Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 138 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
138
Dung lượng
4,13 MB
Nội dung
TUYỂN TẬP 2000 ĐỀ TUYỂN SINH MƠN TỐN CĨ ĐÁP ÁN TỪ NĂM 2000 TẬP 34 (1651-1700) Success has only one destination, but has a lot of ways to go phone: 0167.858.8250 facebook: https://www.facebook.com/hokhacvuqnam2906 (Hồ K Vũ) TUYỂN TẬP 2.000 ĐỀ THI TUYỂN SINH VÀO LỚP 10 MƠN TỐN TỪ CÁC TỈNH-THÀNH-CÓ ĐÁP ÁN TẬP 34 (1651-1700) Người tổng hợp, sưu tầm : Thầy giáo Hồ Khắc Vũ Thầy giáo: Hồ Khắc Vũ – Giáo viên Toán cấp II-III Gmail: hokhacvuqnam@gmaail.com Khối phố An Hòa -Phường Hòa Thuận – TP Tam Kỳ - Tỉnh Quảng Nam THÀNH CÔNG CÓ DUY NHẤT MỘT ĐIỂM ĐẾN, NHƯNG CÓ RẤT NHIỀU CON ĐƯỜNG ĐỂ ĐI TUYỂN TẬP 2000 ĐỀ TUYỂN SINH MƠN TỐN CĨ ĐÁP ÁN TỪ NĂM 2000 TẬP 34 (1651-1700) Success has only one destination, but has a lot of ways to go phone: 0167.858.8250 facebook: https://www.facebook.com/hokhacvuqnam2906 (Hồ K Vũ) LỜI NĨI ĐẦU Kính thưa q bạn đồng nghiệp dạy mơn Tốn, Q bậc phụ huynh em học sinh, đặc biệt em học sinh lớp thân yêu!! Tôi xin tự giới thiệu, tên Hồ Khắc Vũ , sinh năm 1994 đến từ TP Tam Kỳ - Quảng Nam, học Đại học Sư phạm Tốn, đại học Quảng Nam khóa 2012 tốt nghiệp trường năm 2016 Đối với tôi, mơn Tốn u thích đam mê với từ nhỏ, giành nhiều giải thưởng từ cấp Huyện đến cấp tỉnh tham dự kỳ thi mơn Tốn Mơn Tốn thân tơi, khơng cơng việc, không nghĩa vụ để mưu sinh, mà hết tất cả, niềm đam mê cháy bỏng, cảm hứng bất diệt mà không mỹ từ lột tả Khơng biết tự bao giờ, Toán học người bạn thân tơi, giúp tơi tư cơng việc cách nhạy bén hơn, hết giúp tơi bùng cháy bầu nhiệt huyết tuổi trẻ Khi giải tốn, làm tốn, giúp tơi qn chuyện khơng vui Nhận thấy Tốn mơn học quan trọng , 20 năm trở lại đây, đất nước ta bước vào thời kỳ hội nhập , mơn Tốn ln xuất kỳ thi nói chung, kỳ Tuyển sinh vào lớp 10 nói riêng 63/63 tỉnh thành phố khắp nước Việt Nam Nhưng việc sưu tầm đề cho thầy cô giáo em học sinh ơn luyện mang tính lẻ tẻ, tượng trưng Quan sát qua mạng có vài thầy cô giáo tâm huyết tuyển tập đề, đề tuyển tập không đánh giá cao số lượng chất lượng,trong file đề lẻ tẻ trang mạng sở giáo dục nhiều Từ ngày đầu nghiệp dạy, mơ ước ấp ủ phải làm cho đời, ấp ủ cộng tâm nhiệt huyết tuổi xuân thúc đẩy làm TUYỂN TẬP 2.000 ĐỀ THI TUYỂN SINH 10 VÀ HỌC SINH GIỎI LỚP CỦA CÁC TỈNH – THÀNH PHỐ TỪ NĂM 2000 đến Tập đề tuyển lựa, đầu tư làm kỹ công phu với hy vọng tợi tận tay người học