ĐỀ THIVÀO10 THPT – HẢIPHÒNG [2007-2008] Thời gian làm bài 120 phút, không kể thời gian giao đề Phần I: Trắc nghiệm khách quan. (2,0 điểm) Hãy chọn chỉ một chữ cái trước kết quả đúng. Câu 1: bằng: A. – (4x -3 ) B. 4x -3 C. -4x + 3 D. | - (4x-3)| Câu 2: Cho các hàm số bậc nhất: y = x+2 (1); y = x-2; . Kết luận nào sau đây đúng? A/ Đồ thị của 3 hàm số trên là những đường thẳng song song với nhau. B/ Đồ thị của 3 hàm số trên là những đường thẳng đi qua gốc tọa độ. C/ Cả 3 hàm số trên đều đồng biến. D/ Hàm số (1) đồng biến, hai hàm số còn lại nghịch biến. Câu 3: Phương trình nào dưới đây có thể kết hợp với phương trình x + y = 1 để được hệ phương trình có nghiệm duy nhất? A. 3y = -3x + 3 B. 0x + y = 1 C. 2x = 2 - 2y D. y = -x + 1 Câu 4: Cho hàm số . Kết luận nào sau đây đúng? A/ Hàm số đồng biến. B/ Hàm số trên đồng biến khi và nghịch biến khi x < 0. C/ Hàm số trên nghịch biến. D/ Hàm số trên đồng biến khi và nghịch biến khi x > 0. Câu 5: Nếu và là nghiệm của phương trình thì bằng: A. -12 B. -4 C. 12 D. 4 Câu 6: Cho tam giác MNP vuông tại M có MH là đường cao, cạnh , . Kết luận nào sau đây đúng? A/ . B/ Độ dài đoạn thẳng C. . D. Độ dài đoạn thẳng Câu 7: Cho tam giác MNP và hai đường cao MH, NK. Gọi (C) là đường tròn nhận MN làm đường kính. Khẳng định nào sau đây không đúng? A/ Ba điểm M, N, H cùng nằm trên đường tròn (C). B/ Ba điểm M, N, K cùng nằm trên đường tròn (C). C/ Bốn điểm M, N, H, K cùng nằm trên đường tròn (C). D/ Bốn điểm M, N, H, K không cùng nằm trên đường tròn (C). Câu 8: Cho đường tròn (O) có bán kính bằng 1; AB là một dây của đường tròn có độ dài bằng 1. Khoảng cách từ tâm O đến AB bằng giá trị nào? A/ B/ C/ D/ Phần 2: Tự luận. (8,0 điểm) Câu 1: (1,5 điểm) Cho phương trình: (1) 1/ Giải phương trình (1) khi m = 1. 2/ Chứng tỏ phương trình (1) luôn có nghiệm với mọi m. Câu 2: (1,5 điểm) Cho hệ phương trình (1). 1/ Giải hệ phương trình (1) khi . 2/ Tìm m để hệ phương trình (1) có nghiệm . Câu 3: (4,0 điểm) Cho hai đường tròn , có bán kính bằng nhau và cắt nhau ở A và B. Vẽ cát tuyến qua B không vuông góc với AB, nó cắt hai đường tròn ở E và F. (E ; F ). 1/ Chứng minh AE = AF. 2/ Vẽ cát tuyến CBD vuông góc với AB (C ; D ). Gọi P là giao điểm của CE và DF. Chứng minh rằng: a/ Các tứ giác AEPF và ACPD nội tiếp được đường tròn. b/ Gọi I là trung điểm của EF chứng minh ba điểm A, I, P thẳng hàng. 3/ Khi EF quay quanh B thì I và P di chuyển trên đường nào? Câu 4: (1,0 điểm) Gọi và là nghiệm của phương trình: Tìm giá trị lớn nhất của biểu thức . ĐỀ THI VÀO 10 THPT – HẢI PHÒNG [2007-2008] Thời gian làm bài 120 phút, không kể thời. Câu 3: (4,0 điểm) Cho hai đường tròn , có bán kính bằng nhau và cắt nhau ở A và B. Vẽ cát tuyến qua B không vuông góc với AB, nó cắt hai đường tròn ở E và