Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 28 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
28
Dung lượng
1,92 MB
Nội dung
SỞ GIÁO DỤC & ĐÀO TẠO THÁI BÌNH ĐỀ THI THỬ THPT QUỐC GIA LẦN I - MƠN TỐN TRƯỜNG THPT CHUYÊN NĂM HỌC 2018 - 2019 Thời gian làm bài:90 phút; MÃ ĐỀ 357 (50 câu trắc nghiệm) Họ tên học sinh: Số báo danh: Câu 1: Cho hàm số y = f ( x ) có bảng biến thiên hình vẽ Số nghiệm phương trình f ( x) + = là: A Câu 2: Đồ thị hàm số y = − A C B D x + x + cắt trục hoành điểm? 2 B C D Câu 3: Tìm tất giá trị thực tham số m để đồ thị hàm số y = x - 2mx + 2m - có ba điểm cực trị ba đỉnh tam giác cân A m ³ B m > C m ¹ D m < Câu 4: Cho khối chóp có đáy đa giác lồi n cạnh Trong mệnh đề sau đây, mệnh đề đúng: A Số mặt số đỉnh B Số đỉnh khối chóp 2n + C Số mặt khối chóp 2n D Số cạnh khối chóp n + - Câu 5: Tìm tập xác định hàm số y = ( x - 3x) A D = ( 0;3) B D = ¡ \ { 0;3} C D = ( −∞;0 ) ∪ ( 3; +∞ ) D D = ¡ Câu 6: Với số thực a, b bất kỳ, mệnh đề ? 5a A b = 5a −b a 5a B b = b Câu 7: Giá trị nhỏ hàm số y = A C 5a = 5ab 5b D 5a = 5a +b 5b x −1 đoạn [ 1; 2] là: 2x +1 B C D −2 Câu 8: Cho hàm số y = f (x) liên tục ¡ có bảng xét dấu đạo hàm hình vẽ Hàm số y = f (x) có điểm cực trị? A B C D Câu 9: Đồ thị hình vẽ đồ thị hàm số đây? A y = x - 3x + B y =- x +3x - C y = x - 3x - D y =- x - 3x - Câu 10: Cho đường thẳng d2 cố định, đường thẳng d1 song song cách d2 khoảng cách không đổi Khi d1 quay quanh d2 ta A Hình tròn B Khối trụ C Hình trụ D Mặt trụ Câu 11: Cho a > 0, a ≠ x, y hai số thực thỏa mãn xy > Mệnh đề đúng? A log a ( x + y ) = log a x + log a y B log a x = log a x C log a ( xy ) = log a x + log a y D log a ( xy ) = log a x + log a y Câu 12: Tính thể tích vật thể tròn xoay quay mơ hình (như hình vẽ) quanh trục DF : A 10π a B π a C 5π a D 10π a Câu 13: Khối đa diện loại { 5,3} có tên gọi đây? A Khối mười hai mặt B Khối lập phương C Khối hai mươi mặt D Khối tứ diện Câu 14: Từ chữ số 0,1, 2,3,5 lập thành số tự nhiên không chia hết cho gồm chữ số đôi khác nhau? A 120 B 54 C 72 D 69 Câu 15: Cho khai triển x + ÷ với x > Tìm hệ số số hạng chứa x khai triển x A 80 B 160 C 240 Câu 16: Mệnh đề mệnh đề sai? x +1 2018 A Hàm số y = ÷ π đồng biến ¡ B Hàm số y = log x đồng biến (0; +∞) C Hàm số y = ln( − x) nghịch biến khoảng (−∞;0) D Hàm số y = x đồng biến ¡ Câu 17: Cho hàm số y = f ( x ) có bảng biến thiên sau: Mệnh đề đúng? D 60 A Hàm số nghịch biến ( −∞;1) B Hàm số nghịch biến ( −∞;0 ) ∪ ( 1; +∞ ) C Hàm số đồng biến ( 0;1) D Hàm số đồng biến ( −∞; ) Câu 18: Một gia đình cần xây bể nước hình hộp chữ nhật để chứa 10m3 nước