mà không tốn đồng phí Chỉ có lý cá nhân mà người bạn gợi ý cho tơi phải giữ lại cho riêng mình, bỏ cơng sức ngày đêm làm tuyển tập đề Do đó, tơi định gửi cho người file pdf mà không gửi file word đề tránh hình thức chép , quyền hình thức, Có khơng phải mong người thông cảm Cuối lời , xin gửi lời chúc tới em học sinh lớp chuẩn bị thi tuyển sinh, bình tĩnh tự tin giành kết cao Thầy giáo: Hồ Khắc Vũ – Giáo viên Toán cấp II-III Gmail: hokhacvuqnam@gmaail.com Khối phố An Hòa -Phường Hòa Thuận – TP Tam Kỳ - Tỉnh Quảng Nam THÀNH CƠNG CĨ DUY NHẤT MỘT ĐIỂM ĐẾN, NHƯNG CÓ RẤT NHIỀU CON ĐƯỜNG ĐỂ ĐI TUYỂN TẬP 2000 ĐỀ TUYỂN SINH MƠN TỐN CĨ ĐÁP ÁN TỪ NĂM 2000 TẬP 34 (1651-1700) Success has only one destination, but has a lot of ways to go phone: 0167.858.8250 facebook: https://www.facebook.com/hokhacvuqnam2906 (Hồ K Vũ) Xin mượn ảnh facebook lời nhắc nhở, lời khuyên chân thành đến em "MỖI NỖ LỰC, DÙ LÀ NHỎ NHẤT, ĐỀU CÓ Ý NGHĨA MỖI SỰ TỪ BỎ, DÙ MỘT CHÚT THÔI, ĐỀU KHIẾN MỌI THỨ TRỞ NÊN VÔ NGHĨA" Thầy giáo: Hồ Khắc Vũ – Giáo viên Tốn cấp II-III Gmail: hokhacvuqnam@gmaail.com Khối phố An Hòa -Phường Hòa Thuận – TP Tam Kỳ - Tỉnh Quảng Nam THÀNH CƠNG CĨ DUY NHẤT MỘT ĐIỂM ĐẾN, NHƯNG CÓ RẤT NHIỀU CON ĐƯỜNG ĐỂ ĐI TUYỂN TẬP 2000 ĐỀ TUYỂN SINH MƠN TỐN CĨ ĐÁP ÁN TỪ NĂM 2000 TẬP 34 (1651-1700) Success has only one destination, but has a lot of ways to go phone: 0167.858.8250 facebook: https://www.facebook.com/hokhacvuqnam2906 (Hồ K Vũ) ĐỀ 1651 Câu I (2đ) Giải hệ phương trình: 2x 3y 5 3x 4y Câu II (2,5đ) Cho phương trình bậc hai: x2 – 2(m + 1)x + m2 + 3m + = 1) Tìm giá trị m để phương trình ln có hai nghiệm phân biệt 2) Tìm giá trị m thoả mãn x12 + x22 = 12 (trong x1, x2 hai nghiệm phương trình) Câu III (4,5đ) Cho tam giác ABC vuông cân A, cạnh BC lấy điểm M Gọi (O1) đường tròn tâm O1 qua M tiếp xúc với AB B, gọi (O2) đường tròn tâm O2 qua M tiếp xúc với AC C Đường tròn (O1) (O2) cắt D (D không trùng với A) 1) Chứng minh tam giác BCD tam giác vuông 2) Chứng minh O1D tiếp tuyến (O2) 3) BO1 cắt CO2 E Chứng minh điểm A, B, D, E, C nằm đường tròn 4) Xác định vị trí M để O1O2 ngắn Câu IV (1đ) Cho số dương a, b có tổng Tìm giá trị nhỏ biểu thức: a b Hướng dẫn-Đáp số: Câu III: a) BDM + CDM = ABC + ACB = 90o => đpcm b) B = C = 45o => O1BM = O2CM = 45o => O1MO2 = 90o => O1DO2 = 90o =>đpcm c) A, D, E nhìn BC góc vuông d) (O1O2)2 = (O1M)2 + (O2M)2 ≥ MO1.MO2 ; dấu xảy MO1 = MO2 => O1O2 nhỏ MO1 = MO2 => BMO1 = CMO2 => MB = MC Câu IV: Sử dụng đẳng thức x2 – y2 = ( x – y)( x + y) Biến đổi biểu thức thành ab ≤ a b a b A = ( (1 )(1 )(1 )(1 ) ab (a b) = 4/ = => A ≥ , dấu a = b = Vậy AMin = , Thầy giáo: Hồ Khắc Vũ – Giáo viên Toán cấp II-III Gmail: hokhacvuqnam@gmaail.com Khối phố An Hòa -Phường Hòa Thuận – TP Tam Kỳ - Tỉnh Quảng Nam THÀNH CƠNG CĨ DUY NHẤT MỘT ĐIỂM ĐẾN, NHƯNG CÓ RẤT NHIỀU CON ĐƯỜNG ĐỂ ĐI a TUYỂN TẬP 2000 ĐỀ TUYỂN SINH MƠN TỐN CÓ ĐÁP ÁN TỪ NĂM 2000 TẬP 34 (1651-1700) Success has only one destination, but has a lot of ways to go phone: 0167.858.8250 facebook: https://www.facebook.com/hokhacvuqnam2906 (Hồ K Vũ) ĐỀ 1652 Câu (3,0 điểm) Rút gọn biểu thức sau: M 45 245 80 1 a , với a>0 a N : a 2 a 4 a 2 x y 24 Giải hệ phương trình: 7 x y 14 5x 4x 13 Giải phương trình: x 4x x x Câu (1,5 điểm) Trong mặt phẳng tọa độ Oxy, cho Parabol (P): y = x đường thẳng (d): y = mx + (m tham số) a) Khi m = - 2, tìm tọa độ đường thẳng (d) Parabol (P) b) Tìm m để đường thẳng (d) Parabol (P) cắt hai điểm phân biệt có hồnh độ x1 x thỏa mãn điều kiện: x13 x23 10 Câu (1,5 điểm) Giải toán cách lập phương trình hệ phương trình: Một phòng họp có 440 ghế (mỗi ghế chỗ ngồi) xếp thành dãy, dãy có số ghế Trong buổi họp có 529 người tham dự nên ban tổ chức phải kê thêm dãy ghế dãy tăng thêm ghế so với ban đầu vừa đủ chỗ ngồi Tính số dãy ghế có phòng họp lúc đầu Câu (3,0 điểm) Cho đường tròn tâm O đường kính AB Trên tia tiếp tuyến à đường tròn lấy điểm M (M khác A), Tù M kẻ tiếp tuyến thứ hai MC với đường tròn (O) điểm Q (Q khác B) cắt CH điểm N Gọi I giao điểm MO AC a) Chứng minh AIMQ tứ giác nội tiếp b) Chứng minh OM // AC c) Chứng minh tỉ số CN không đổi M di động tia Ax (M khác A) CH Câu (1,0 điểm) Cho a, b, c số thực thỏa mãn điều kiện abc = Chứng minh rằng: a3 a3 a3 1 b1 c 1 c 1 a 1 a 1 b Thầy giáo: Hồ Khắc Vũ – Giáo viên Toán cấp II-III Gmail: hokhacvuqnam@gmaail.com Khối phố An Hòa -Phường Hòa Thuận – TP Tam Kỳ - Tỉnh Quảng Nam THÀNH CƠNG CĨ DUY NHẤT MỘT ĐIỂM ĐẾN, NHƯNG CÓ RẤT NHIỀU CON ĐƯỜNG ĐỂ ĐI TUYỂN TẬP 2000 ĐỀ TUYỂN SINH MƠN TỐN CĨ ĐÁP ÁN TỪ NĂM 2000 TẬP 34 (1651-1700) Success has only one destination, but has a lot of ways to go phone: 0167.858.8250 facebook: https://www.facebook.com/hokhacvuqnam2906 (Hồ K Vũ) ĐỀ 1653 SỞ GIÁO DỤC VÀ ĐÀO TẠO NINH BÌNH ĐỀ THI CHÍNH THỨC ĐỀ THI TUYỂN SINH LỚP 10 THPT CHUYÊN NĂM HỌC 2014 - 2015 Mơn thi : TỐN Ngày thi: 12/6/2014 Thời gian làm bài: 150 phút (không kể thời gian giao đề) Câu (2,0 điểm) a 3 a a 2 a 3 9a : Cho biểu thức A 1 a a a a với a 0; a 4; a a a) Rút gọn A b) Tìm a để A A Câu (2,0 điểm) 29 x x x 26 x 177 Giải phương trình: 2 x y xy x y Giải hệ phương trình: x y y x 2x y Câu (2,0 điểm) Cho hai phương trình: x bx c (1) x b x bc (2) (trong x ẩn, bvà c tham số) Biết phương trình (1) có hai nghiệm x1 x , phương trình (2) có hai nghiệm x3 x thỏa mãn điều kiện x3 x1 x4 x2 Xác định b c Chứng minh p số nguyên tố lớn (p+1)(p-1) chia hết cho 24 Câu (3,0 điểm) Cho hai đường tròn (O; R) (O’; R’) cắt hai điểm phân biệt A B Từ điểm C thay đổi tia đối tia AB, vẽ tiếp tuyến CD, CE với đường tròn tâm O (D, E tiếp điểm E nằm đường tròn tâm O’) Hai đường thẳng AD AE cắt đường tròn tâm O’ M N (M N khác A) Đường thẳng DE cắt MN I Chứng minh rằng: a) Bốn điểm B, D, M, I thuộc đường tròn b) MI.BE = BI.AE c) Khi điểm C thay đổi tia đối tia AB đường thẳng DE ln qua điểm cố định Câu (1,0 điểm) Cho a, b, c số dương thỏa mãn điều kiện a + b + c = Tìm giá trị lớn nhât biểu thức: Thầy giáo: Hồ Khắc Vũ – Giáo viên Toán cấp II-III Gmail: hokhacvuqnam@gmaail.com Khối phố An Hòa -Phường Hòa Thuận – TP Tam Kỳ - Tỉnh Quảng Nam THÀNH CƠNG CĨ DUY NHẤT MỘT ĐIỂM ĐẾN, NHƯNG CÓ RẤT NHIỀU CON ĐƯỜNG ĐỂ ĐI Đề th câu tr TUYỂN TẬP 2000 ĐỀ TUYỂN SINH MƠN TỐN CĨ ĐÁP ÁN TỪ NĂM 2000 TẬP 34 (1651-1700) Success has only one destination, but has a lot of ways to go phone: 0167.858.8250 facebook: https://www.facebook.com/hokhacvuqnam2906 (Hồ K Vũ) P 5b a 5c b 5a c ab 3b bc 3c ca 3a ĐỀ 1654 Bài 1( điểm) 3 84 2 3 1 2) Cho biểu thức: P a( );(a 1) a a 1 a a 1 Rút gọn P chứng tỏ P 1) Đơn giản biểu thức: A Bài 2( điểm) 1) Cho phương trình bậc hai x2 + 5x + = có hai nghiệm x1; x2 Hãy lập phương trình bậc hai có hai nghiệm (x12 + ) ( x22 + 1) 2 x 2) Giải hệ phương trình 4 x 4 y2 1 y2 Bài 3( điểm) Quãng đường từ A đến B dài 50km.Một người dự định xe đạp từ A đến B với vận tốc không đổi.Khi giờ,người dừng lại 30 phút để nghỉ.Muốn đến B thời gian định,người phải tăng vận tốc thêm km/h quãng đường lại.Tính vận tốc ban đầu người xe đạp Bài 4( điểm) Cho tam giác ABC có ba góc nhọn H trực tâm.Vẽ hình bình hành BHCD.