ÔNTHI TỐT NGHIỆP THPT 2009 PHƯƠNG PHÁPTHAMSỐPHỤ Áp dụng cho BDT Côsi Ví dụ 1 : Cho x,y >= 0 thỏa mãn Tìm GTLN của biểu thức : Giải : Đặt Áp dụng BDT Côsi cho 6 số : Cộng vế theo vế : Vậy ta cần xác định a,b thỏa hệ : Từ (2) : thay vào (1) : Thay vào (4) : Ví dụ 2 : Tìm GTNN của hàm số : với Giải : Đặt Áp dụng BDT Côsi : Ta xác định a sao cho : (vì ) Vậy : Xảy ra Ví dụ 3 : Tìm GTLN của hàm số : Giải : Đặt Áp dụng BDT Côsi : Ta cần xác định a sao cho : Vậy : Xảy ra Ví dụ 4 : Tìm GTLN của hàm số : Giải : Đặt (*) Áp dụng BDT Côsi : Ta cần xác định a sao cho : (Do ) Thỏa mãn (3) Thay lại vào (2) : Thay vào (*) : Vậy GTLN của hàm số là 3 . Đạt được khi . Ví dụ 5 : (DH - B 2008) Cho x,y là các số thực thỏa mãn : Tìm GTLN và GTNN của biểu thức : Lời giải : GS k là cực trị của P ta có : Ta cần xác định k sao cho : Vậy : ; Để thuần thục hơn phương pháp này các bạn làm thêm các bài tập sau : BÀI TẬP : 1. Cho các số dương x,y thỏa mãn : Tìm GTNN của biểu thức : 2. Cho a,b là các số dương thỏa mãn : Tìm GTNN của biểu thức : 3. Tìm GLNN của hàm số : 4. Tìm GTNN của hàm số : với 5. Tìm GTLN của hàm số : 6. Tìm GTNN của hàm số : 7. Cho x,y là các số không âm thỏa mãn : Tìm GTLN của biểu thức : . ÔN THI TỐT NGHIỆP THPT 2009 PHƯƠNG PHÁP THAM SỐ PHỤ Áp dụng cho BDT Côsi Ví dụ 1 : Cho x,y >= 0 thỏa. : 3. Tìm GLNN của hàm số : 4. Tìm GTNN của hàm số : với 5. Tìm GTLN của hàm số : 6. Tìm GTNN của hàm số : 7. Cho x,y là các số không âm thỏa mãn : Tìm