Biết mặt đáy có kích thước chiều dài 2,5m chiều rộng 2m Khi chiều cao bể nước là: A h = 3m B h = 1m C h = 1,5m D h = 2m Câu 19: Tìm đạo hàm hàm số y = log ( x + 1) A y ′ = 2x +1 B y ′ = 2x +1 C y′ = ( x + 1) ln D y′ = ( x + 1) ln Câu 20: Cắt hình nón đỉnh S mặt phẳng qua trục ta tam giác vuông cân, cạnh huyền a Thể tích khối nón : A π a B π a 12 C π a D π 2 a 12 Câu 21: Cho hàm số y = sin x Mệnh đề sau đúng? π A 2y '+ y '' = 2cos 2x − ÷ 4 B 4y − y '' = C 4y + y '' = D 2y '+ y '.tanx = Câu 22: Cho hàm số lũy thừa y = xα , y = x β , y = x γ có đồ thị hình vẽ Mệnh đề là: A α > β > γ Câu 23: Cho hàm số y = B β > α > γ C β > γ > α D γ > β > α 2018 Mệnh đề đúng? x −1 A Đồ thị hàm số có tiệm cận đứng đường thẳng x = 1, tiệm cận ngang đường thẳng y = B Đồ thị hàm số có tiệm cận đứng đường thẳng x = −1, tiệm cận ngang đường thẳng y = C Đồ thị hàm số có tiệm cận đứng đường thẳng x = 1, khơng có tiệm cận ngang D Đồ thị hàm số có tiệm cận đứng đường thẳng x = 1, tiệm cận ngang đường thẳng y = 2018 Câu 24: Cho hàm số y = f ( x) liên tục ¡ \ { 1} có bảng biến thiên hình vẽ Tổng số đường tiệm cận đứng đường tiệm cận ngang đồ thị hàm số y = f ( x ) A B D C Câu 25: Cho hàm số y = f ( x) có đạo hàm khoảng ( a; b ) Xét mệnh đề sau: I Nếu hàm số y = f ( x) đồng biến khoảng ( a; b ) f ′ ( x ) > 0, ∀x ∈ ( a; b ) II Nếu f ′ ( x ) < 0, ∀x ∈ ( a; b ) hàm số y = f ( x) nghịch biến khoảng ( a; b ) III Nếu hàm số y = f ( x) liên tục [ a; b ] f ′ ( x ) > 0, ∀x ∈ ( a; b ) hàm số y = f ( x) đồng biến đoạn [ a; b ] Số mệnh đề là: A B C D Câu 26: Cho hình chóp tứ giác có cạnh đáy x Diện tích xung quanh gấp đơi diện tích đáy Khi thể tích khối chóp bằng: A 3 x 12 B 3 x C 3 x D Câu 27: Tìm tất giá trị thực tham số m cho hàm số y = 3 x x −1 nghịch biến x−m khoảng ( −∞; ) A ( 1, +∞ ) B ( 2, +∞ ) C [ 2, +∞ ) D [ 1, +∞ ) 18 1 12 Câu 28: Sau khai triển rút gọn P ( x ) = ( + x ) + x + ÷ có tất số hạng? x A 27 B 28 C 30 D 25 Câu 29: Cho hàm số y = f ( x) có đạo hàm ¡ Xét hàm số g ( x) = f ( x ) − f ( x ) h( x) = f ( x) − f (4 x) Biết g '(1) = 18 g '(2) = 1000 Tính h '(1) : A −2018 B 2018 C 2020 D −2020 Câu 30: Cho lăng trụ đứng ABC.A’B’C’, đáy ABC tam giác vuông cân A E trung điểm B’C’, CB’ cắt BE M Tính thể tích V khối tứ diện ABCM biết AB = 3a , AA’ = 6a A V = 7a B 2a C V = 8a D V = 6a Câu 31: Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a , SA vng góc với đáy SA = 2a Gọi M trung điểm SD Tính khoảng cách d đường thẳng SB mặt phẳng ( ACM ) A d = 3a B d = a C d = 2a a D d = Câu 32: Biết hàm số y = ax + bx + c ( a ≠ ) đồng biến ( 0;+∞ ) , mệnh đề đúng? A a < 