1. Trang chủ
  2. » Giáo án - Bài giảng

D05 tiếp tuyến song song muc do 3

5 149 3

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 496,5 KB

Nội dung

Vậy đường thẳng luôn đi qua điểm cố định.. Tiếp tuyến của tại M có phương trình Tiếp tuyến song song với đường thẳng khi và chỉ khi.. Vậy trên có hai điểm thỏa yêu cầu

Trang 1

Câu 39 [1D5-2.5-3] (Chuyên Thái Bình-Thái Bình-L4-2018-BTN) Gọi , là hai điểm di động trên đồ thị của hàm số sao cho tiếp tuyến của tại và luôn song song với nhau Khi đó đường thẳng luôn đi qua điểm cố định nào dưới đây?

Lời giải Chọn D

* Gọi tọa độ điểm , lần lượt là

* Hệ số góc tiếp tuyến của tại và lần lượt là:

* Để tiếp tuyến của tại và luôn song song với nhau điều kiện là:

* Ta có:

* Trung điểm của đoạn là Vậy đường thẳng luôn đi qua điểm cố định

Câu 2259 [1D5-2.5-3] Cho hàm số có đồ thị Trên đồ thị tồn tại bao nhiêu điểm mà tiếp tuyến của tại đó song song với đường thẳng

Lời giải Chọn B

Hàm số xác định với mọi

Ta có:

Gọi Tiếp tuyến của tại M có phương trình

Tiếp tuyến song song với đường thẳng khi và chỉ khi

Vậy trên có hai điểm thỏa yêu cầu bài toán

Câu 2532 [1D5-2.5-3] Cho hàm số có đồ thị Tìm tất cả tọa độ tiếp điểm

của đường thẳng song song với đường thẳng và tiếp xúc với

Trang 2

A B

Lời giải Chọn C

Đường thẳng song song với đường thẳng có dạng

nghiệm kép

Vậy có hai giá trị thỏa mãn nên có hai tiếp tuyến tương ứng với hai tiếp điểm

Câu 2540 [1D5-2.5-3] Phương trình tiếp tuyến với đồ thị hàm số song song với đường

Lời giải Chọn A

+Gọi là tọa độ tiếp điểm

+

+Vì tiếp tuyến song song với đường thẳng suy ra

.

Câu 2552 [1D5-2.5-3] Cho đường cong và điểm thuộc đường cong Điểm

nào sau đây có tiếp tuyến tại điểm đó song song với đường thẳng ?

Lời giải.

Chọn D

Hai đường thẳng song song nếu hệ số góc bằng nhau

Hệ số góc của đường thẳng

Trang 3

Ta có

Câu 2555 [1D5-2.5-3] Cho hàm số , có đồ thị Tiếp tuyến của song song

với đường thẳng là đường thẳng có phương trình:

Lời giải.

Chọn B

Tiếp tuyến của song song với

Vậy PTTT có dạng :

Câu 2557 [1D5-2.5-3] Phương trình tiếp tuyến của : biết nó song song với đường thẳng

Lời giải.

Chọn A

Câu 2566 [1D5-2.5-3] Số tiếp tuyến của đồ thị hàm số , song song với đường thẳng là:

Lời giải.

Chọn D

Do tiếp tuyến song song với có

Vậy có 2 phương trình tiếp tuyến

Trang 4

Câu 2567 [1D5-2.5-3] Phương trình tiếp tuyến của đồ thị hàm số ,

song song với đường thẳng là :

Lời giải.

Chọn A

Tiếp tuyến song song với

Lời giải.

Chọn C

Ta có

Giả sử là tiếp điểm của tiếp tuyến với parabol

Vì tiếp tuyến song song với đường thẳng nên

Phương trình tiếp tuyến là hay

hai câu sau:

(I) Những điểm khác nhau và sao cho tại những điểm đó, tiếp tuyến song

(II)

Chọn câu đúng

A Chỉ (I) B Chỉ (II) C Cả hai đều đúng D Cả hai đều sai.

Lời giải

Trang 5

Chọn C

(I) đúng

(II) đúng

Ngày đăng: 15/02/2019, 14:19

TỪ KHÓA LIÊN QUAN

w