888.014.879 3) Tìm số hữu tỉ a để biểu thức P = A.B có giá trị nguyên ( ) a + a (a − 4) a + a a +7 a P = A.B = ⋅ = = a −4 a +2 a a + a (a − 4) a + a a −4 P = ( a +2 a +5 a = a +2 a a P =1+ a ( a +2 ) a +2 a a +2 a =1+ + a a +2 a a +2 Vì a > nên a > ⇒ a + > ⇒ ⇒1 0) x +7 Đặt Khi đó, ta có hệ phương trình: = b (b > 0) y −6 a − b = − 5a + 3b = 11 41 41 a = a = 21a − 12b = − 4 ⇔ ⇔ ⇔ 20a + 12b = 11 5a + 3b = 11 5a + 3b = 11 1 1 a = a = a = a = 4 4 (thỏa điều kiện) ⇔ ⇔ ⇔ ⇔ 5 ⋅ + 3b = 11 + 3b = 11 3b = b = 4 Với a = ta có: Với b = ta có: x +7 y −6 = ⇒ x + = ⇒ x + = 16 ⇔ x = = ⇒ y − = ⇒ y − = ⇔ y = 10 Vậy hệ phương trình cho có nghiệm nhất: (x ;y ) = (9;10) https://chiasefull.com https://youtube.com/nguyenhuuphuc2017 8/1 GV: Nguyễn Hữu Phúc 0888.014.879 2) Cho parabol (P ) : y = x đường thẳng d : y = 2x − + m ( x ẩn, m tham số) a) Xác định m để đường thẳng d cắt parabol (P ) hai điểm phân biệt A B b) Gọi y1 y2 tung độ hai điểm A B mặt phẳng tọa độ Oxy Tìm m cho y1 − y2 = Lời giải a) Phương trình hồnh độ giao điểm (P ) d : 2x − + m = x ⇔ x − 2x + − m = (1) ∆ ' = (−1)2 − 1.(3 − m ) = − + m = m − d cắt (P ) hai điểm phân biệt m > ∆' > ⇔ m2 − > ⇔ m2 > ⇔ m < − A(x ;y1 ) ∈ d y1 = 2x − + m ⇔ b) B(x ;y ) ∈ d y = 2x − + m ⇒ y1 − y = 2x − 2x = 2(x − x ) = ⇒ x − x = x + x = Áp dụng hệ thức Viet-te với phương trình (1), ta có: x 1x = −m + x + x = 2x = x = ⇔ ⇔ x − x = x + x = x = −1 Với x = 3; x = −1 x 1x = −m + , ta có: 3.(−1) = −m + ⇔ −3 = −m + ⇔ m = ⇔ m = m = − https://chiasefull.com https://youtube.com/nguyenhuuphuc2017 9/1 GV: Nguyễn Hữu Phúc 0888.014.879 Bài (3,5 điểm) Cho tam giác ABC có góc nhọn nội tiếp đường tròn (O; R) , tia phân giác BAC cắt BC D , cắt (O ) E , vẽ DK vng góc với AB K DM vng góc với AC M a) Chứng minh tứ giác AKDM nội tiếp b) Chứng minh: AD.AE = AB.AC c) Chứng minh: MK = AD.sin BAC d) Tính tỉ số diện tích tam giác ABC diện tích tứ giác AKEM Lời giải a) Chứng minh tứ giác AKDM nội tiếp A O M K B C D E Xét tứ giác AKDM có: AKD = 900 (vì DK ⊥ AB K ) AMD = 900 (vì DM ⊥ AC M ) ⇒ AKD + AMD = 900 + 900 = 1800 Mà AKD;AMD hai góc đối Do đó: Tứ giác AKDM nội tiếp https://chiasefull.com https://youtube.com/nguyenhuuphuc2017 10/ 15 GV: Nguyễn Hữu Phúc 0888.014.879 b) Chứng minh: AD.AE = AB.AC A O M K B C D E Xét ∆ABD ∆AEC có: BAD = EAC (gt ) ABD = AEC (Hai góc nội tiếp chắn AC ) Do đó: ∆ABD ∆AEC (g g ) ⇒ AB AD = AE AC ⇒ AD.AE = AB.AC https://chiasefull.com https://youtube.com/nguyenhuuphuc2017 