1. Trang chủ
  2. » Luận Văn - Báo Cáo

Phương trình diophantine đối với đa thức và hàm hữu tỷ trên trường sóng đại số, đặc trưng không ( Luận văn thạc sĩ)

46 125 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 46
Dung lượng 313,93 KB
File đính kèm Luận văn Full.rar (298 KB)

Nội dung

Phương trình diophantine đối với đa thức và hàm hữu tỷ trên trường sóng đại số, đặc trưng không ( Luận văn thạc sĩ)Phương trình diophantine đối với đa thức và hàm hữu tỷ trên trường sóng đại số, đặc trưng không ( Luận văn thạc sĩ)Phương trình diophantine đối với đa thức và hàm hữu tỷ trên trường sóng đại số, đặc trưng không ( Luận văn thạc sĩ)Phương trình diophantine đối với đa thức và hàm hữu tỷ trên trường sóng đại số, đặc trưng không ( Luận văn thạc sĩ)Phương trình diophantine đối với đa thức và hàm hữu tỷ trên trường sóng đại số, đặc trưng không ( Luận văn thạc sĩ)Phương trình diophantine đối với đa thức và hàm hữu tỷ trên trường sóng đại số, đặc trưng không ( Luận văn thạc sĩ)

ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KHOA HỌC NGUYỄN THỊ VÂN PHƯƠNG TRÌNH DIOPHANTINE ĐỐI VỚI ĐA THỨC HÀM HỮU TỶ TRÊN TRƯỜNG ĐÓNG ĐẠI SỐ, ĐẶC TRƯNG KHƠNG LUẬN VĂN THẠC SĨ TỐN HỌC Thái Ngun, Năm 2014 ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KHOA HỌC NGUYỄN THỊ VÂN PHƯƠNG TRÌNH DIOPHANTINE ĐỐI VỚI ĐA THỨC HÀM HỮU TỶ TRÊN TRƯỜNG ĐÓNG ĐẠI SỐ, ĐẶC TRƯNG KHƠNG Chun ngành: PHƯƠNG PHÁP TỐN SƠ CẤP Mã số: 60460113 LUẬN VĂN THẠC SĨ TOÁN HỌC Người hướng dẫn khoa học: TS VŨ HOÀI AN Thái Nguyên, Năm 2014 Lời cảm ơn Luận văn hoàn thành Khoa sau đại học, Đại học Khoa học - Đại học Thái Nguyên hướng dẫn tận tình thầy giáo TS Vũ Hồi An Tơi xin bày tỏ lòng kính trọng biết ơn sâu sắc đến thầy, người hướng dẫn giúp đỡ suốt trình thực luận văn Nhân dịp này, tơi xin trân trọng cảm ơn ban lãnh đại khoa Toán trường Đại học Khoa học, Khoa sau đại học - Đại học Thái Nguyên, thầy cô giáo trang bị kiến thức, tạo điều kiện thuận lợi cho thời gian học tập Cảm ơn GS TSKH Hà Huy Khoái, GS TSKH Nguyễn Tự Cường, PGS TS Lê Thị Thanh Nhàn, GPS TS Đàm Văn Nhỉ PGS TS Trịnh Thanh Hải có nhiều ý kiến quý báu để tác giả hồn chỉnh luận văn Tơi xin cảm ơn gia đình, bạn bè, đồng nghiệp thành viên lớp Cao học Toán K6B quan tâm, tạo điều kiện, động viên cổ vũ tơi để tơi hoàn thành luận văn Tuy nỗ lực học tập, nghiên cứu cố gắng song thời gian lực thân có hạn nên luận văn khó tránh khỏi thiếu sót Tơi mong nhận ý kiến đóng góp quý thầy cô bạn đồng nghiệp để luận văn hồn thiện Tơi xin chân thành cảm ơn Thái Nguyên, tháng năm 2014 Học viên Nguyễn Thị Vân Mục lục Mục lục Mở đầu Bảng ký hiệu Phương trình Diophantine hàm phân hình p-adic 1.1 Tương tự phương trình Diophantine số nguyên phương trình Diophantine đa