0; b ≤ B ab < C a > 0; b ≥ D ab ≥ Câu 33: Cho số thực a, b cho < a, b ≠ , biết đồ thị hàm số y = a x y = log b x cắt điểm M( 2018; 2019 −1 ) Mệnh đề đúng? A a > 1, b > Câu 34: Cho hàm số y = B a > 1, < b < C < a < 1, b > D < a < 1, < b < 2x − có đồ thị ( C ) điểm M ( −1; ) Xét điểm A ( C ) có x +1 x A = a, ( a ≠ −1) Đường thẳng MA cắt ( C ) điểm B (khác A ) Hoành độ điểm B là: A −1 − a B − a C 2a + D −2 − a Câu 35: Cho hình chóp tứ giác S ABCD có cạnh đáy a Gọi M , N trung điểm SB SD Biết AM vuông góc với CN Tính bán kính mặt cầu ngoại tiếp hình chóp S ABCD A 2a 10 B 3a 10 C a 10 D 4a 10 Câu 36: Cho hàm số f thỏa mãn f ( cot x ) = sin x + cos x, ∀x ∈ ( 0;π ) Giá trị lớn hàm số g ( x ) = f ( sin x ) f ( cos x ) ¡ A 125 B 20 C 19 500 D 25 Câu 37: Trong trò chơi điện tử, xác suất để game thủ thắng trận 0, (khơng có hòa) Hỏi phải chơi tối thiểu trận để xác suất thắng trận loạt chơi lớn 0,95 A B C D Câu 38: Cho ba hình cầu tiếp xúc ngồi đôi tiếp xúc với mặt phẳng Các tiếp điểm hình cầu mặt phẳng lập thành tam giác có cạnh , Tích bán kính ba hình cầu là: B A 12 C D Câu 39: Cho hàm số y = f ( x) có đạo hàm liên tục ¡ có đồ thị hàm số y = f ′( x) hình vẽ Đặt g ( x) = f ( x ) Tìm số điểm cực trị hàm số y = g ( x ) A Câu 40: C B Có giá trị nguyên D tham số m để đồ thị hàm số y = x - 8x + (m +11)x - 2m + có hai điểm cực trị nằm hai phía trục Ox A B C D Câu 41: Cho khối chóp S.ABC tích 16cm3 Gọi M, N, P trung điểm cạnh SA, SB, SC Tính thể tích V khối tứ diện AMNP A V = 8cm3 B V = 14cm3 Câu 42: Cho parabol ( P ) : y = C V = 12cm3 D V = 2cm3 x2 − 2x + đường thẳng d : x − y − = Qua điểm M tùy ý đường thẳng d kẻ tiếp tuyến MT1 , MT2 tới ( P) (với T1 , T2 tiếp điểm) Biết đường thẳng T1T2 qua điểm I (a; b) cố định Phát biểu sau đúng? A b ∈ (−1;3) B a < b C a + 2b = Câu 43: Cho a, b số thực hàm số f ( x) = a log 2019 ( D a.b = ) x + + x + b sin x.cos ( 2018x ) + Biết ln 2018 f (2018ln 2019 ) = 10 Tính P = f ( −2019 ) A P = B P = C P = −2 D P = 10 Câu 44: Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép (tức tiền lãi kỳ trước cộng vào vốn kỳ kế tiếp) với kì hạn tháng, lãi suất 2% quý Sau tháng, người gửi thêm 100 triệu đồng với kỳ hạn lãi suất trước Tổng số tiền người nhận sau năm gửi tiền vào ngân hàng gần với kết sau Biết suốt thời gian gửi tiền lãi suất ngân hàng khơng thay đổi người khơng rút tiền A 212 triệu đồng B 216 triệu đồng C 210 triệu đồng D 220 triệu đồng Câu 45: Số giá trị nguyên tham số m để hàm số y = log ( mx − m + ) xác định ; +∞ ÷ là: A B Câu 46: Cho hàm số y = C Vô số D x +1 có đồ thị (C) A điểm thuộc (C) Tính giá trị