BÀI GIẢNG: BIỆNLUẬN SỐ NGHIỆM PHƯƠNGTRÌNH DỰA VÀO ĐỒTHỊPhương pháp: -Bước 1: Biến đổi phươngtrình cho cho vế trái giống hệt đồthị hàm số vừa vẽ -Bước 2: Nhận xét vế phải đường thẳng song song với trục Ox (hoành) Nhận xét số giao diểm số nghiệm -Bước 3: Quan sát đồthị đưa kết luận nghiệm Dấu hiệu nhận biết: -Có cụm từ BiệnLuận Số Nghiệm -Đề cho sẵn phươngtrình u cầu tìm điều kiện để phươngtrình có nghiệm Câu 1, Cho hàm số y = - x3 + 3x + a) Khảo sát biến thiên vẽ đồthị hàm số b) Dựa vào đồ thị, biệnluậntheo m số nghiệm pt: x3 - 3x + m = Câu Cho hàm số y = x3 + 3x2 + a )Khảo sát biến thiên vẽ đồthị hàm số a) Tìm 𝑚 để phươngtrình : 2m x ( x 3) có nghiệm phân biệt Câu Cho hàm số y x 3x a)Khảo sát biến thiên vẽ đồthị hàm số b)Biện luận số nghiệm phươngtrình : x4 – 6x2 + = 2m b) Tìm 𝑚 để pt 2 x4 12 x 2m có nghiệm phân biệt Câu Cho hàm số y = x x có đồthị (C) a) Khảo sát biến thiên vẽ đồthị hàm số b) Dựa vào đồthị (C), biệnluậntheo m số nghiệm phương trình: x3 3x 3m2 Trích đề thi Đại Học Câu (B-2009): Cho hàm số y x x (1) Với giá trị m, phươngtrình x x m có nghiệm thực phân biệt Câu (A-2006): Cho hàm số y x3 x 12 x Tìm m để phươngtrình sau có nghiệm phân biệt: x x 12 x m Câu (A-2002): Cho hàm số y x3 3x (1) Tìm k để phương trình: x3 3x k 3k có nghiệm phân biệt >> Truy cập trang http://tuyensinh247.com/ để học Tốn – Lý – Hóa – Sinh – Văn – Anh – Sử - Địa