thức trường số phức 1.1.1 Phương trình Diophantine số nguyên toán học trung học sở, trung học phổ thông 1.1.2 8 Phương trình Diophantine đa thức trường số phức 21 1.2 Phương trình Diophantine hàm phân hình p-adic 22 1.2.1 Phương trình Fermat - Waring hàm phân hình p-adic 22 1.2.2 1.3 Phương trình P (f ) = Q(g) hàm phân hình p-adic 22 Hàm độ cao hàm hữu tỷ trường đóng đại số, đặc trưng không 23 1.3.1 Hàm độ cao, hàm đếm hàm hữu tỷ trường đóng đại số, đặc trưng khơng 23 1.3.2 Các định lý nhận giá trị hàm hữu tỷ trường đóng đại số, đặc trưng khơng 24 Phương trình Diophantine đa thức hàm hữu tỷ trường đóng đại số, đặc trưng khơng 26 2.1 Phương trình kiểu Fermat - Waring đa thức hàm hữu tỷ trường đóng đại số, đặc trưng khơng 26 2.2 Phương trình P (f ) = Q(g) đa thức hàm hữu tỷ trường đóng đại số, đặc trưng khơng 30 2.2.1 Phương trình hàm P (f ) = Q(g) cho hàm hữu tỷ K 30 2.2.2 Đa thức cho hàm hữu tỷ 36 Kết luận 41 Tài liệu tham khảo 42 Mở đầu Lý chọn đề tài Sự phát triển số học, đặc biệt thập kỷ gần đây, chịu ảnh hưởng lớn tương tự số nguyên đa thức Nói cách khác, có giả thiết chưa chứng minh số nguyên, người ta cố gắng chứng minh kiện tương tự cho đa thức Điều thường dễ làm hơn, có lẽ ngun nhân chủ yếu vì, đa thức, ta có phép tính đạo hàm, khái niệm tương tự chưa có số ngun Ngồi ra, có hướng nghiên cứu theo tình ngược lại: Từ kết đa thức, người ta cố gắng chứng minh kiện tương tự cho số nguyên Phương trình Diophantine vấn đề kinh điển khó số học Trong tốn học phổ thơng, phương trình Diophantine số nguyên chuyên đề bồi dưỡng học sinh giỏi toán, thường xuất kỳ thi học sinh giỏi toán, báo Toán học tuổi trẻ, tài liệu toán học nâng cao dành cho học sinh phổ thơng, giáo viên phổ thơng Trong tốn học cao cấp, [3], [7], [8], [9] có tương tự phương trình Diophantine số ngun cho hàm phân hình phức p-adic Cơng cụ sử dụng lý thuyết phân bố giá trị phức p-adic Theo hướng nghiên cứu này, chúng tơi xem xét vấn đề: Phương trình Diophantine đa thức hàm hữu tỷ trường đóng đại số, đặc trưng không Mục tiêu nghiên cứu Vấn đề 1: Tổng hợp trình bày kiến thức phương trình Diophantine số nguyên, đa thức trường số phức Vấn đề 2: Trình bày tổng quan phương trình Diophantine hàm phân hình p-adic Vấn đề 3: Tổng hợp, xem xét trình bày áp dụng hai Định lý hàm hữu tỷ trường đóng đại số, đặc trưng khơng vào phương trình Diophantine đa thức hàm hữu tỷ trường đóng đại số, đặc trưng khơng Cụ thể là: Xét phương trình Diophantine sau cho đa thức hàm hữu tỷ trường đóng đại số, đặc trưng khơng: xn + y n = 1; xn + y n + z n = 0; xn + y m = 1; xn + y m + z p = 0; P (f ) = Q(g), với P, Q đa thức f, g hàm hữu tỷ Kết nghiên cứu Luận văn tổng hợp trình bày phương trình Diophantine số nguyên, đa thức trường