nhỏ tổng x −1 khoảng cách từ A đến đường tiệm cận (C) A C B D 2 Câu 47: Cho hình hộp đứng ABCD.A′ B′ C′ D′ có AB = a , AD = 2a , BD = a Góc tạo AB′ mặt phẳng (ABCD) 60o Tính thể tích khối chóp D′ ABCD A 3 a B C a 3a D 3 a Câu 48: Một bảng vuông gồm 100 × 100 vng đơn vị Chọn ngẫu nhiên hình chữ nhật Tính xác suất để ô chọn hình vuông (trong kết lấy chữ số phần thập phân) A 0,0134 B 0,0133 C 0,0136 D 0,0132 r r r r r r r r Câu 49: Cho hai vectơ a, b thỏa mãn: a = 4; b = 3; a − b = Gọi α góc hai vectơ a, b Chọn phát biểu A α = 600 B α = 300 C cos α = 3 D cos α = · B = 600 , BSC · · Câu 50: Cho hình chóp S ABC có SA = SB = SC = a , AS = 900 , CSA = 1200 Tính khoảng cách d hai đường thẳng AC SB A d = a B d = a C d = a 22 11 - HẾT D d = a 22 22 ĐÁP ÁN 1-B 11-C 21-C 31-D 41-D 2-C 12-D 22-C 32-C 42-A 3-B 13-A 23-A 33-C 43-B 4-A 14-B 24-D 34-D 44-A 5-B 15-B 25-C 35-B 45-A 6-A 16-A 26-D 36-D 46-D 7-B 17-C 27-C 37-A 47-C 8-A 18-B 28-A 38-B 48-B 9-B 19-D 29-B 39-A 49-D 10-D 20-B 30-D 40-B 50-C HƯỚNG DẪN GIẢI CHI TIẾT Câu 1: Đáp án B Ta có f ( x ) + = ⇔ f ( x ) = −2 Phương trình cho phương trình hồnh độ giao điểm đồ thị hàm số với đường thẳng y = −2 Dựa vào bảng biến thiên ta thấy phương tình có nghiệm Câu 2: Đáp án C Phương trình hồnh độ giao điểm − x + x + = ⇔ x = ± Do đồ thị hàm số cắt 2 trục hoành hai điểm Câu 3: Đáp án B TXĐ D = ¡ Cách Ta có y ' = x − 4mx = x ( x − m ) Do hàm số cho hàm số trùng phương nên để đồ thị hàm số y = x − 2mx + 2m − có ba điểm cực trị ba đỉnh tam giác cân phương trình y ′ = phải có nghiệm thực phân biệt ⇔x = m có hai nghiệm phân biệt x ≠ ⇔ m > Cách (Dùng cho trắc nghiệm) Do hàm số cho hàm số trùng phương nên để đồ thị hàm số y = x − 2mx + 2m − có ba điểm cực trị ba đỉnh tam giác cân a.b < ⇔ ( −2m ) < ⇔ m > Câu 4: Đáp án A Khối chóp có đáy đa giác lồi n cạnh có n +1 đỉnh; n +1 mặt 2n cạnh Do khối chóp có đáy đa giác lồi n cạnh có số mặt số đỉnh Câu 5: Đáp án B Hàm số y = ( x − 3x ) −4 x ≠ xác định ⇔ x − x ≠ ⇔ x ≠ Vậy tập xác định hàm số : D = \ {0;3} Câu 6: Đáp án A Câu 7: Đáp án B x −1 ≥ Dễ thấy với x∈[1;2] 2 x + > Do y = x −1 ≥ ∀x ∈ [ 1;2] Dấu "= " xảy x =1 2x + Câu 8: Đáp án A Hàm số có điểm cực trị Câu 9: Đáp án B Hàm số có dạng: y = a.x3 + b.x + cx + d y = 1; y =−1 lim− y = +∞; lim− y = −∞ đồ thị hàm số có đường tiệm cận đứng x =1 Vậy tổng x →1 x →1 số có đường tiệm cận Câu 25: Đáp án C I.Sai ví dụ hàm số y = x đồng biến (−∞; +∞) y' ≥ 0, ∀x ∈ (−∞; +∞) II.Đúng III.