11/ 15 GV: Nguyễn Hữu Phúc 0888.014.879 c) Chứng minh: MK = AD.sin BAC A F O M K B C D E Kẻ KF ⊥ AC F Xét ∆AKD ∆KFM có: AKD = KFM = 900 ADK = FMK (Hai góc nội tiếp chắn AK ) Do đó: ∆AKD ∆KFM (g g ) ⇒ AK AD = KF KM ⇒ KM = KF AD = AD sin BAC AK https://chiasefull.com https://youtube.com/nguyenhuuphuc2017 12/ 15 GV: Nguyễn Hữu Phúc 0888.014.879 d) Tính tỉ số diện tích tam giác ABC diện tích tứ giác AKEM A F H O M K B C D E Kẻ BH ⊥ AC H Ta có: S ABC = AC BH ⇒ 2S ABC = AC BH Mà BH = AB.sin BAC ⇒ 2S ABC = AC AB sin BAC (1) Xét ∆AKD ∆AMD có: AKD = AMD = 900 KAD = MAD (gt ) AD cạnh chung Do đó: ∆AKD = ∆AMD (cạnh huyền – góc nhọn) ⇒ AK = AM (Hai cạnh tương ứng) ⇒ ∆AKM cân A Mà AD đường phân giác ∆AKM ⇒ AD đường cao ∆AKM ⇒ AD ⊥ KM hay AE ⊥ KM https://chiasefull.com https://youtube.com/nguyenhuuphuc2017 13/ 15 GV: Nguyễn Hữu Phúc 0888.014.879 A F H O M K B C D E S AKEM = AE KM ⇒ 2S AKEM = AE KM ⇒ 2S AKEM = AE AD.sin BAC (vì MK = AD.sin BAC ) ⇒ 2S AKEM = AB AC sin BAC (vì AD.AE = AB.AC ) (2) Từ (1) (2) suy tỉ số diện tích tam giác ABC diện tích tứ giác AKEM https://chiasefull.com https://youtube.com/nguyenhuuphuc2017 14/ 15 GV: Nguyễn Hữu Phúc 0888.014.879 Bài (0,5 điểm) Cho hai số thực dương a,b thỏa mãn điều kiện a + b ≥ Tìm giá trị nhỏ biểu thức M = a + b + + 2a b Lời giải M = a +b + a a b b + = + + + + + 2a b 2 2 2a b a b a b M = + + + + + 2a b 2 a b a +b M = + + + + 2a b a Áp dụng bất đẳng thức Cauchy cho cặp số dương ; , 2a b ; 2 b a a 1 + ≥2 ⋅ =2 = 1; 2a 2a b b + ≥2 ⋅ =2 b b Và a + b ≥ ⇒ a +b ≥ 2 a b a +b ⇒M = + + + + ≥ 1+2+ 2 2a b a b a +b Suy ra: M = + + + + ≥ với a,b thỏa điều kiện 2 a b 2 đề Vậy MinM = a = 1;b = 2 https://chiasefull.com https://youtube.com/nguyenhuuphuc2017 15/ 15 GV: Nguyễn Hữu Phúc https://chiasefull.com 0888.014.879 https://youtube.com/nguyenhuuphuc2017 ... vượt mức tổ là: 10% x Số sản phẩm vượt mức tổ là: 20%y Theo đề bài, ta có phương trình: 110% x + 120%y = 910 (2) x + y = 800 Từ (1) (2), ta có hệ phương trình: 110% x + 120%y = 910 x + y = 800... ⇔ ⇔ 1,1x + 1,2y = 910 11x + 12y = 9100 11x + 12y = 9100 y = 300 y = 300 x = 500 ⇔ ⇔ ⇔ x + y = 800 x + 300 = 800 y = 300 Trong thực tế, tổ làm số sản phẩm là: 110% .500 = 550 (sản phẩm)... 5a + a −4 a −1 )( a −2 a −4 ) − 5a + a −4 B= 5a + 10 a a − a − a + 5a + + − a −4 a −4 a −4 B= 5a + 10 a a − a + 5a + + − a −4 a −4 a −4 B= 5a + 10 a + a − a + − 5a − a −4 B= a +7 a a −4 https://chiasefull.com