1. Trang chủ
  2. » Thể loại khác

He thuc luong trong tam giac vuong phan 2 HDG

5 46 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 307,78 KB

Nội dung

Hocmai.vn – Website học trực tuyến số Việt Nam Khóa học HM 10 Ơn luyện (Thầy Hồng Trí Quang) HỆ THỨC LƯỢNG TRONG TAM GIÁC VUÔNG (P2) HDG Bài tập tự luyện Giáo viên: Hồng Trí Quang Bài Cho hình chữ nhật ABCD có AD  6cm, CD  8cm Đường thẳng kẻ từ D vng góc với AC E, cắt cạnh AB F Tính độ dài đoạn thẳng DE, DF, AE, CE, AF, BF Bài làm: Xét tam giác ACD vuông D có: 1 1 25 24    2   DE  2 DE DA DC 576 Xét tam giác ADF vng A có: AD  DE.DF  DF  AD 62 15   24 DE 81  15  AD  AF  DF  AF  DF  AD     62   AF   2 2 2 2 Xét tam giác ADE vng E có: 18  24  324 AE  DE  AD  AE  AD  DE       AE  25   2 2 2 Xét tam giác CDE vuông E có: Hệ thống giáo dục HOCMAI Tổng đài tư vấn: 1900 6933 - Trang | - Hocmai.vn – Website học trực tuyến số Việt Nam Khóa học HM 10 Ơn luyện (Thầy Hồng Trí Quang) 32  24  1024 DE  CE  CD  CE  CD  DE       CE  25   2 2 2 Ta có: AF  BF  AB  BF  AB  AF    2 Bài Cho tam giác ABC đường cao AH Vẽ H D  AB Tia phân giác góc AHC cắt AC F Biết AB  cm; AC  cm; BC  10 cm Tính: a) Độ dài AH; b) Chu vi tam giác ADF A Giải a) Dùng định lý Py-ta-go đảo chứng minh F tam giác ABC vng A Ta có AB AC  BC AH Suy AH  D AB AC 6.8   4,8(cm) BC 10 B H C b) Xét ABH vng H, có: AH  AB AD  AD  AH 4.82   3,84(cm) AB Xét ABC vng A có: AC  BC.HC  HC  AC 82   6, 4(cm) BC 10 Bài Cho hình vuông MNPQ Trên tia đối tia QP lấy điểm E, tia đối vủa tia PQ lấy điể m F cho QE  PF ME  MF Cho biết EF  10cm Tính diện tích hình vng Giải Hệ thống giáo dục HOCMAI Tổng đài tư vấn: 1900 6933 - Trang | - Hocmai.vn – Website học trực tuyến số Việt Nam Khóa học HM 10 Ơn luyện (Thầy Hồng Trí Quang) Ta đặt MQ  QP  x diện tích hình vng S  x Ta có EQ  PF  10  x 10  x 10  x ; QF  x 2 Xét tam giác MFE vng M, có MQ  QE.QF hay x  10  x 10  x 100  x   x  100  x  20 2 Vậy diện tích hình vng 20  cm    900 ABC  600 DAB Bài *Cho đa giác lồi ABCD có AB  AC  AD  10 cm,  1) Tính đường chéo BD; 2) Tính BH, DK khoảng cách từ B D đến AC 3) Tính HK; 4) Vẽ BE  DC, tính BE, CE DC Bài làm: Hệ thống giáo dục HOCMAI Tổng đài tư vấn: 1900 6933 - Trang | - Hocmai.vn – Website học trực tuyến số Việt Nam Khóa học HM 10 Ơn luyện (Thầy Hồng Trí Quang) 1) Áp dụng định lý Pi-ta-go vào tam giác ABD vng A có: BD  AB  AD  102  102  BD  10 2(cm) ABC  600 2) Tam giác ABC có AB  AC  nên ABC Suy ra: AH  BH  AB  5(cm) Áp dụng định lý Pi-ta-go vào tam giác ABH vuông H có: BH  AH  AB  BH  AB  AH  102  52  3(cm)   BAD   BAC   900  600  300 Ta có: DAK AD 10    5(cm) Tam giác DAK vuộng K DAK  300 nên AD  KD  KD  2 3) Áp dụng định lý Pi-ta-go vào tam giác ADK vng K có: AD  DK  AK  AK  AD  DK  102  52  3(cm) HK  AK  AH   5(cm) 1800  300   1800   4) Ta thấy: BCE ACB   ACD  1800  600   450 Do đó: BCE vuông cân E, nên: EB  EC  EB  BC  EC  EB  Hệ thống giáo dục HOCMAI BC 102   2(cm) 2 Tổng đài tư vấn: 1900 6933 - Trang | - Hocmai.vn – Website học trực tuyến số Việt Nam Khóa học HM 10 Ơn luyện (Thầy Hồng Trí Quang) Ta có: KC  HC  HK   (5  5)  10  (cm) Tam giác CDK vng K có:  CD  DK  KC  52  10    CD  10  (cm) Bài Cho hai điểm A, B cố định điểm M di động cho tam giác MAB có ba góc nhọn Gọi H trực tâm tam giác MAB K chân đường cao vẽ từ M tam giác MAB a) Chứng minh BK KA  KM KH b) Tìm giá trị lớn tích KH KM Bài giải M H A B K Ta có  BKM ~  HKA  g.g   BK KM   BK KA  KM KH HK KA AB  BK  KA  Mặt khác BK KA   Dấu “=” xảy BK  KA      KM KH  AB AB  KM KH  4 Vậy max  KM KH  = AB BK  KA tức K trung điểm AB Giáo viên : Hồng Trí Quang Nguồn Hệ thống giáo dục HOCMAI : Hocmai Tổng đài tư vấn: 1900 6933 - Trang | - ... 10 Ơn luyện (Thầy Hồng Trí Quang) 32  24  1 024 DE  CE  CD  CE  CD  DE       CE  25   2 2 2 Ta có: AF  BF  AB  BF  AB  AF    2 Bài Cho tam giác ABC đường cao AH Vẽ H D ... Pi-ta-go vào tam giác ABD vng A có: BD  AB  AD  1 02  1 02  BD  10 2( cm) ABC  600 2) Tam giác ABC có AB  AC  nên ABC Suy ra: AH  BH  AB  5(cm) Áp dụng định lý Pi-ta-go vào tam giác ABH... PF  10  x 10  x 10  x ; QF  x 2 Xét tam giác MFE vng M, có MQ  QE.QF hay x  10  x 10  x 100  x   x  100  x  20 2 Vậy diện tích hình vng 20  cm    900 ABC  600 DAB Bài

Ngày đăng: 14/02/2019, 20:13

TỪ KHÓA LIÊN QUAN

w