Đường thẳng qua D song song BC cắt đường thẳng AH E 1) Chứng minh A,B,C,D,E thuộc đường tròn 2) Chứng minh BAE DAC 3) Gọi O tâm đường tròn ngoại tiếp tam giác ABC M trung điểm BC,đường thẳng AM cắt OH G.Chứng minh G trọng tâm tam giácABC 4) Giả sử OD = a.Hãy tính độ dài đường tròn ngoại tiếp tam giác BHC theo a Bài giải Bài Thầy giáo: Hồ Khắc Vũ – Giáo viên Toán cấp II-III Gmail: hokhacvuqnam@gmaail.com Khối phố An Hòa -Phường Hòa Thuận – TP Tam Kỳ - Tỉnh Quảng Nam THÀNH CƠNG CĨ DUY NHẤT MỘT ĐIỂM ĐẾN, NHƯNG CÓ RẤT NHIỀU CON ĐƯỜNG ĐỂ ĐI TUYỂN TẬP 2000 ĐỀ TUYỂN SINH MƠN TỐN CÓ ĐÁP ÁN TỪ NĂM 2000 TẬP 34 (1651-1700) Success has only one destination, but has a lot of ways to go phone: 0167.858.8250 facebook: https://www.facebook.com/hokhacvuqnam2906 (Hồ K Vũ) ( 4)(1 2) 1 2 3 2 3 a a 1 a a 1 P a( ); a a a 1 4) a a a a 1; vi : a 3) A P ( a 1) 0; a Bài x2 + 5x + = 1) Có 25 12 13 Nên pt ln có nghiệm phân biệt x1+ x2 = - ; x1x2 = Do S = x12 + + x22 + = (x1+ x2)2 - x1x2 + = 25 – + = 21 Và P = (x12 + 1) (x22 + 1) = (x1x2)2 + (x1+ x2)2 - x1x2 + = + 20 = 29 Vậy phương trình cần lập x2 – 21x + 29 = 2) ĐK x 0; y 2 14 7 x x y2 x x y 12 1 y x y x y Vậy HPT có nghiệm ( x ;y) = ( ;3) Bài Gọi x(km/h) vtốc dự định; x > ; có 30 phút = ½ (h) Th gian dự định : 50 ( h) x Quãng đường sau 2h : 2x (km) Quãng đường lại : 50 – 2x (km) Vận tốc quãng đường lại : x + ( km/h) 50 x ( h) x2 50 x 50 2 x2 x Th gian quãng đường lại : Theo đề ta có PT: Giải ta : x = 10 (thỏa ĐK toán) Vậy Vận tốc dự định : 10 km/h Thầy giáo: Hồ Khắc Vũ – Giáo viên Toán cấp II-III Gmail: hokhacvuqnam@gmaail.com Khối phố An Hòa -Phường Hòa Thuận – TP Tam Kỳ - Tỉnh Quảng Nam THÀNH CƠNG CĨ DUY NHẤT MỘT ĐIỂM ĐẾN, NHƯNG CÓ RẤT NHIỀU CON ĐƯỜNG ĐỂ ĐI TUYỂN TẬP 2000 ĐỀ TUYỂN SINH MƠN TỐN CĨ ĐÁP ÁN TỪ NĂM 2000 TẬP 34 (1651-1700) Success has only one destination, but has a lot of ways to go phone: 0167.858.8250 facebook: https://www.facebook.com/hokhacvuqnam2906 (Hồ K Vũ) Bài a) Chứng minh A,B,C,D,E thuộc đường tròn A Vì BC //ED Mà AE BC Nên AE ED AED 900 => E ( O ; AD / ) H Nói ABD ACD 900 (nội tiếp chắn ½ đường tròn (O) ) kết luận B b) Chứng minh BAE DAC C1: BC //ED nên cung BE cung CD => kết luận C1: BC //ED nên CBD BDE ( SLT) Mà BAE ½ sđ cungBE E Và CAD ½ sđ cungDC => cungBE cungDC => kết luận Giải câu c) Vì BHCD HBH nên H,M,D thẳng hàng Tam giác AHD có OM ĐTBình => AH = OM Và AH // OM tam giác AHG MOG có HAG OMG slt AGH MGO (đ đ) AHG MOG( g g ) G O C M AH AG 2 MO MG Hay AG = 2MG Tam giác ABC có AM trung tuyến; G AM Do G trọng tâm tam giác ABC d) BHC BDC ( BHCD HBH) có B ;D ;C nội tiếp (O) bán kính a Nên tam giác BHC nội tiếp (K) có bán kính a Do C (K) = 2 a ( ĐVĐD) Thầy giáo: Hồ Khắc Vũ – Giáo viên Tốn cấp II-III Gmail: hokhacvuqnam@gmaail.com Khối phố An Hòa -Phường Hòa Thuận – TP Tam Kỳ - Tỉnh Quảng Nam THÀNH CƠNG CĨ DUY NHẤT MỘT ĐIỂM ĐẾN, NHƯNG CÓ RẤT NHIỀU CON ĐƯỜNG ĐỂ ĐI D TUYỂN TẬP 2000 ĐỀ TUYỂN SINH MƠN TỐN CĨ ĐÁP ÁN TỪ NĂM 2000 TẬP 34 (1651-1700) Success has only one destination, but has a lot of ways to go phone: 0167.858.8250 facebook: https://www.facebook.com/hokhacvuqnam2906 (Hồ K Vũ) 10 ĐỀ 1655 Câu (3,0 điểm) 1) Giải phương trình: a 5( x 1) 3x b 3x x x x( x 1) 2) Cho hai đường thẳng (d1): y x ; (d2): y 4 x cắt I Tìm m để đường thẳng (d3): y (m 1) x 2m qua điểm I Câu (2,0 điểm) Cho phương trình: x2 2(m 1) x 2m (1) (với ẩn x ) 1) Giải phương trình (1) m =1 2) Chứng minh phương trình (1) ln có hai nghiệm phân biệt với m 3) Gọi hai nghiệm phương trình (1) x1 ; x2 Tìm giá trị m để x1 ; x2 độ dài hai cạnh tam giác vng có cạnh huyền 12 Câu (1,0 điểm) Một hình chữ nhật có chu vi 52 m Nếu giảm cạnh m hình chữ nhật có diện tích 77 m2 Tính kích thước hình chữ nhật ban đầu? Câu (3,0 điểm) Cho tam giác ABC có  > 900 Vẽ đường tròn (O) đường kính AB đường tròn (O’) đường kính AC Đường thẳng AB cắt đường tròn (O’) điểm thứ hai D, đường thẳng AC cắt đường tròn (O) điểm thứ hai E 1) Chứng minh bốn điểm B, C, D, E nằm đường tròn 2) Gọi F giao điểm hai đường tròn (O) (O’) (F khác A) Chứng minh ba điểm B, F, C thẳng hàng FA phân giác góc EFD 3) Gọi H giao điểm AB EF Chứng minh BH.AD = AH.BD Câu (1,0 điểm) Cho x, y, z ba số dương thoả mãn x + y + z =3 Chứng minh rằng: x y z x 3x yz y y zx z 3z xy ĐÁP ÁN VÀ BIỂU ĐIỂM CHẤM Câu Ý Nội dung Điểm Biến đổi 5x + = 3x + 0,5 2x x = 0,5 1.b Điều kiện: x x 0,25 1.a Thầy giáo: Hồ Khắc Vũ – Giáo viên Toán cấp II-III Gmail: hokhacvuqnam@gmaail.com Khối phố An Hòa -Phường Hòa Thuận – TP Tam Kỳ - Tỉnh Quảng Nam THÀNH CƠNG CĨ DUY NHẤT MỘT ĐIỂM ĐẾN, NHƯNG CĨ RẤT NHIỀU CON ĐƯỜNG ĐỂ ĐI ... 25 12 13 Nên pt ln có nghiệm phân biệt x1+ x2 = - ; x1x2 = Do S = x 12 + + x 22 + = (x1+ x2 )2 - x1x2 + = 25 – + = 21 Và P = (x 12 + 1) (x 22 + 1) = (x1x2 )2 + (x1+ x2 )2 - x1x2 + = + 20 = 29 ... NHIỀU CON ĐƯỜNG ĐỂ ĐI 0 ,25 đ 0 ,25 đ 0 ,25 đ 0 ,25 đ 0,5đ 0,5đ 0,5đ 0,5đ 0 ,25 đ 0 ,25 đ 0 ,25 đ 0 ,25 đ 0 ,25 đ TUYỂN TẬP 20 00 ĐỀ TUYỂN SINH MƠN TỐN CĨ ĐÁP ÁN TỪ NĂM 20 00 TẬP 34 (1651- 1700) Success has only one... ĐI 0 ,25 0 ,25 0 ,25 0 ,25 0 ,25 TUYỂN TẬP 20 00 ĐỀ TUYỂN SINH MÔN TỐN CĨ ĐÁP ÁN TỪ NĂM 20 00 TẬP 34 (1651- 1700) Success has only one destination, but has a lot of ways to go phone: 0167.858. 825 0 facebook: