Hé lộ tài liệu Xác suất cực chuẩn cực hayHé lộ tài liệu Xác suất cực chuẩn cực hayHé lộ tài liệu Xác suất cực chuẩn cực hayHé lộ tài liệu Xác suất cực chuẩn cực hayHé lộ tài liệu Xác suất cực chuẩn cực hayHé lộ tài liệu Xác suất cực chuẩn cực hayHé lộ tài liệu Xác suất cực chuẩn cực hayHé lộ tài liệu Xác suất cực chuẩn cực hayHé lộ tài liệu Xác suất cực chuẩn cực hay
DẠNG 1: CÁC BÀI TỐN ĐẾM – TÍNH XÁC SUẤT SỐ CÁC CHỮ SỐ THỎA MÃN ĐIỀU KIỆN CHO TRƢỚC Loại 1: Liên quan đến tính chất chia hết Câu 1: ( Đề thi học sinh giỏi Quảng Ngãi lớp 11 năm học 2015 – 2016) Lời giải Câu 2: ( Đề thi học sinh giỏi Vĩnh Phúc lớp 11 năm học 2010 – 2011) Gọi A tập hợp số tự nhiên có chín chữ số đơi khác Chọn ngẫu nhiên số tự nhiên thuộc vào tập A Tính xác suất để chọn đƣợc số thuộc A số chia hết cho Lời giải Câu 3: ( Đề thi học sinh giỏi Thanh Hóa lớp 12 năm học 2016 – 2017) Gọi S tập hợp ƣớc số nguyên dƣơng số 43200 Lấy ngẫu nhiên hai phần tử thuộc S Tính xác suất lấy đƣợc hai phần tử hai số không chia hết cho Lời giải Câu 4: Lời giải ( Đề thi học sinh giỏi Cụm Lạng Giang lớp 11 năm học 2012 – 2013) Câu 5: ( Đề thi học sinh giỏi Bình Định lớp 12 năm học 2017 – 2018) Câu 6: ( Đề thi học sinh giỏi Vĩnh Phúc lớp 11 năm học 2011 – 2012) Gọi A tập hợp tất số tự nhiên có chữ số Chọn ngẫu nhiên số từ tập A, tính xác suất để chọn đƣợc số chia hết cho chữ số hàng đơn vị Lời giải ( Đề thi học sinh giỏi Vĩnh Long lớp 11 năm học 2014 – 2015) Từ chữ số 0,1, 2,3, 4,5 lập số tự nhiên có ba chữ số đơi khác Lấy Câu 7: ngẫu nhiên số vừa lập Tính xác suất để lấy số khơng chia hết cho Lời giải Câu 8: ( Đề thi học sinh giỏi Hà Nam lớp 11 năm học 2016 – 2017) Từ chữ số ,2 ,3 ,4 ,5 ,6 ,7 ,8 lập số tự nhiên có chữ số khác Trong số lập đƣợc, chọn ngẫu nhiên số Tính xác suất để số đƣợc chọn chia hết cho 1111 Lời giải Câu 9: ( Đề thi học sinh giỏi Cẩm Xuyên lớp 11 năm học 2016 – 2017) Một hộp đựng 20 viên bi khác đƣợc đánh số từ đến 20 Lấy ba viên bi từ hộp cộng số ghi lại Hỏi có cách lấy để kết thu đƣợc số chia hết cho 3? Lời giải Câu 10: ( Đề thi học sinh giỏi Thái Nguyên lớp 11 năm học 2017 – 2018) Gọi S tập hợp số tự nhiên có chữ số đơi khác Chọn ngẫu nhiên số tự nhiên thuộc vào tập S Tính xác suất để chọn đƣợc số thuộc S số chia hết cho Câu 11: ( Đề thi học sinh giỏi Quảng Nam lớp 11 năm học 2015 – 2016) Lời giải Câu 12: ( Đề thi học sinh giỏi Hà Nam lớp 11 năm học 2017 – 2018) Cho X tập hợp số tự nhiên có chữ số khác mà tổng chữ số 18 Chọn ngẫu nhiên số từ tập hợp X, tính xác suất để số đƣợc chọn số chẵn Lời giải Câu 13: ( Đề thi học sinh giỏi Bà Rịa Vũng Tàu lớp 12 năm học 2017 – 2018) Từ chữ số 1;2;3;4;5;6;7;8;9 , lập số tự nhiên có chữ số đôi khác cho tổng ba chữ số hàng chục nghìn, hàng nghìn hàng trăm 9? Câu 14: ( Đề thi học sinh giỏi Cao Bằng lớp 12 năm học 2017 – 2018) Một hộp chứa 11 cầu đƣợc đánh số theo thứ tự từ đến 11, lấy ngẫu nhiên cầu Tính xác suất để tổng số đƣợc ghi cầu số lẻ Câu 15: ( Đề thi học sinh giỏi Thanh Hóa dự bị lớp 12 năm học 2014 – 2015) Một hộp đựng chín cầu giống đƣợc đánh số từ đến Hỏi phải lấy cầu để xác suất có ghi số chia hết cho phải lớn ? Lời giải Loại 2: Số lần xuất chữ số Câu 16: ( Đề thi học sinh giỏi Quảng Nam lớp 11 năm học 2016 – 2017) Từ 10 chữ số 0, 1, 2, 3, 4, 5, 6, 7, 8, lập đƣợc số tự nhiên thỏa : số có chữ số, có chữ số lẻ khác chữ số chẵn khác mà chữ số chẵn có mặt lần Lời giải Câu 17: ( Đề thi học sinh giỏi Thanh Hóa lớp 12 năm học 2013 – 2014) Từ tập hợp tất số tự nhiên có năm chữ số mà chữ số khác 0, lấy ngẫu nhiên số Tính xác suất để số tự nhiên đƣợc lấy có mặt ba chữ số khác Lời giải Câu 18: ( Đề thi học sinh giỏi Bắc Giang lớp 11 năm học 2012 – 2013) Lời giải Câu 19: ( Đề thi học sinh giỏi Nam Định lớp 11 năm học 2015 – 2016) Chọn ngẫu nhiên ba số đôi khác từ tập hợp A {1;2; ;20} Tính xác suất để ba số đƣợc chọn khơng có hai số tự nhiên liên tiếp Lời giải Câu 20: ( Đề thi học sinh giỏi Thanh Hóa lớp 12 năm học 2008 – 2009) Có số tự nhiên có chữ số đơi khác mà có chữ số lẻ ? Câu 56: ( Đề thi học sinh giỏi Thanh Hóa_ dự bị_ lớp 12 năm học 2016 – 2017) Cho đa giác 2n đỉnh, lấy ngẫu nhiên đƣờng chéo đa giác xác suất để đƣờng chéo đƣợc chọn có độ dài lớn Tìm hệ số số hạng chứa x khai triển ( x3 2)n x Câu 57: ( Đề thi học sinh giỏi Lâm Đồng lớp 12 năm học 2017 – 2018) Có năm đoạn thẳng có chiều dài , , , , cm Lấy ngẫu nhiên ba đoạn thẳng từ năm đoạn thẳng Tính xác suất để ba đoạn thẳng đƣợc chọn xếp thành hình tam giác Lời giải Câu 58: ( Đề thi học sinh giỏi Vĩnh Phúc lớp 12 năm học 2017 – 2018) Trong không gian cho 2n điểm phân biệt n 4, n , khơng có ba điểm thẳng hàng 2n điểm có n điểm nằm mặt phẳng Tìm tất giá trị n cho từ 2n điểm cho tạo 505 mặt phẳng phân biệt Lời giải 3 Số cách chọn điểm từ 2n điểm cho C2n suy số mặt phẳng đƣợc tạo C2n Do 2n điểm cho có n điểm đồng phẳng nên có Cn3 mặt phẳng trùng Suy số mặt phẳng đƣợc tạo thành từ 2n điểm cho C23n Cn3 Theo ra: C23n Cn3 505 2n 2n 1 2n n n 1 n 504 6 n n 18n n 3024 n n 1 7n 3024 7n3 9n2 2n 3024 n 8 7n2 47n 378 n Vậy n -DẠNG 4: CÁC BÀI TOÁN ĐẾM – TÍNH XÁC SUẤT LIÊN QUAN ĐẾN XẾP CHỖ , VỊ TRÍ Câu 59: ( Đề thi học sinh giỏi Bến Tre lớp 12 năm học 2017 – 2018) Câu 60: ( Đề thi học sinh giỏi Thanh Hóa lớp 11 năm học 2017 – 2018) Lời giải Câu 61: ( Đề thi học sinh giỏi Bắc Giang lớp 12 năm học 2016 – 2017) Lời giải Câu 62: ( Đề