1. Trang chủ
  2. » Giáo án - Bài giảng

day so co gioi hsn 0

3 509 2
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 3
Dung lượng 198 KB

Nội dung

DÃY SỐ GIỚI HẠN 0 I.Mục tiêu bài học: 1. Kiến thức: giúp học sinh + Nắm được định nghĩa dãy số giới hạn 0, chủ yếu thông qua ví dụ cụ thể. + Ghi nhớ một số dãy số giới hạn 0 thường gặp. 2. Kỹ năng: giúp học sinh + Biết vận dụng định lí và các kết quả đã nêu để chứng minh một dãy số giới hạn 0. 3.Tư duy : Rèn luyện tư duy logic, trừu tượng. 4.Thái độ: Chú ý, tích cực và chủ động. II.Chuẩn bị của giáo viên và học sinh: 1.Chuẩn bị của giáo viên: Giáo án, SGK, đồ dung dạy học. 2.Chuẩn bị của học sinh: Đọc bài học trước khi đến lớp. III.Tiến trình bài học: Hoạt động 1: Dạy học khái niệm dãy số giới hạn 0 và một số dãy số giới hạn 0. 1 2 HĐ của GV HĐ của HS Nội dung ghi bảng Dãy 1, 1 ),( ≥= n n uu nn . (?) Biểu diễn các số hạng đầu tiên của dãy trên trục số. (?) Nhận xét vị trí các số hạng khi n tăng. (?)Mọi số hạng của dãy số đã cho, kể từ số hạng thứ mấy , đều giá trị tuyệt đối nhỏ hơn 0,01. (?) Tương tự như vậy, với n lớn bao nhiêu thì 1 10000 n u < ? (?) Thực hiện hoạt động 1. (?) Từ đó nhận xét gì về khoảng cách n u từ n u tới 0? (!) Dãy số tính chất như vậy được gọi là dãy giới hạn 0. (!) Chú ý cho HS về: 00 →⇔→ nn uu thông qua các ví dụ trên. + Trả lời + Các số hạng điểm biểu biễn càng gần về vị trí gốc trục tọa độ 0. +) 101100 01,0 1 01,0 ≥⇔> ⇔<⇔< nn n u n +) 1000110000 10000 11 10000 1 ≥⇔> ⇔<⇔< nn n u n +) Trả lời. + Khoảng cách thể nhỏ bao nhiêu tùy ý miễn là n đủ lớn. + Nêu định nghĩa. 1. Định nghĩa dãy số giới hạn 0: Xét dãy số (u n ) với 1, 1 ≥= n n u n , tức là dãy số ; . 3 1 ; 2 1 ;1 ( Vẽ trục số). Khoảng cách 1 u n n = từ điểm u n đến điểm 0 trở nên nhỏ bao nhiêu cũng được miễn là n đủ lớn. Hoạt động 1. Như vậy mọi số hạng của dãy số đã cho, kể từ số hạng nào đó trở đi, đều giá trị tuyệt đối nhỏ hơn một số dương nhỏ tùy ý cho trước. Ta nói rằng dãy số ) 1 ( n giới hạn 0. Định nghĩa: SGK Kí hiệu: 0)lim( = n u hoặc 0lim = n u hoặc 0→ n u (Dãy số (u n ) giới hạn 0 khi n tiến ra vô cực) Nhận xét: a) Dãy số (u n ) giới hạn 0 khi và chỉ khi dãy số (/u n /) giới hạn 0. Ví dụ: 0 )1( lim = − n n vì nn n )1(1 − = và 0 1 lim = n ( ) 0 1 lim;0 1 lim = − = nn n 0 1 lim;0 1 lim 3 == nn 0 1 lim = k n 0 cos lim = n n 0 sin lim 2 = n n π Hoạt động 2: Củng cố: 1. GV giúp HS củng cố bài học: + Nhớ được định nghĩa dãy số giới hạn 0 và một số dãy số giới hạn 0 thường gặp + Định lí 1 và 2, từ đó cách chứng minh dãy giới hạn 0. BTVN: Bài 1, 2, 3, 4 SGK trang 130 2. Câu hỏi củng cố: Câu hỏi 1: Câu nào trong các câu sau là đúng: A. Mọi dãy số giới hạn 0 đều là dãy giảm. B. Mọi dãy số tăng đều giới hạn khác 0. C. Nếu dãy số ( ) n a 1 0a − ≤ ≤ thì lim 0 n a = Đáp án: C Câu hỏi 2: Dãy số nào không giới hạn khác 0: A. C. B. D. Đáp án: D Câu hỏi 3: Dãy số nào giới hạn 0: A. C. B. D. Đáp án: A Giáo viên hướng dẫn Hà Nội, ngày (ký duyệt) Người soạn 3 ( ) ( ) 1 1 n n u n n − = + 2 3 n n n u = 2 2 2 n n u n + = 5, n u n= ∀ 1 cos 2 n n n u π + = ( ) ( ) 2 3 5 n n n u − = ( ) 1 , n n k u k n − = ∈Ν 1 0,01 n n u = . biễn càng gần về vị trí gốc trục tọa độ 0. +) 101 100 01 ,0 1 01 ,0 ≥⇔> ⇔<⇔< nn n u n +) 100 01 100 00 100 00 11 100 00 1 ≥⇔> ⇔<⇔< nn n u n +) Trả. hạn 0 khi và chỉ khi dãy số (/u n /) có giới hạn 0. Ví dụ: 0 )1( lim = − n n vì nn n )1(1 − = và 0 1 lim = n ( ) 0 1 lim ;0 1 lim = − = nn n 0 1 lim ;0 1

Ngày đăng: 07/08/2013, 01:25

HÌNH ẢNH LIÊN QUAN

HĐ của GV HĐ của HS Nội dung ghi bảng - day so co gioi hsn 0
c ủa GV HĐ của HS Nội dung ghi bảng (Trang 2)

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w