1. Trang chủ
  2. » Giáo Dục - Đào Tạo

232 câu số mũ và logarit từ các đề thi thử trường chuyên 2018 image marked image marked

85 248 8

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 85
Dung lượng 4,25 MB

Nội dung

Câu 1: ( Chuyên Ngoại Ngữ - Lần 1) Tính tích tất nghiệm phương trình log 22 x + log x = A 17 17 B C D Đáp án D Phương pháp giải: +) Đặt ẩn phụ, đưa phương trình bậc hai, tìm nghiệm x +) Áp dụng hệ thức Vi-ét phương trình bậc hai: x1 + x = − b +) Áp dụng công thức logarit: log a b + log a c = log a bc Lời giải: Ta có log 22 x + log x = 17  ( log x )2 + 4.log x − 17 = a Đặt t = log x  pt  4t + 4t − 17 = Áp dụng hệ thức Vi-ét ta có : t1 + t = −1  log x1 + log x = −1  log x1x = −1  x1x = −1 = =− Câu 2: ( Chuyên Ngoại Ngữ - Lần 1) Cho a,b hai số dương Mệnh đề sau ĐÚNG? A ln a = b ln a B ln ( ab ) = ln a.ln b C ln ( a + b ) = ln a + ln b D ln a = ln a b b ln b Đáp án A Phương pháp giải: Áp dụng công thức lôgarit Lời giải: Các công thức liên quan đến lôgarit: ln a b = b ln a, ln ab = ln a + ln b, ln a = ln a − ln b b Câu 3:( Chuyên Ngoại Ngữ - Lần 1)Tập nghiệm bất phương trình A ( −;0 C 1; + ) B ( 0;1 1   3 2x −1  D ( −;1 Đáp án D Phương pháp giải: Áp dụng phương pháp giải bất phương trình Lời giải: 2x −1 2x −1 Ta có           2x −   x   S = ( −;1 3 3 3 Câu 4: ( Chuyên Ngoại Ngữ - Lần 1)Gọi S = ( a; b ) tập tất giá trị tham số thực m để phương trình log ( mx − 6x ) + log ( −14x + 29x − ) = có nghiệm phân biệt Khi hiệu H = b−a A B C D Đáp án B Phương pháp giải: Đưa phương trình đa thức chứa tham số, cô lập tham số, khảo sát hàm để biện luận nghiệm Lời giải: Điều kiện: mx − 6x3    −14x 29x −  Phương trình  log ( mx − 6x ) = log ( −14x + 29x − ) 2   −14x + 29x −  14x − 29x +    3   mx − 6x = −14x + 29x − mx = 6x − 14x + 29x − 1 14  x   2 m = 6x − 14x + 29 − (*) ( x  )  x Phương trình cho có ba nghiệm phân biệt  (*) có ba nghiệm phân biệt 1   ;   14  x = 2 12x − 14x +   f ' ( x ) = 12x − 14 + =  f '( x ) =    x    x =  14 x x   Xét hàm số Ta có 1  x   ;   14  f ( x ) = 6x − 14x + 29 − Bảng biến thiên x 14 f’(x ) x khoảng + - + 24 39 f(x) 19 98 Dựa vào bảng biến thiên, để phương trình (*)có ba nghiệm phân biệt Vậy Vậy 19  m  39 39  39  m  19;  = ( a; b )  a = 19; b =   39 b−a = − 19 = 2 Câu 5: ( Chuyên Ngoại Ngữ - Lần 1) Có giá trị nguyên m để phương 2 trình 2sin x + 3cos x = m.3sin x có nghiệm? A B C D Đáp án B Phương pháp giải: Cô lập tham số m, đưa khảo sát hàm số để biện luận nghiệm phương trình Lời giải: sin x Ta có 3sin x + 3cos x = m.3sin x + 31−sin x = m.3sin x  m =   + 31−2sin x 2 Đặt t = sin x  0;1 , Xét hàm số 2 (*) trở thành: t 2 1 f ( t ) =   +   3  3 2t (*)   3 t t 2t 2 2 1 m =   + 31− 2t =   +   3 3 3 0;1 , có t 2 1 f ' ( t ) =   ln +   3  3 2t ln   min f ( t ) = f (1) = hàm số nghịch biến  0;1    max f ( t ) = f ( ) = Do đó, để phương trình m = f ( t ) có nghiệm   m  Lại có m  Z  M 1;2;3;4 Suy f (t) Câu 6: ( Chuyên Ngoại Ngữ - Lần 1) Cho dãy số ( u n ) thỏa mãn u n = u n −1 + 6, n  log u + log u + = 11 Đặt Sn = u1 + u + + u n Tìm số tự nhiên n nhỏ thỏa mãn Sn  20172018 A 2587 Đáp án C B 2590 C 2593 D 2584 Phương pháp giải: Áp dụng công thức tổng quát cấp số cộng tổng cấp số cộng Lời giải: Điều kiện: u   u1 + 4d  u +  u1 + 8d +  u n = u n −1 + 6, n   ( u n ) Ta có Lại có: log u + log cấp số cộng với công sai d = u + = 11  log u + log ( u + ) = 11  log  u5 ( u9 + 8)  = 11  u5 ( u9 + 8) =  ( u1 + 4d )( u1 + 8d + 8) = 211  ( u1 + 24)( u1 + 56) = 2048 11 u1 = ( tm )  u12 + 80u1 − 704 =   u1 = −88 ( ktm ) Do Vậy Sn = u1 + u + + u n = n  2u1 + ( n − 1) d   = n (16 + ( n − 1) ) = 3n + 5n  n  2592, 234 Sn  20172018  3n + 5n − 20172018     n = 2593  n  2593, ( ktm ) Câu 7: (Chuyên Lê Quý Đôn-Lần 3) Cho a, b, c ba số thực dương, khác Mệnh đề b A loga   = log a b − B log a  b =  log a b a  C a log b c = b D log a b = log b c.log c a Đáp án A Phương pháp giải: Áp dụng công thức biểu thức chứa lôgarit Lời giải: b Ta có: log a   = log a b − log a a = log a b − log a b = log a b  a  Câu 8: (Chuyên Lê Q Đơn-Lần 3) Tìm số nghiệm ngun dương bất phương 1 trình   5 A x − 2x 125  B C D Đáp án B Phương pháp giải: Áp dụng phương pháp giải bất phương trình Lời giải: x − 2x x − 2x 1 1 1 Ta có          x − 2x   x − 2x −   −1  x  125 5 5 5 Suy số nghiệm nguyên dương bất phương trình 1; 2;3 Câu 9: (Chun Lê Q Đơn-Lần 3) Tính tổng tất nghiệm thực phương trình log ( 3.2 x − 1) = x − A −6 B C 12 D Đáp án D Phương pháp giải: hóa, đặt ẩn phụ đưa giải phương trình bậc hai để tìm nghiệm Lời giải: Điều kiện: 3.2 x −   x  − log Ta có log ( 3.2x − 1) = x −  3.2 x − = x −1  12.2 − =  ( x x ) x ( ) ( ) )( − )   x = log +  2x = + − 12.2 + =    x  x = log −  = − 2  x ( ) ( ) ( − ( )  = log  Khi ta có: x1 + x = log + + log − = log  +  = log 6  2 4=2 Câu 10: (Chun Lê Q Đơn-Lần 3)Tìm tất giá trị tham số m để phương ( trình log x ) − log x + m = có nghiệm thuộc khoảng ( 0;1) 1 1    1 A m   0;  B m   ; +  C m   −;  D m  ( −;0 4 4    4 : Đáp án C Phương pháp giải: Đặt ẩn phụ, cô lập tham số m, đưa toán tương giao Lời giải: Ta có ( log x ) 2 1  − log x + m =   log x  − log 2−1 x + m =  ( log x ) + log x + m = 2  Đặt t = log x với x  ( 0;1)  t  Khi t + t + m =  −m = t + t = f ( t ) Xét hàm số f ( t ) = t + t x f '( t ) f (t) − − ( −;0 ) , có f ' ( t ) = 2t + =  t = − 1 + + −  1 → Bảng biến thiên Tính f ( ) = 0;f  −  = − ; lim f ( t ) = + ⎯⎯ t →−  2 Do đó, để −m = f ( t ) có nghiệm thuộc khoảng ( −;0 )  −m  − 1 m 4 Câu 11: (Chuyên Lê Quý Đôn-Lần 3) Cho hàm số f ( x ) xác định thỏa mãn f ' ( x ) = \ −1;1  1 1 Biết f ( −3) + f ( 3) = f  −  + f   = Tính x −1  2 2 T = f ( −2) + f ( 0) + f ( 5) A ln − B ln +1 C ln + D ln −1 Đáp án C Phương pháp giải: Tìm hàm số thông qua nguyên hàm, chia nhỏ trường hợp để xét giá trị Lời giải:  x −1  ln x + + C1 x   dx x −1 1 1− x Ta có f ( x ) =  f ' ( x ) =  = ln + C =  ln + C −  x  x −1 x +1  x +1  x −1  ln x + + C3 x  −1  1 ln + C1 + ln + C3 =  C1 + C3 = 2 1  1 1 f  −  + f   =  ln + C + ln + C =  C = 2  2 2 Suy f ( −3) + f ( 3) =  1 1 Vậy T = f ( −2 ) + f ( ) + f ( ) = ln + C3 + C + ln + C + C1 = ln + 2 ( 5) Câu 12: ( Chuyên Thái Bình- Lần 5) Tập nghiệm bất phương trình là: A ( −; −5) B ( −;0) C ( −5; + ) D x −1  5x + ( 0; + ) Đáp án C Phương pháp a  f x g x Đưa số a ( )  a ( )   f ( x )  g ( x ) Cách giải ( 5) x −1 5 x +3 5 x −1  5x +  x −1  x +  x −  3x +  2x  −10  x  −5 Câu 13: ( Chuyên Thái Bình- Lần 5) Hàm số y = x ln x đạt cực trị điểm 1 A x = e B x = 0; x = C x = D x = e e Đáp án D Phương pháp Giải phương trình y' = Cách giải TXD : D = ( 0; + ) 1 = 2x ln x + x = x ( ln x + 1) =  ln x = −  x = x e   y '' = ln x + + = ln x +  y ''  =20  e x= điểm cực tiểu hàm số y = x ln x e y ' = 2x ln x + x Câu 14: ( Chuyên Thái Bình- Lần 5) Phương trình log2 x + log2 ( x − 3) = có nghiệm? A Đáp án D B C D Phương pháp Sử dụng công thức loga x + loga y = loga ( xy )(  a  1; x; y  ) Cách giải  x   x  log x + log ( x − 3) =    x=4 log x ( x − 3) =  x ( x − 3) = Câu 15: ( Chuyên Thái Bình- Lần 5)Cho hai số thực dương x, y thỏa mãn log3 ( x + 1)( y + 1) y +1 = − ( x − 1)( y + 1) Giá trị nhỏ biểu thức P = x + 2y là: 27 C Pmin = −5 + D Pmin = −3 + 1  1  1  1  Câu 4: Phương trình ln  x −  ln  x +  ln  x +  ln  x +  = có 2  2  4  8  nghiệm A B C D 2.\ Đáp án A A Pmin = 11 Điều kiện x  B Pmin = 1  1  1  1  Ta có ln  x −  ln  x +  ln  x +  ln  x +  = 2  2  4  8    1   ln  x −  = x − = x =    2      1  x + =  x = (l ) ln  x +  = 2    2    Do phương trình có nghiệm   1 x + = x = ln  x +  = 4          1 x + = x = ln  x +  =   8   Câu 9: (Chuyên ĐH Vinh – Nghệ An – Lần 3) Cho log a c = x  logb c = y  Khi giá trị log ab c là: xy 1 A B C D x + y + x+ y x y xy Đáp án C   log c a = x  a = c log c = x  a x   Ta có:    logb c = y log c b = b = c y  y   xy Do log ab c = log 1 c = log 1 x = = 1 x+ y cxc y cxc y + x y Câu 16: (Chuyên ĐH Vinh – Nghệ An – Lần 3) Gọi a giá trị nhỏ ( log3 )( log3 3)( log3 ) ( log n ) f (n) = , với n  , n  số n để 9n f ( n) = a ? A Đáp án A B Vô số HD: Ta có f ( n)  f ( n + 1)  C log3 2.log3 log3 n  D log3 2.log3 log3 n.log3 ( n + 1) 9n+1 9n   log3 ( n + 1)  39  n +  n  39 − Suy ( ) ( ) f (1)  f ( 2)  f ( 3)   f 39 − = f 39 Vậy hàm số f ( n) đạt giá trị nhỏ n = 39 − 1; n = 39 Câu 17: (Chuyên ĐH Vinh – Nghệ An – Lần 3) Biết a số thực dương cho bất đẳng thức 3x + a x  x + x với số thực x Mệnh đề sau đúng? A a  (12;14 B a  (10;12 C a  (14;16 D a  (16;18 Đáp án D HD: Ta có 3x + ax  6x + 9x  f ( x ) = 3x + ax − 6x − 9x  0; x  Xét f ( x ) = 3x + ax − 6x − 9x Để f ( x )  0; x  , có f  ( x ) = 3x ln3 + ax ln a − 6x.ln6 − 9x.ln9  f ( x ) = = f ( 0) Hay 6  a = 18 Câu 18: (Chuyên Hạ Long – Lần 3)Hàm số y = log ( x − x ) có tập xác định là: f  ( 0) =  ln a = ln A ( 0; + ) B ( 0;3) C 0;3 D R Đáp án B   Câu 3: (Chuyên Hạ Long – Lần 3)Giải phương trình    25  x −1 = 1252 x A x = − Đáp án C B x = − C x = D x = Câu 19:(Chuyên Hạ Long – Lần 3) Cho P = 9log31 a + log 21 a − log a3 + với 3 1  a   ;3 M , m giá trị lớn giá trị nhỏ biểu thức P  27  Tính S = 4M − 3m 109 83 A 42 B 38 C D Đáp án A Viết lại: P = − log a + log 32 a + 3log a + 1  Đặt t = log a; a   ;3  t   −3;1  27  t f ( t ) = − + t + 3t + t = −1  f ' ( t ) = −t + 2t + =   t = BBT: x −3 −1 – f ' (t ) f (t ) 10 + 14 − Max P = 10 = M ; Min P = − t −3;1 t −3;1  S = 4M − 3m = 42 =m   Câu 20: (Chuyên Hạ Long – Lần 3) Cho f ( x ) = ln cos x Tính f '   8 A B C −2 D Đáp án C Câu 34: (Chuyên Hạ Long – Lần 3) Cho phương trình x − x + + = m Biết tập tất giá trị m để phương trình có nghiệm phân biệt khoảng ( a; b ) Khi b − a bằng: A Đáp án B B C D Đặt x = t   f ( t ) = t − 4t + = m Xét: f ' ( t ) = 2t − =  t = Ta có BBT: x – f ' (t ) f (t ) + + + a =  ycbt   m    b = Câu 21: (Chuyên Hạ Long – Lần 3)Cho dãy số ( un ) thỏa mãn log u1 + + log u1 − 2log u10 = 2log u10 un +1 = 2un với n  Giá trị lớn n để un  5100 bằng: A 248 B 246 C 247 D 290 Đáp án C Dễ thấy: u n +1 = 2u n  Cấp số nhân với q =  u n = u1.2n −1  u10 = u1.29 vào log u1 + + log u1 − 2log u10 = 2log u10  log u1 = − 18log  u1 = 101−18log Theo bài: u n  5100  u1.2n −1  5100  n  247,87  n Max = 247 Câu 22: (Chuyên Lam Sơn –Thanh Hóa –Lần 3) Cho a số thực dương thỏa mãn a  10, mệnh đề sai  10  A log (10.a ) = + log a B − log   = log a − a  a C log (10 ) = a D log ( a10 ) = a Đáp án D log ( a10 )  a với a  10 Câu 23:(Chuyên Lam Sơn –Thanh Hóa –Lần 3): Cho a số thực dương Viết biểu thức dạng lũy thừa số a ta kết P = a3 A P = a Đáp án A B P = a C P = a D P = a 19 + Mà x  x=2 Câu 198: (Chuyên Hoàng Văn Thụ- Lần 2) Tổng nghiệm phương trình (2 + 3) + (2 − 3) x x = 14 A C −2 B D Đáp án D Phương pháp: Đặt (2 + 3) x = t, t  Do (2 + 3) (2 − 3) x x ( = 1x =  − ) x = t Thay vào phương trình ban đầu giải phương trình ẩn t Cách giải: Đặt (2 + 3) ( x = t, t   − ) x = Phương trình cho trở thành: t t = + t + = 14  t − 14t + =   t  t = − ( )  (2 + 3) ( ) = (2 − ) t = 7+4  2+ x = 7+4 = 2+ x=2 t =7−4 x =7−4  x = −2 Vậy tập nghiệm phương trình cho S = −2;2 Tổng nghiệm phương trình là: ( −2) + = Câu 199: (Chuyên Hoàng Văn Thụ- Lần 2) Tập hợp giá trị m để phương x x x 1 1 1 trình   +   +   = m ( x + 3x + x ) có nghiệm thuộc  0;1  a; b  Giá trị  2 3  4 a + b A B Đáp án D Phương pháp: Sử dụng phương pháp hàm số C 12 101 D 12 108 x x x 1 1 1 x x x   +  +  1 1 1 x x x Cách giải:   +   +   = m ( + + )  m =   x  x x  (1) +3 +4  2 3  4 x x x 1 1  1   +  +  2− x + 3− x + 4− x Xét hàm số y =   x  x x  = x x  0;1 : +3 +4 + + 4x y' = − ( 2− x ln + 3− x ln + 4− x ln )( x + 3x + x ) − ( 2− x + 3− x + 4− x )( x ln + 3x ln + x ln ) (2 x +3 +4 x ) x 13  y = y (1) = Min 0;1 108 =>Hàm số nghịch biến  0;1     Max y = y ( ) =  0;1 13 121  13  ;1  a = ,b =1 a + b = =>Phương trình (1) có nghiệm  0;1   108 108 108  Câu 200: (Chuyên Thoại Ngọc Hầu-An Giang )Tập nghiệm bất phương trình 32 x  3x + A ( 0;64) B ( −;6) C ( 6; + ) D ( 0;6 ) Đáp án C BPT  2x  x +  x   S = ( 6; + ) Câu 201: (Chuyên Thoại Ngọc Hầu-An Giang ) Với a số thực dương khác Mệnh đề với số thực dương x, y? x x A log a = log a x − log a y B log a = log a x + log a y y y x C log x = loga x D loga = loga ( x − y ) a y y log a y Đáp án A Câu 202: (Chuyên Thoại Ngọc Hầu-An Giang )Tìm nghiệm phương trình log 64 ( x + 1) = A −1 B C D − Đáp án C PT  x +1 =  x = Câu 203: (Chuyên Thoại Ngọc Hầu-An Giang ) Có giá trị nguyên tham số m để phương trình sin x + cos6 x + 3sin x cos x − m + = có nghiệm thực?  0, x   0;1 A 13 Đáp án A B 15 C D Câu 204: (Chuyên Đại Học Vinh-2018) Với  số thực bất kỳ, mệnh đề sau sai? A (10 )  = 100  B  10 = ( 10 )   10 = 10 C  D (10 ) = 10 Đáp án D Phương pháp: Áp dụng công thức hàm số lũy thừa sau: ( a m ) = a m.n ; n ( ) m am = a ; ( a) m = am Cách giải: Áp dụng công thức lũy thừa ta thấy có đáp án D sai: (10 ) = 10.2 = 102  = 100   Câu 205: (Chuyên Đại Học Vinh-2018)hàm số f ( x ) = ln 1 −  Biết  x  f ( 2) + F ( 3) + + f ( 2018) = ln a − ln b + ln c − ln d với a, b, c, d số nguyên dương, a, c, d số nguyên tố a  b  c  d Tính P = a + b + c + d A 1986 B 1698 C 1689 Đáp án C Phương pháp: Phân tích, sử dụng công thức b log a ( bc ) = log a b + log a c;log a   = log a b − log a c (  a  1; b;c  ) c Cách giải: Xét hàm số f ( x )  2; 2018 ta có: D 1968  x2 −1    f ( x ) = ln 1 −  = ln   = ln ( x − 1) − ln ( x ) = ln ( x − 1) − ln x + ln ( x + 1)  x   x   f ( ) + f ( 3) + + f ( 2018 ) = ln1 − ln + ln + ln − ln + ln + + ln 2017 − ln 2018 + ln 2019 = ln1 − ln − ln 2018 + ln 2019 = − ln − ln − ln1009 + ln + ln 673 = ln − ln + ln 673 + ln1009 a = b =   ( tm )  P = a + b + c + d = + + 673 + 1009 = 1689 c = 673 d = 1009 Câu (Chuyên 206: ) ( Đại Học ) ( Vinh-2018) Cho phương trình ) ( log x − x − log x − x − = log m x + x − Có giá trị nguyên dương khác m cho phương trình cho có nghiệm x lớn 2? A Vô số B C D Đáp án D Phương pháp: +) Đặt t ( x ) = x − x − ( t  )  x + x − = , tìm miền giá trị t ứng với x  t +) Tìm điều kiện để phương trình có nghiệm t thuộc khoảng vừa tìm Cách giải: Ta có (x − )( ) x − x + x − = x − ( x − 1) = Đặt t ( x ) = x − x − ( t  )  x + x − = Ta có t ' ( x ) = − ( x x −1  x   t  0; − t =  x2 −1 − x   t ' ( x )  ) Khi phương trình trở thành log t.log t = log m t −1 = − log m t (*)  log t.log t + log m t =  log t.log t + log m 2.log t = log t =  log t ( log t + log m ) =   log t + log m =  t = 1( ktm ) log m   t = log t = − log = log m m  ( Để phương trình ban đầu có nghiệm x  phương trình (*) có nghiệm t  0; − log m 05  −  log m (  log − log 1  log m  log 2−  m    ( ) 2   m  2, m  Z, m   m = ( 2− ) )  2,33 Câu 207: ( Chuyên Ngoại Ngữ - Lần 1) Có giá trị m để giá trị nhỏ hàm số f ( x ) = e x − 4e x + m đoạn 0; ln 4 ? A Đáp án D B C D Phương pháp giải: Xét hàm bên dấu trị tuyệt đối đoạn, so sánh giá trị để tìm Lời giải: Đặt t = e x , với x 0;ln 4  t 1;4 Khi đó, hàm số trở thành: g ( t ) = t − 4t + m 1; 4 , có u ' ( t ) = 2t − =  t = Tính u (1) = m − 3; u ( 2) = m − 4; u ( 4) = m suy g (1) = m − ;g ( 2) = m − ;g ( 4) = m  m−4 m−3 ; m  m−4 m−3 ; m      m = 10  m = 10 TH1  g(t) = m − = min   1;4     m = −2  m−3 m −4 ; m  m −  4; m     m =  Vô nghiệm TH2  g(t) = m − = min   1;4     m = −3   m   m − ; m − 3  m   m − ; m − 3   m =  m = −6 TH3  g(t) = m = min   1;4     m = −6 Vậy m = 10; −6 hai giá trị cần tìm Xét hàm số u ( t ) = t − 4t + m ) Câu 208: (Chuyên Thái Bình - Lần 6) Cho a  Mệnh đề sau đúng? a2 A 1 a Đáp án C B a 2017  a 2018 C a −  a D a  a a  1  a−  a−  a−   a −  − Câu 209: (Chuyên ĐH Sư Phạm Hà Nội) Tìm tất giá trị tham số a để phương a = 3x − 3− x có nghiệm trình x −x +3 A −1  a  B Không tồn a C a  D a  Đáp án D t =9x → a = t −  t − at − = PT  a = ( 3x + 3− x )( 3x − 3− x )  a = x − 9− x ⎯⎯⎯ (1) t Dễ thấ y PT (1) có tić h hai nghiê ̣m bằ ng −1  (1) có nghiê ̣m dương, suy PT ban đầ u có nghiê ̣m nhấ t với mo ̣i a  a  Câu 210:(Chuyên Lam Sơn-Thanh Hóa 2018) Cho bất phương trình + log ( x + 1)  log ( mx + 4x + m ) (1) Tìm tất giá trị m để (1) nghiệm với số thực x A  m  B  m  m  D  m  C −3  m  Đáp án B m  m       m   m  ( *)  ' = − m    m  −2   Điều kiện: mx + 4x + m  , x  2 Khi (1)  log5 5 ( x + 1)  log5 ( mx + 4x + m )  ( x + 1)  mx + 4x + m  ( m − 5) x + 4x + m −  0, x  m   m −     m   m   ' = − m −  ( )  m    Kết hợp với điều kiện (*)   m  Câu211:(Chuyên Thái Nguyên Lần 1) 2 2 2log ( x − x + 2m − 4m ) + log ( x + mx − 2m ) = Cho phương trình Biết S = ( a; b )  ( c; d ) , a  b  c  d tập hợp giá trị tham số m để phương trình cho có hai nghiệm phân biệt x1 , x2 thỏa mãn x12 + x22  Tính giá trị biểu thức A = a + b + 5c + 2d A A = B A = C A = D A = Câu 212 : (Chuyên Lê Quý Đôn-Quảng Trị)Cho số thực dương a, b với a  log a b  Khẳng định sau đúng? a; b  ( 0;1) B  a; b  (1; + ) a; b  ( 0;1) A  0  a   b 0  b   a C  a; b  (1; + ) a; b ( 0;1) D  0  b   a Đáp án B a; b  log a b    0  a; b  Câu 213: (Chuyên Lê Quý Đôn-Quảng Trị)Cho a  Khẳng định sau khẳng định ? A a −  a B a2 1 a C a  a D a 2016  a 2017 Đáp án A Với a  1, ta có a −  a−  a−  a Câu 214.(Chuyên Thái Bình- 2018) Tính tích tất nghiệm thưc phương trình    x +   x + x  log  =5 +2  2x  A B C D Đáp án D x2 +  0( x  0) Đặt t = 2x Ta xét hàm số f (t ) = log t + 2t − = f '(t ) = + 2t ln  0t  t ln 2 Hàm f(t) đồng biến (0; +) Do f(t)=0 có nghiệm Ta có f(2) =0  t=2 nghiệm x2 + = 2( x  0) 2x = x − x + = = x1.x2 = = Câu 215.(Chuyên Thái Bình- 2018) Số giá trị nguyên tham số m để phương trình log ( x − 1) = log ( mx − 8) có hai nghiệm thực phân biệt là: A B C D Vô số Đáp án C ĐK: x  1, mx −  PT  ( x − 1) = mx −  x − ( m + ) x + = (*) Để PT cho có nghiệm thực phân biệt (*) có nghiệm phân biệt x1 , x2   = ( m + )2 − 36     x1 + x2 = m +    m   x −1 x −1 = − m  ( )( ) Thay m = 5, m = 6, m = vào ta m = giá trị cần tìm Câu 216: (Chuyên Bắc Ninh-2018) Cho x, y số thực dương thỏa mãn 2x + y +1 log3 = x + y Tìm giá trị nhỏ biểu thức T = + x+ y x y A + Đáp án D B C + D Phương pháp giải: Sử dụng phương pháp hàm đặc trưng để từ giả thiết suy mối liên hệ hai biến, sau sử dụng phương pháp thể khảo sát hàm số tìm giá trị nhỏ nhất, giá trị lớn biểu thức Lời giải: Ta có 2x + y +1 = x + y  log3 x + y + − log3 ( x + y ) = ( x + y ) − ( x + y + 1) + x+ y log ( x + y + 1) +2x+y+1=log 3 ( x + y )  +3 ( x + y ) (*) Xét hàm số f ( t ) = log3 t + t khoảng ( 0;+)  f (t ) hàm số đồng biến ( 0; + ) Mà (*)  f ( x + y + 1) = f ( 3x + y )  2x + y + = 3x + y  x + y = Đặt a = y   y = a  x = − y = − 2a    a  2 + − 2a a   + Xét hàm số g ( a ) = khoảng  0;  , có − 2a a 2  ( 2a − 1) ( 2a − 2a − 1) g '(a) = − a ( 2a − 1) Khi T = g ( a ) =   Xét h ( a ) = 2a3 − 2a −  0;  có 2   1    h ' ( a ) = 6a − = ( 3a − 1) =  a =   h ' ( a )  0, a   − ;    0;  3 3  2      Do h ( a ) nghịch biến  0;   h ( a )  h ( ) = −1  0, a   0;  nên 2 2     phương trình h ( a ) = vô nghiệm  0;  2  Phương trình g ' ( a ) =  a = Tính giá trị   g   = 6;lim g ( a ) = +; lim g ( a ) = + x →0 a→ 2 1 Suy g ( a ) = g   = Vậy giá trị nhỏ cần tìm Tmin =   2  0;   2 Câu 217.(Chuyên Thái Bình- 2018) Cho số thực dương a,b với a  log a b  Khẳng định sau đúng?   a, b    a, b  0  b   a 0  b, a  A  B  C  D  0  a   b 1  a, b 1  a, b 0  b   a Đáp án B Ta đặt log a b = t  0(a, b  0, a  0) = b = a t Nếu a>1 b>1 (t>0) Nếu 0

Ngày đăng: 11/08/2018, 11:47

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w