thi học sinh giỏi Thành phố Hồ Chí Minh lớp 12 năm học 2017 – 2018) Trong phòng học, có 36 bàn rời đƣợc đánh số từ đến 36 , bàn dành cho học sinh Các bàn đƣợc xếp thành hình vng có kích thƣớc 6x6 Cơ giáo xếp tùy ý 36 học sinh lớp có hai em tên Hạnh Phúc, vào bàn Tính xác suất để Hạnh Phúc ngồi hai bàn xếp cạnh (theo chiều ngang chiều dọc) Lời giải Câu 63: ( Đề thi học sinh giỏi Chu Văn An lớp 11 năm học 2015 – 2016) Lời giải Câu 64: ( Đề thi học sinh giỏi chuyên Bắc Ninh lớp 11) Có viên bi gồm hai viên bi xanh, hai viên bi đỏ hai viên bi vàng Hỏi có cách xếp viên bi thành hàng cho khơng có hai viên bi màu xếp cạnh nhau? Câu 65: ( Đề thi học sinh giỏi Triệu Sơn lớp 11 năm học 2017 – 2018) Từ 2012 số nguyên dƣơng lấy số xếp thành dãy số có dạng u1 , u2 , u3 , u4 , u5 , u6 Hỏi có dãy số có dạng biết u1 , u2 , u3 theo thứ tự lập thành cấp số cộng Lời giải Câu 66: ( Đề thi kỳ Yên Phong _ Bắc Ninh lớp 12 năm học 2017 – 2018) Có xe xếp cạnh thành hàng ngang gồm: xe màu xanh, xe màu vàng, xe màu đỏ Tính xác suất để hai xe màu không xếp cạnh Lời giải Câu 67: ( Đề thi minh họa mơn Tốn Bộ GD&ĐT năm học 2017 – 2018) Xếp ngẫu nhiên 10 học sinh gồm học sinh lớp 12A , học sinh lớp 12B học sinh lớp 12C thành hàng ngang Tính xác suất để 10 học sinh khơng có học sinh lớp đứng cạnh A Lời giải 11 630 B 126 C 105 D 42 Câu 68: ( Đề thi học sinh giỏi Thanh Hóa lớp 11 năm học 2017 – 2018) Xếp ngẫu nhiên 10 học sinh gồm học sinh lớp 11A, học sinh lớp 11B học sinh lớp 11C thành hàng ngang Tính xác suất để khơng có học sinh lớp đứng cạnh Câu 69: Xếp ngẫu nhiên học sinh gồm học sinh lớp 12A, học sinh lớp 12B học sinh lớp 12C thành hàng ngang Xác suất để học sinh khơng có học sinh lớp đứng cạnh A 20 B 35 C 28 D 70 Lời giải Chọn A Kí hiệu học sinh lớp 12A, 12B, 12C lần lƣợt A, B, C Số phần tử không gian mẫu n() 8! Gọi E biến cố khơng có học sinh lớp đứng cạnh Ta có cách xếp nhƣ sau: C-C-C-C (Trong dấu – vị trí trống) Số cách xếp học sinh lớp 12C 4! (cách) Để xếp học sinh lớp 12 A lớp 12B vào vị trí lại hàng ta có hai trƣờng hợp TH1: Có học sinh phí ngồi ( cuối phía bên phải cuối phía bên trái) B C B C A C B C Số cách xếp cho học sinh trƣờng A B 4!.2 TH2: Có cặp gồm học sinh trƣờng A học sinh trƣờng B vị trí trống bên hàng C AB C A C B C Số cách xếp cho học sinh trƣờng A B C11.C13 2!.2!.3 Số phần tử thuận lợi cho biến cố A n(E ) 4!(2.4! C11.C31.2!.2!.3) Xác suất biến cố E P(E ) n(E ) n() 20 Câu 70: [1D2-4-PT2] Xếp ngẫu nhiên học sinh gồm học sinh lớp 12A, học sinh lớp 12B học sinh lớp 12C thành hàng ngang Xác suất để hàng học sinh 12C không đứng cạnh 1 1 A B C D 20 14 35 28 Lời giải Chọn D Kí hiệu học sinh lớp 12A, 12B, 12C lần lƣợt A, B, C Số phần tử không gian mẫu n() 8! Gọi E biến cố học sinh lớp 12C không đứng cạnh Ta có cách xếp nhƣ sau: C-C-C-C (Trong dấu – vị trí trống) Số cách xếp học sinh lớp 12C 4! (cách) Để xếp học sinh lớp 12 A lớp 12B vào vị trí lại hàng ta có ba trƣờng hợp TH1: Có học sinh phí ngồi ( cuối phía bên phải cuối phía bên trái) B C B C A C B C Số cách xếp cho học sinh trƣờng A B 4!.2 TH2: Có cặp gồm học sinh trƣờng A học sinh trƣờng B vị trí trống bên hàng C AB C B C B C Số cách xếp cho học sinh trƣờng A B TH3: Có cặp học sinh trƣờng B vị trí trống C A C BB C Số cách xếp cho học sinh trƣờng A B C11.C31.2!.2!.3 B C C32 2!.2!.3 Số phần tử thuận lợi cho biến cố E n(E) 4!(2.4! C11.C31.2!.2!.3 C32 2!.2!.3) Xác suất biến cố A P(E ) n(E ) n() 14 Câu 71: Xếp ngẫu nhiên 10 học sinh gồm học sinh lớp 12A, học sinh lớp 12B học sinh lớp 12C thành hàng ngang Xác suất để hàng học sinh 12C không đứng cạnh 11 1 A B C D 630 14 35 28 Lời giải Chọn A Kí hiệu học sinh lớp 12A, 12B, 12C lần lƣợt A, B, C Số phần tử không gian mẫu n() 10! Gọi E biến cố khơng có học sinh trƣờng đứng cạnh Ta có cách xếp nhƣ sau: C-C-C-C-C (Trong dấu – vị trí trống) Số cách xếp học sinh lớp 12 C 5! cách Để xếp học sinh lớp12 A lớp 12B vào vị trí lại hàng ta có bốn trƣờng hợp TH1: Có học sinh phí ngồi ( cuối phía bên phải cuối phía bên trái) A C B C A C B C B C Số cách xếp cho học sinh lớp 12A 12B 5!.2 TH2: Có cặp gồm học sinh lớp 12 A học sinh lớp 12B vị trí trống bên hàng C AB C A C B C B C Số cách xếp cho học sinh lớp 12 A 12 B C21 C31.2!.3!.4 TH3: Có cặp gồm học sinh 12A vị trí trống bên hàng C AA C B C B C Số cách xếp cho học sinh lớp 12 A lớp 12 B C B C 3!.4 TH4: Có cặp gồm lớp 12B vị trí trống bên hàng C BB C A C A C Số cách xếp cho học sinh lớp 12 A 12 B B C32 3!.4 Số phần tử thuận lợi cho biến cố A n(A) 5!(2.5! C21 C31.2!.3!.4 3!.4 C32 3!.4) Xác suất biến cố E P(E ) n(E ) 11 n() 630 Câu 72: Xếp ngẫu nhiên 10 học sinh gồm học sinh lớp 12A, học sinh lớp 12B học sinh lớp 12C bàn tròn Xác suất để 10 học sinh khơng có học sinh lớp ngồi cạnh 11 1 A B C D 630 126 14 28 Lời giải Chọn B Kí hiệu học sinh lớp 12A, 12B, 12C lần lƣợt A, B, C Số phần tử không gian mẫu n() 9! Gọi E biến cố khơng có học sinh trƣờng đứng cạnh Ta có bƣớc xếp nhƣ sau: - Xếp học sinh lớp 12C ngồi vào bàn cho hai học sinh có ghế trống Số cách xếp là: 4! - Xếp học sinh lại vào bàn Số cách xếp là: 5! Số phần tử thuận lợi cho biến cố A là: n(A) 5!.4! Xác suất A P(E ) n(E ) n() 126 Câu 73: Xếp ngẫu nhiên 10 học sinh gồm học sinh lớp 12A, học sinh lớp 12B học sinh lớp 12C bàn tròn Xác suất để học sinh lớp ln ngồi cạnh 11 A B C D 630 14 63 28 Lời giải Chọn B Kí hiệu học sinh lớp 12A, 12B, 12C lần lƣợt A, B, C Số phần tử không gian mẫu n() 9! Gọi E biến cố học sinh trƣờng ln ngồi cạnh Ta có bƣớc xếp nhƣ sau: - Xếp học sinh lớp 12C ngồi vào bàn cho học sinh ngồi sát Số cách xếp là: 5! - Xếp học sinh lớp 12B vào bàn cho học sinh ngồi sát sát nhóm học sinh12C Số cách xếp là: 3!.2 - Xếp học sinh lớp 12A vào hai vị trí lại bàn Số cách xếp 2! Số phần tử thuận lợi cho biến cố A là: n(A) 5!.4!.2.2! Xác suất A P(E ) n(E ) n() 63 Câu 74: Xếp ngẫu nhiên 11 học sinh gồm học sinh lớp 12A, học sinh lớp 12B học sinh lớp 12C bàn tròn Xác suất để học sinh lớp ln ngồi cạnh A 11 630 B 420 C 28 D 14 Lời giải Chọn B Kí hiệu học sinh lớp 12A, 12B, 12C lần lƣợt A, B, C Số phần tử không gian mẫu n() 10! Gọi E biến cố học sinh trƣờng ngồi cạnh Ta có bƣớc xếp nhƣ sau: - Xếp học sinh lớp 12C ngồi vào bàn cho học sinh ngồi sát Số cách xếp là: 5! - Xếp học sinh lớp 12B vào bàn cho học sinh ngồi sát sát nhóm học sinh12C Số cách xếp là: 3!.2 - Xếp học sinh lớp 12A vào hai vị trí lại bàn Số cách xếp 3! Số phần tử thuận lợi cho biến cố E là: n(E) 5!.3!.2.3! Xác suất E P(E ) n(E ) n() 420 Câu 75: Xếp ngẫu nhiên 11 học sinh gồm học sinh lớp 12A học sinh lớp 12B hàng ngang Xác suất để học sinh lớp 12 B đƣợc tách thành nhóm riêng biêt, nhóm có học sinh 11 1 A B C D 630 14 420 33 Lời giải Chọn C Kí hiệu học sinh lớp 12A, 12B lần lƣợt A, B Số phần tử không gian mẫu n() 11! Gọi E biến cố học sinh lớp 12 B đƣợc tách thành nhóm riêng biêt Ta có bƣớc xếp nhƣ sau: - Xếp học sinh lớp 12B hàng ngang Số cách xếp là: 8! B x B x B x B x B x B x B x B Khi hai học sinh liền kề ln có khe trống x - Chọn khe trống khe trống x, sau xếp học sinh trƣờng A vào khe trống Số cách chọn xếp C73 3! Số phần tử thuận lợi cho biến cố E là: n(E ) 8!.C37 3! Xác suất E P(E ) n(E ) n() 33 Câu 76: Xếp ngẫu nhiên 12 học sinh gồm học sinh lớp 12A học sinh lớp 12B hàng ngang Xác suất để học sinh lớp 12 B đƣợc tách thành nhóm riêng biêt, nhóm có học sinh 11 1 35 A B C D 630 14 420 99 Lời giải Chọn C Kí hiệu học sinh lớp 12A, 12B lần lƣợt A, B Số phần tử không gian mẫu n() 12! Gọi E biến cố học sinh lớp 12 B đƣợc tách thành nhóm riêng biêt Ta có bƣớc xếp nhƣ sau: - Xếp học sinh lớp 12B hàng ngang Số cách xếp là: 8! Khi hai học sinh liền kề ln có khe trống x B x B x B x B x B x B x B x B TH1: Có học sinh lớp 12A đƣợc xếp tận phía bên phải hoạc tận phía bên trái - Chọn khe trống khe trống x, sau xếp học sinh trƣờng A vào khe trống vị trí đầu mút hàng Số cách chọn xếp C73 4!.2 TH2: Có khe trống đƣợc xếp học sinh lớp 12A B A B x B AA B x B A B x B x B Số cách chọn khe trống xếp học sinh lớp 12 A C73 C42 2!.2!3 Số phần tử thuận lợi cho biến cố E là: n(E) 8!(C73 4!.2 C73 C42 2!.2!3) Xác suất E P(E ) n(E ) 35 n(E ) 99 Câu 77: Xếp ngẫu nhiên 11 học sinh gồm học sinh lớp 12A học sinh lớp 12B vòng tròn Xác suất để học sinh lớp 12 B đƣợc tách thành nhóm riêng biêt, nhóm có học sinh A 11 630 B 420 C 35 99 D 165 Lời giải Chọn D Kí hiệu học sinh lớp 12A, 12B lần lƣợt A, B Số phần tử không gian mẫu n() 10! Gọi E biến cố học sinh lớp 12 B đƣợc tách thành nhóm riêng biêt Ta có bƣớc xếp nhƣ sau: - Xếp học sinh lớp 12B vòng tròn Số cách xếp là: 7! Khi hai học sinh liền kề ln có khe trống có tất khe trống nhƣ - Chọn khe trống khe trống , sau xếp học sinh trƣờng A vào khe trống chọn Số cách chọn xếp C83 3! Số phần tử thuận lợi cho biến cố E là: n(E ) 7!.C38 3! Xác suất E P(E ) n(E ) n() 165 Câu 78: Xếp ngẫu nhiên 12 học sinh gồm học sinh lớp 12A học sinh lớp 12B vòng tròn Xác suất để học sinh lớp 12 B đƣợc tách thành nhóm riêng biêt, nhóm có học sinh 11 28 A B C D 630 165 420 55 Lời giải Chọn C Kí hiệu học sinh lớp 12A, 12B lần lƣợt A, B Số phần tử không gian mẫu n() 11! Gọi E biến cố học sinh lớp 12 B đƣợc tách thành nhóm riêng biêt Ta có bƣớc xếp nhƣ sau: - Xếp học sinh lớp 12B vòng tròn Số cách xếp là: 7! Khi hai học sinh liền kề ln có khe trống có tất khe trống nhƣ - Chọn khe trống khe trống , sau xếp học sinh trƣờng A vào khe trống Số cách chọn xếp C83 C24 2!.2!.3 Số phần tử thuận lợi cho biến cố E là: n(E ) 7!.C83 C24 2!.2!.3 Xác suất A P(E ) n(E ) 28 n() 55 DẠNG 4: CÁC BÀI TOÁN KHÁC Câu 79: ( Đề thi học sinh giỏi Phú Thọ lớp 12 năm học 2017 – 2018) Cho lƣới ô vuông gồm 16 ô vuông nhỏ, ô vuông nhỏ có kích thƣớc 11 (mét) nhƣ hình vẽ bên Con kiến thứ vị trí A muốn di chuyển lên vị trí B , kiến thứ hai vị trí B muốn di chuyển xuống vị trí A Biết kiến thứ di chuyển cách ngẫu nhiên phía bên phải lên trên, kiến thứ hai di chuyển cách ngẫu nhiên phía bên trái xuống dƣới (theo cạnh hình vng) Hai kiến xuất phát thời điểm có vận tốc di chuyển mét/phút Tính xác suất để hai kiến gặp đƣờng B A Câu 80: ( Đề thi học sinh giỏi Hà Tĩnh lớp 11 năm học 2016 – 2017) Lời giải ... Tính xác suất để tổng số đƣợc ghi cầu số lẻ Câu 15: ( Đề thi học sinh giỏi Thanh Hóa dự bị lớp 12 năm học 2014 – 2015) Một hộp đựng chín cầu giống đƣợc đánh số từ đến Hỏi phải lấy cầu để xác suất. .. ngƣời khách vào ngẫu nhiên năm cửa hàng Tính xác suất để có cửa hàng có nhiều ngƣời khách vào Lời giải DẠNG 3: CÁC BÀI TỐN ĐẾM SỐ PHƢƠNG ÁN – TÍNH XÁC SUẤT LIÊN QUAN ĐẾN ĐA GIÁC Câu 48: ( Đề thi... Hóa_ dự bị_ lớp 12 năm học 2016 – 2017) Cho đa giác 2n đỉnh, lấy ngẫu nhiên đƣờng chéo đa giác xác suất để đƣờng chéo đƣợc chọn có độ dài lớn Tìm hệ số số hạng chứa x khai triển ( x3 2)n x