Nếu tăng chiều rộng thêm 3 cm và tăng chiều dài tăng thêm 3 cm thì diện tích của hình chữ nhật tăng thêm 48 cm2.. Tính các kích thước của hình chữ nhật ban đầu.. Câu 8: Cho đường tròn tâ
Trang 1TRƯỜNG THCS VĨNH THỊNH
ĐỀ KIỂM TRA HỌC KỲ II NĂM HỌC 2017-2018
MÔN: TOÁN 9 (Thời gian: 90 phút)
I Trắc nghiệm:(2 điểm) Chọn đáp án đúng trong các câu sau
Câu 1: Biết x = 2 là nghiệm của phương trình: mx2 + 2m + 1 = 0 Khi đó m bằng:
A
5
6
B
6
5
C
5
6
D
6
5
Câu 2: Đồ thị hàm số y = -3x2 đi qua điểm C(-1; m) Khi đó m bằng:
A 3 B 6 C -3 D - 6
Câu 3: Hệ phương trình
2
3 3 4
y mx
y x
vô nghiệm khi:
A
3
4
m B
3
4
m C
3
4
m D
3
4
m
Câu 4: Cho tứ giác MNPQ nội tiếp đường tròn (O), biết QMN 3 QPN Khi đó
QPN
bằng:
A 600 B 550 C 500 D 450
II Tự luận: (8 điểm)
Câu 5: Giải hệ phương trình:
6 2 3
2 2
y x
y x
Câu 6: Cho phương trình: x2 – 2mx – 4m – 4 = 0 (1)
a) Giải phương trình (1) với m = - 1
b) Chứng tỏ phương trình (1) có nghiệm với mọi giá trị của m
c) Tìm m để phương trình (1) có 2 nghiệm x1, x2 thỏa mãn: x12 + x22 - x1x2 = 13
Câu 7: Một hình chữ nhật có diện tích bằng 40 cm2 Nếu tăng chiều rộng thêm 3 cm
và tăng chiều dài tăng thêm 3 cm thì diện tích của hình chữ nhật tăng thêm 48 cm2
Tính các kích thước của hình chữ nhật ban đầu
Câu 8: Cho đường tròn tâm O đường kính AB Vẽ dây cung CD vuông góc với AB
tại I (I nằm giữa A và O ) Lấy điểm E trên cung nhỏ BC (E khác B và C), AE cắt CD
tại F Chứng minh:
a) Tứ giác BEFI nội tiếp đường tròn
b) AE.AF = AC2
c) Khi E chạy trên cung nhỏ BC thì tâm đường tròn ngoại tiếp ∆CEF luôn thuộc một đường thẳng cố định
Câu 9: Cho 9 số thực a1,a2,a3,…,a9 không nhỏ hơn -1 và a13 + a23 + a33 +…+ a93 = 0 Tìm giá trị lớn nhất của biểu thức P = a1 + a2 + a3 +…+ a9
Trang 2Ký duyệt của tổ trưởng
Trần Bá Hoành
Trang 3ĐÁP ÁN - THANG ĐIỂM TOÁN 9
I Trắc nghiệm: Mỗi ý đúng 0,5 đ
II Tự luận
Câu 5
6 2 3
2 2
y x
y x
0
2 2
2
8 4
y
x y
x x
Vậy hệ phương trình có nghiệm (x;y)=(2;0)
0.75 0.25 Câu 6
2,5 đ
a)Với m = -1 Ta có phương trình: x2 + 2x = 0x(x 2 ) 0
Phương trình có 2 nghiệm phân biệt x1 =0, x2 = -2
0.75 0.25 b) x2 - 2mx – 4m – 4 = 0 (1)
∆’ = (-m) 2 - 1.(-4m – 4) = m2 + 4m + 4 = (m + 2) 2 ≥ 0 với mọi m
Vậy phương trình (1) luôn luôn có nghiệm với mọi m
0.5
0.25 c) Do phương trình (1) luôn có nghiệm x1;x2 với mọi m, nên
theo hệ thức Viét:
4 4 2
2 1
2 1
m x
x
m x x
Theo bài cho: x12+x22-x1x2 =13
0 13 3
) ( 1 2 2 1 2
x x x x 4m2 + 12m - 1 = 0
m1=
2
10
3
, m2=
2
10
3
Vậy m=
2
10
3
hoặc m=
2
10
3
thì phương trình (1) có 2 nghiệm x1, x2 thỏa mãn x12+x22-x1x2 =13
0.5
0.25 Câu 7
1,5 đ
Gọi các kích thước của hình chữ nhật là x (cm) và y (cm) ( x; y > 0)
Theo bài ra ta có hệ phương trình:
x + 3 y + 3 xy + 48 x + y = 13
Suy ra x, y là hai nghiệm của phương trình: t2–13t + 40= 0 (1)
Giải phương trình (1) ta được hai nghiệm là t1= 8 và t2 = 5
Vậy các kích thước của hình chữ nhật là 8 cm và 5 cm
0.25
0.5
0.5 0.25
Trang 4Câu 8
2,5 đ
F
E
D
C
B A
0.25
a) Tứ giác BEFI có:
90
BIF (gt)
0
90
BEF BEA (góc nội tiếp chắn nửa đường tròn)
Suy ra tứ giác BEFI nội tiếp đường tròn đường kính BF
0.75
b) Vì AB CD nên cung AC = cung AD
suy ra ACF AEC
Xét ∆ACF và ∆AEC có góc A chung và ACF AEC
Suy ra: ∆ACF ~ với ∆AEC AC AE
AF AC
2
AE.AF = AC
0.75
c) Theo câu b) ta có ACF AEC, suy ra AC là tiếp tuyến của đường tròn ngoại tiếp ∆CEF (1)
Mặt khác ACB 90 0(góc nội tiếp chắn nửa đường tròn), suy
ra ACCB (2) Từ (1) và (2) suy ra CB chứa đường kính của đường tròn ngoại tiếp ∆CEF, mà CB cố định nên tâm của đường tròn ngoại tiếp ∆CEF thuộc CB cố định khi E thay đổi trên cung nhỏ BC
0.75
Câu 9
1đ Với x1 ta có x x 0 4x 1 3x
2
1
2
Áp dụng BĐT trên ta có:
3P 4a13a23a33 a93 9 9 P 3
Dấu = xảy ra khi 1 số bằng -1 và 8 số còn lại bằng
2 1
Vậy P max= 3 khi 1 số bằng -1 và 8 số còn lại bằng
2 1
0.5
0.25 0.25