Đúng Câu 26: Đáp án D Thể tích khối chóp: V = B.h, có B = x Gọi O tâm hình vng, I trung điểm DC SI ⊥ CD Đặt SO = h Có SI = SO + OI = h + x2 , Có S xq = 2SI CD, S xq = B Suy ra: x h + x2 x2 x2 3x x Lúc đó: = 2x2 ⇒ h2 + = x ⇒ h2 + = x2 ⇒ = h2 ⇒ h = 4 4 x x3 V = x2 = Câu 27: Đáp án C Tập xác định : D = R \{m} Ta có : y ' = 1− m ( x − m) Hàm số nghịch biến khoảng (−∞;2) y' 0,95 ⇔ P ( A ) < −0,05 P A = P A1 A2 An = P A1 P A2 P An = 0,6n n Nên ta có bất phương trình: 0,6 ≤ 0,05 ⇒ n ≥ log 0,6 0,05 ≈ 5,86 ⇒ n = số trận tối thiểu Câu 38: Đáp án B Gọi O1 ; O2 ; O3 tâm mặt cầu A ,B,C hình chiếu tâm mặt phẳng cho Khơng tính tổng qt, gọi bán kính mặt cầu R1 ; R2 ; R3 Dễ thấy: O1 A ⊥ ( α ) ; O2 B ⊥ ( α ) ; O3C ⊥ ( α ) O1 A = R1 ; O2 B = R2 ; O3C = R3 Xét hình thang vuông O1 ABO2 vuông A B Từ O2 kẻ O2 H ⊥ AO1 Suy ra: AH = R2 ; O1H = R1 − R2 ; O2 H = AB; O1O2 = R1 + R2 2 Xét tam giác vuông O1O2 H: ( O1O2 ) = O1H + AB ⇒ ( R1 + R2 ) = ( R1 − R2 ) + AB ⇒ R1.R2 = AB BC AC ; R1.R3 = ⇒ R1.R2 R3 = Tương tự: R2 R3 = 4 Câu 39: Đáp án A Từ đồ thị hàm số y = f ' ( x ) ta có bảng biến thiên hàm số y = f (x) sau: Với a< 0,b >0, c> 0, a = − b f ( x3 ) ; x ≥ g ( x) = f ( − x ) ; x < ( x ) ' f ' ( x3 ) ; x ≥ g ( x) = 3 ( − x ) ' f ' ( − x ) ; x < Khi x ≥ Ta có g ' ( x ) = x f ' ( x ) Ta có: g ' ( x ) = 3x f ' ( x3 ) g ' ( x ) = 3x f ' ( x3 ) x = b x3 = b = ⇔ x3 = c ⇔ x = c x = x = x3 < a >0⇔ ⇔ x > c ( Do x ≥ ) x > c b < x < c 3 b < x < c 3 g '( x ) < ⇔ f '( x ) < ⇔ a < x < ⇔ ( Do x ≥ ) < x < b 0 < x3 < b + x < ta có g ' ( x ) = −3x f ' ( − x ) ta có x = − b − x3 = b g ' ( x ) = −3x f ' ( − x ) = ⇔ ⇔ x = − c − x = c −b < x < − a f ' ( − x ) < −b < x < g '( x ) > ⇔ ⇔ −c < x < −b ⇔ 3 x < −c < x < −b x < − x3 < a f ' ( − x ) > g '( x ) < ⇔ ⇔ − x > c ⇔ x < −c x < x < Bảng biến thiên hàm số y = g ( x ) Từ BBT suy hàm số y = g ( x ) có ba điểm cực trị Câu 40: Đáp án B 2 Đồ thị hàm số y = x − x + ( m + 11) x − 2m + ( C ) có hai điểm cực trị nằm hai phía trục Ox ⇔ (C) cắt trục Ox ba điểm phân biệt ⇔ x3 − x + ( m + 11) x − 2m + = ( *) có ba nghiệm phân biệt x = 2 Ta có (* ) ⇔ ( x − ) ( x − x + m − 1) = ⇔ 2 x − x + m − = ( 1) (C) cắt trục Ox ba điểm phân biệt ⇔ Phương trình (1) có hai nghiệm phân biệt khác ∆ ' = 10 − m > − 10 < m < 10 ⇔ ⇔ m ≠ ±3 2 − 6.2 + m − ≠ Có giá trị nguyên m thoả mãn điều kiện Câu 41: Đáp án D Ta có VA.MNP = VS MNP (do M trung điểm SA , nên d (A, MNP) = d (S ,MNP) Mà VS MNP SM SN SP 1 = = ⇒ VS MNP = VS ABC = VS ABC SA SB SC 8 Câu 42: Đáp án A Ta đặt T ( x1 ; y1 ) ,T2 ( x2 ; y2 ) M (m; m − 1) ∈ d Viết phương trình tiếp tuyến T1 : y = ( x1 − 1) ( x − x1 ) + x12 − x1 + x12 − x1 + Vì M thuộc tiếp tuyến nên m − = ( x1 − 1) ( m − x1 ) + ( 1) Viết phương trình tiếp tuyến T2 : y = ( x2 − 1) ( x − x2 ) + Vì M thuộc tiếp tuyến nên m − = ( x2 − 1) ( m − x2 ) + x1 + x2 = 2m Từ ( 1) , ( ) ⇒ − x12 − x22 ⇒ x1.x2 = 4m − 2− x = 2− x Có thể nhận thấy x1 , x2 nghiệm phương trình x = m − m − 4m + x − 2mx + 4m − = ⇒ x2 = m + m − 4m + x22 − x2 + x22 − x2 + ( 2) Viết phương trình ( T1T2 ) : x − x1 x1 − x2 = ⇔ m ( x − ) − x − y + = ⇒ I ( 2;2 ) y − y1 y1 − y2 Câu 43: Đáp án B 2019 Xét hàm số g ( x ) = f ( x ) − = a log Do ( ) x + + x + b sin x.cos ( 2018 x ) x + + x > x + x ≥ nên hàm số g (x) có tập xác định D = ¡ Ta có: ∀x ∈ D ⇒ − x ∈ D g ( − x ) = a log 2019 ( ( −x) ⇔ g ( − x ) = a log 2019 ) + + ( − x ) + b sin ( − x ) cos ( 2018 ( − x ) ) ) ( x + − x − b sin x.cos ( 2018 x ) ⇔ g ( − x ) = a log 2019 ÷− b sin x.cos ( 2018 x ) x + + x ⇔ g ( − x ) = −a log 2019 ⇔ g ( −x) = −g ( x) ( ) x + + x − b sin x.cos ( 2018 x ) Vậy hàm số g (x) hàm số lẻ Lại có: 2018ln 2019 = 2019ln 2018 ⇒ g ( 2018ln 2019 ) = − g ( −2019ln 2018 ) ⇔ f ( 2018ln 2019 ) − = − f ( −2019ln 2018 ) − ⇔ 10 − = − f ( −2019ln 2018 ) + ⇔ f ( −2019ln 2018 ) = Câu 44: Đáp án A Số tiền người có sau tháng gửi là: T1 = 108 ( + 2% ) = 104.040.000 (đồng) Số tiền người có sau năm người gửi thêm 100 triệu đồng với kỳ hạn lãi suất trước là: T2 = ( 104.000.000 + 100.000.000 ) ( + 2% ) = 212.283.216 (đồng) Câu 45: Đáp án A Điều kiện xác định hàm số y = log ( mx − m + ) mx − m + > (*) Trường hợp 1: m = 1 (*) ⇔2 > (luôn với ∀x ∈ ; +∞ ÷ ) 2 Do m = nhận Trường hợp 2: m > (*) x > m−2 m m−2 ; +∞ ÷ Suy tập xác định hàm số D = m m−2 1 < ⇔ < m < Vì Do đó, hàm số y = log ( mx − m + ) xác định ; +∞ ÷ ⇔ m 2 m∈ ¢ nên m∈{1;2;3} Trường hợp 3: m < (*)⇔ x < m−2 m m−2 Suy tập xác định hàm số D = −∞; ÷ m 1 Nhận thấy ; +∞ ÷ ⊄ D nên khơng có giá trị m < thỏa mãn yêu cầu 2 Kết hợp trường hợp ta m∈{0;1;2;3} Vậy có tất giá trị nguyên m thỏa mãn yêu cầu đề Câu 46: Đáp án D +) Ta có đồ thị (C) có hai đường tiệm cận, TCĐ: x = 1⇔ x − 1= TCN: y = ⇔y − = +) Điểm A điểm thuộc (C) nên A x;1 + ÷, x ≠ x −1 + Khi d = d ( A, TCD ) + d ( A, TCN ) = x − + Dấu "= " xảy x − = 2 ≥ x −1 =2 x −1 x −1 2 ⇔ x −1 = ⇔ x = 1± x −1 Có hai điểm thỏa mãn A (1 + 2;1 + ) ; A (1 − 2;1 − ) +) Vậy d = 2 Câu 47: Đáp án C Xét hình bình hành ABCD , ta có AB + BD = AD suy tam giác ABD vuông B , suy S ABCD = AB.BD = a Góc AB′ mặt phẳng ( ABCD) B'AB nên B'AB =60 ° Suy D ' D = B ' B = AB tan 60° = a 1 Vậy VD ' ABCD = D ' D.S ABCD = a 3.a = a 3 Câu 48: Đáp án B Giả sử bảng vng gồm 100 × 100 vng xác định đường thẳng x = , x =1, x = , …, x =100 y = , y =1, y = , …, y = 100 hệ trục tọa độ Oxy Mỗi hình chữ nhật tạo đường thẳng khác x = a ,x = b (0≤ a , 100 ≤ b) 2 hai đường thẳng khác y = c, y = d ( 0≤ c , 100 ≤ d ) nên có C101 C101 hình chữ nhật 2 Suy khơng gian mẫu có số phần tử n (Ω ) = C101 C101 Gọi A biến cố “ô chọn hình vng ” Xét trường hợp sau: +) TH1: chọn có kích thước × : có 100.100= 100 hình vng +) TH2: chọn có kích thước 2× : tạo thành đường thẳng khác x = a , x= b ( 0≤ a< b ≤ 100) hai đường thẳng khác y = c, y = d ( ≤ c < d ≤ 100) cho b − a =d − c= ⇒ có 99.99 = 99 hình vng Tương tự: +) TH3: chọn có kích thước 3× : có 98.98 = 98 hình vng +) TH100: chọn có kích thước 100 × 100 : có 1.1 = hình vng Suy khơng gian thuận lợi cho biến cố A có số phần tử n ( Ω A ) = 1002 + 992 + 982 + + 12 = Vậy xác suất cần tìm P ( A ) = 100 ( 100 + 1) ( 2.100 + 1) = 338350 n ( Ω A ) 338350 67 = 2 = ≈ 0,0133 n ( Ω) C101.C101 5050 Câu 49: Đáp án D r r r r2 r r2 rr Ta có a − b = ⇒ a − b = 16 ⇒ a + b − 2ab = 16 r r r2 r2 rr ⇒ 2ab = a + b − 16 = 42 + 32 − 16 = ⇒ ab = rr r r ab Từ suy cos a, b = r r = a b ( ) Câu 50: Đáp án C +) Từ giả thiết có AB = a, BC = a , AC = a , suy ∆ABC vuông B +) Gọi H trung điểm AC SA = SB = SC +) Ta có ⇒ SH trục đường tròn ngoại tiếp ∆ABC ⇒ SH ⊥(ABC) +) Kẻ HA = HB = HC đường thẳng d qua B song song với AC +) Gọi (α ) mặt phẳng chứa SB d ⇒AC//(α ) ⇒ d(AC, SB) = d (AC,(α )) = d (H, (α)) +) Kẻ HF ⊥ d , F ∈ d kẻ HK⊥ SF, K ∈ SF ⇒ HK ⊥ (α ) ⇒ d(H,(α )) =HK +) Kẻ BE⊥ AC , E ∈AC +) 1 1 3 = + = 2+ = 2⇒ = 2 2 BE BA BC a 2a 2a HF 2a +) Ta có SH = +) a SA = 2 1 a 22 = + ⇒ HK = 2 HK SH HF 11 Cách 2: Toạ độ hoá Áp dụng định lí Cosin a = b + c − 2.bc.cos A , ∆BSC, ∆ ASC ta dễ dàng tính BC = a , AC = a Suy ∆ABC vuông B Gắn hệ trục Oxyz hình vẽ tọa độ điểm: a a a , ÷ , B(0;0;0) A (a;0;0), C (0; a ;0), S , 2 2 (Trắc nghiệm) Cho a = A(2;0;0), C(0;2 2;0), S (1, 2,1), B(0;0;0) uur uuur uuur SB −1; − 2; −1 , AC −2;2 2;0 , BC 0;2 2;0 ( ) ( ) ( ) uur uuur uur uuur uuur SB ; AC = 2;2; − , Nên SB; AC BC = uur uuur uuur SB; AC BC 2 22 = = Khoảng cách d ( SB, AC ) = uur uuur 11 + + 32 SB; AC ( Đáp số toán là: ) 22 a 11 ... hàm số lẻ Lại có: 2018ln 2019 = 2019ln 2018 ⇒ g ( 2018ln 2019 ) = − g ( −2019ln 2018 ) ⇔ f ( 2018ln 2019 ) − = − f ( −2019ln 2018 ) − ⇔ 10 − = − f ( −2019ln 2018 ) + ⇔ f ( −2019ln 2018 )... log b x cắt điểm M ( 2018; 2019 −1 ) ,nên ta có hệ ( ) 2018−1 −1 a ≈ 0,96669 2019 1 = a 2018 a = 2019 ⇔ ⇔ 2019 5 −1 b = 2018 > − b 2019 = 2018 2019 = log b 2018 ( ) Do chọn... nhiên gồm chữ số đôi khác nhau, chia hết cho lập từ chữ số ,1, , , có dạng abcd TH1: d = ⇒0 số số tự nhiện A 34 = 24 TH2: d = a có cách chọn; b có cách chọn; c có cách chon ⇒ số số tự nhiện 3.3.2