số phức Trình bày tổng quan phương trình Diophantine hàm phân hình p-adic Tổng hợp, xem xét trình bày áp dụng hai Định lý hàm hữu tỷ trường đóng đại số, đặc trưng khơng vào phương trình Diophantine đa thức hàm hữu tỷ trường đóng đại số, đặc trưng không Luận văn tài liệu tham khảo có ích cho giáo viên tốn trung học phổ thông, học viên cao học chuyên ngành phương pháp toán sơ cấp Luận văn tương tự kết phương trình hàm [8] trình bày kết [1] Cụ thể là: Định lý 2.1.1, Định lý 2.1.2, Định lý 2.1.4 tương tự Định lý 2.30, Định lý 2.32 Định lý 2.33 [8] Trình bày kết [1] qua Định lý 2.2.1, Định lý 2.2.2, 2.2.4, 2.2.7 đưa [1] Bố cục luận văn Luận văn chia làm hai chương với phần mở đầu, kết luận tài liệu tham khảo Chương Trong chương xem xét Vấn đề Mục tiêu tổng hợp trình bày nội dung phương trình Diophantine số nguyên đa thức trường số phức, nhắc lại kết vấn đề nhận giá trị hàm hữu tỷ trường đóng đại số, đặc trưng khơng Chương Tổng hợp, xem xét trình bày áp dụng hai định lý hàm hữu tỷ, trường đóng đại số, đặc trưng khơng vào phương trình Diophantine đa thức hàm hữu tỷ trường đóng đại số, đặc trưng không Học viên Nguyễn Thị Vân Bảng ký hiệu K f n(f, a) Tf Trường đóng đại số, đặc trưng không Hàm hữu tỷ Hàm đếm f điểm a Hàm đặc trưng f Chương Phương trình Diophantine hàm phân hình p-adic Trong [3], Hà Huy Khoái - Phạm Huy Điển đề cập đến vấn đề: tương tự số nguyên đa thức Trước hết, ta thấy rõ, tập hợp số nguyên tập đa thức có tính chất giống sau đây: ❼ Các quy tắc cộng, trừ, nhân, chia hoàn toàn cho hai tập hợp ❼ Nếu số nguyên ta có số ngun tố, đa thức ta có đa thức bất khả quy ❼ Đối với số nguyên đa thức định nghĩa ƯCLN Hơn nữa, trường hợp, ƯCLN tìm thuật tốn Euclide ❼ Mỗi số ngun phân tích thành thừa số nguyên tố, đa thức phân tích thành tích đa thức bất khả quy ❼ Mỗi số nguyên tố có giá trị tuyệt đối nó, đa thức khác khơng có bậc Chúng ta kéo dài danh sách Ở vào vài kiện tương tự khó thấy Ta để ý đến tương tự phân tích thừa só ngun tố phân tích bất khả quy Nếu giả thiết K trường đóng đại số ... đóng đại số, đặc trưng khơng 26 2.1 Phương trình kiểu Fermat - Waring đa thức hàm hữu tỷ trường đóng đại số, đặc trưng khơng 26 2.2 Phương trình P (f ) = Q(g) đa thức hàm hữu tỷ trường. .. Diophantine hàm phân hình p-adic Tổng hợp, xem xét trình bày áp dụng hai Định lý hàm hữu tỷ trường đóng đại số, đặc trưng khơng vào phương trình Diophantine đa thức hàm hữu tỷ trường đóng đại số, đặc trưng. .. lý hàm hữu tỷ, trường đóng đại số, đặc trưng khơng vào phương trình Diophantine đa thức hàm hữu tỷ trường đóng đại số, đặc trưng khơng Học viên Nguyễn Thị Vân Bảng ký hiệu K f n(f, a) Tf Trường

Ngày đăng: 17/05/2018, 16:03

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN